LLVM API Documentation
00001 //===- InstCombineAddSub.cpp ----------------------------------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the visit functions for add, fadd, sub, and fsub. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "InstCombine.h" 00015 #include "llvm/ADT/STLExtras.h" 00016 #include "llvm/Analysis/InstructionSimplify.h" 00017 #include "llvm/IR/DataLayout.h" 00018 #include "llvm/IR/GetElementPtrTypeIterator.h" 00019 #include "llvm/IR/PatternMatch.h" 00020 using namespace llvm; 00021 using namespace PatternMatch; 00022 00023 #define DEBUG_TYPE "instcombine" 00024 00025 namespace { 00026 00027 /// Class representing coefficient of floating-point addend. 00028 /// This class needs to be highly efficient, which is especially true for 00029 /// the constructor. As of I write this comment, the cost of the default 00030 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 00031 /// perform write-merging). 00032 /// 00033 class FAddendCoef { 00034 public: 00035 // The constructor has to initialize a APFloat, which is unnecessary for 00036 // most addends which have coefficient either 1 or -1. So, the constructor 00037 // is expensive. In order to avoid the cost of the constructor, we should 00038 // reuse some instances whenever possible. The pre-created instances 00039 // FAddCombine::Add[0-5] embodies this idea. 00040 // 00041 FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {} 00042 ~FAddendCoef(); 00043 00044 void set(short C) { 00045 assert(!insaneIntVal(C) && "Insane coefficient"); 00046 IsFp = false; IntVal = C; 00047 } 00048 00049 void set(const APFloat& C); 00050 00051 void negate(); 00052 00053 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 00054 Value *getValue(Type *) const; 00055 00056 // If possible, don't define operator+/operator- etc because these 00057 // operators inevitably call FAddendCoef's constructor which is not cheap. 00058 void operator=(const FAddendCoef &A); 00059 void operator+=(const FAddendCoef &A); 00060 void operator-=(const FAddendCoef &A); 00061 void operator*=(const FAddendCoef &S); 00062 00063 bool isOne() const { return isInt() && IntVal == 1; } 00064 bool isTwo() const { return isInt() && IntVal == 2; } 00065 bool isMinusOne() const { return isInt() && IntVal == -1; } 00066 bool isMinusTwo() const { return isInt() && IntVal == -2; } 00067 00068 private: 00069 bool insaneIntVal(int V) { return V > 4 || V < -4; } 00070 APFloat *getFpValPtr(void) 00071 { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); } 00072 const APFloat *getFpValPtr(void) const 00073 { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); } 00074 00075 const APFloat &getFpVal(void) const { 00076 assert(IsFp && BufHasFpVal && "Incorret state"); 00077 return *getFpValPtr(); 00078 } 00079 00080 APFloat &getFpVal(void) { 00081 assert(IsFp && BufHasFpVal && "Incorret state"); 00082 return *getFpValPtr(); 00083 } 00084 00085 bool isInt() const { return !IsFp; } 00086 00087 // If the coefficient is represented by an integer, promote it to a 00088 // floating point. 00089 void convertToFpType(const fltSemantics &Sem); 00090 00091 // Construct an APFloat from a signed integer. 00092 // TODO: We should get rid of this function when APFloat can be constructed 00093 // from an *SIGNED* integer. 00094 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 00095 private: 00096 00097 bool IsFp; 00098 00099 // True iff FpValBuf contains an instance of APFloat. 00100 bool BufHasFpVal; 00101 00102 // The integer coefficient of an individual addend is either 1 or -1, 00103 // and we try to simplify at most 4 addends from neighboring at most 00104 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 00105 // is overkill of this end. 00106 short IntVal; 00107 00108 AlignedCharArrayUnion<APFloat> FpValBuf; 00109 }; 00110 00111 /// FAddend is used to represent floating-point addend. An addend is 00112 /// represented as <C, V>, where the V is a symbolic value, and C is a 00113 /// constant coefficient. A constant addend is represented as <C, 0>. 00114 /// 00115 class FAddend { 00116 public: 00117 FAddend() { Val = nullptr; } 00118 00119 Value *getSymVal (void) const { return Val; } 00120 const FAddendCoef &getCoef(void) const { return Coeff; } 00121 00122 bool isConstant() const { return Val == nullptr; } 00123 bool isZero() const { return Coeff.isZero(); } 00124 00125 void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; } 00126 void set(const APFloat& Coefficient, Value *V) 00127 { Coeff.set(Coefficient); Val = V; } 00128 void set(const ConstantFP* Coefficient, Value *V) 00129 { Coeff.set(Coefficient->getValueAPF()); Val = V; } 00130 00131 void negate() { Coeff.negate(); } 00132 00133 /// Drill down the U-D chain one step to find the definition of V, and 00134 /// try to break the definition into one or two addends. 00135 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 00136 00137 /// Similar to FAddend::drillDownOneStep() except that the value being 00138 /// splitted is the addend itself. 00139 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 00140 00141 void operator+=(const FAddend &T) { 00142 assert((Val == T.Val) && "Symbolic-values disagree"); 00143 Coeff += T.Coeff; 00144 } 00145 00146 private: 00147 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 00148 00149 // This addend has the value of "Coeff * Val". 00150 Value *Val; 00151 FAddendCoef Coeff; 00152 }; 00153 00154 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 00155 /// with its neighboring at most two instructions. 00156 /// 00157 class FAddCombine { 00158 public: 00159 FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {} 00160 Value *simplify(Instruction *FAdd); 00161 00162 private: 00163 typedef SmallVector<const FAddend*, 4> AddendVect; 00164 00165 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 00166 00167 Value *performFactorization(Instruction *I); 00168 00169 /// Convert given addend to a Value 00170 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 00171 00172 /// Return the number of instructions needed to emit the N-ary addition. 00173 unsigned calcInstrNumber(const AddendVect& Vect); 00174 Value *createFSub(Value *Opnd0, Value *Opnd1); 00175 Value *createFAdd(Value *Opnd0, Value *Opnd1); 00176 Value *createFMul(Value *Opnd0, Value *Opnd1); 00177 Value *createFDiv(Value *Opnd0, Value *Opnd1); 00178 Value *createFNeg(Value *V); 00179 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 00180 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 00181 00182 InstCombiner::BuilderTy *Builder; 00183 Instruction *Instr; 00184 00185 private: 00186 // Debugging stuff are clustered here. 00187 #ifndef NDEBUG 00188 unsigned CreateInstrNum; 00189 void initCreateInstNum() { CreateInstrNum = 0; } 00190 void incCreateInstNum() { CreateInstrNum++; } 00191 #else 00192 void initCreateInstNum() {} 00193 void incCreateInstNum() {} 00194 #endif 00195 }; 00196 } 00197 00198 //===----------------------------------------------------------------------===// 00199 // 00200 // Implementation of 00201 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 00202 // 00203 //===----------------------------------------------------------------------===// 00204 FAddendCoef::~FAddendCoef() { 00205 if (BufHasFpVal) 00206 getFpValPtr()->~APFloat(); 00207 } 00208 00209 void FAddendCoef::set(const APFloat& C) { 00210 APFloat *P = getFpValPtr(); 00211 00212 if (isInt()) { 00213 // As the buffer is meanless byte stream, we cannot call 00214 // APFloat::operator=(). 00215 new(P) APFloat(C); 00216 } else 00217 *P = C; 00218 00219 IsFp = BufHasFpVal = true; 00220 } 00221 00222 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 00223 if (!isInt()) 00224 return; 00225 00226 APFloat *P = getFpValPtr(); 00227 if (IntVal > 0) 00228 new(P) APFloat(Sem, IntVal); 00229 else { 00230 new(P) APFloat(Sem, 0 - IntVal); 00231 P->changeSign(); 00232 } 00233 IsFp = BufHasFpVal = true; 00234 } 00235 00236 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 00237 if (Val >= 0) 00238 return APFloat(Sem, Val); 00239 00240 APFloat T(Sem, 0 - Val); 00241 T.changeSign(); 00242 00243 return T; 00244 } 00245 00246 void FAddendCoef::operator=(const FAddendCoef &That) { 00247 if (That.isInt()) 00248 set(That.IntVal); 00249 else 00250 set(That.getFpVal()); 00251 } 00252 00253 void FAddendCoef::operator+=(const FAddendCoef &That) { 00254 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven; 00255 if (isInt() == That.isInt()) { 00256 if (isInt()) 00257 IntVal += That.IntVal; 00258 else 00259 getFpVal().add(That.getFpVal(), RndMode); 00260 return; 00261 } 00262 00263 if (isInt()) { 00264 const APFloat &T = That.getFpVal(); 00265 convertToFpType(T.getSemantics()); 00266 getFpVal().add(T, RndMode); 00267 return; 00268 } 00269 00270 APFloat &T = getFpVal(); 00271 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 00272 } 00273 00274 void FAddendCoef::operator-=(const FAddendCoef &That) { 00275 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven; 00276 if (isInt() == That.isInt()) { 00277 if (isInt()) 00278 IntVal -= That.IntVal; 00279 else 00280 getFpVal().subtract(That.getFpVal(), RndMode); 00281 return; 00282 } 00283 00284 if (isInt()) { 00285 const APFloat &T = That.getFpVal(); 00286 convertToFpType(T.getSemantics()); 00287 getFpVal().subtract(T, RndMode); 00288 return; 00289 } 00290 00291 APFloat &T = getFpVal(); 00292 T.subtract(createAPFloatFromInt(T.getSemantics(), IntVal), RndMode); 00293 } 00294 00295 void FAddendCoef::operator*=(const FAddendCoef &That) { 00296 if (That.isOne()) 00297 return; 00298 00299 if (That.isMinusOne()) { 00300 negate(); 00301 return; 00302 } 00303 00304 if (isInt() && That.isInt()) { 00305 int Res = IntVal * (int)That.IntVal; 00306 assert(!insaneIntVal(Res) && "Insane int value"); 00307 IntVal = Res; 00308 return; 00309 } 00310 00311 const fltSemantics &Semantic = 00312 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 00313 00314 if (isInt()) 00315 convertToFpType(Semantic); 00316 APFloat &F0 = getFpVal(); 00317 00318 if (That.isInt()) 00319 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 00320 APFloat::rmNearestTiesToEven); 00321 else 00322 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 00323 00324 return; 00325 } 00326 00327 void FAddendCoef::negate() { 00328 if (isInt()) 00329 IntVal = 0 - IntVal; 00330 else 00331 getFpVal().changeSign(); 00332 } 00333 00334 Value *FAddendCoef::getValue(Type *Ty) const { 00335 return isInt() ? 00336 ConstantFP::get(Ty, float(IntVal)) : 00337 ConstantFP::get(Ty->getContext(), getFpVal()); 00338 } 00339 00340 // The definition of <Val> Addends 00341 // ========================================= 00342 // A + B <1, A>, <1,B> 00343 // A - B <1, A>, <1,B> 00344 // 0 - B <-1, B> 00345 // C * A, <C, A> 00346 // A + C <1, A> <C, NULL> 00347 // 0 +/- 0 <0, NULL> (corner case) 00348 // 00349 // Legend: A and B are not constant, C is constant 00350 // 00351 unsigned FAddend::drillValueDownOneStep 00352 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 00353 Instruction *I = nullptr; 00354 if (!Val || !(I = dyn_cast<Instruction>(Val))) 00355 return 0; 00356 00357 unsigned Opcode = I->getOpcode(); 00358 00359 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 00360 ConstantFP *C0, *C1; 00361 Value *Opnd0 = I->getOperand(0); 00362 Value *Opnd1 = I->getOperand(1); 00363 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 00364 Opnd0 = nullptr; 00365 00366 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 00367 Opnd1 = nullptr; 00368 00369 if (Opnd0) { 00370 if (!C0) 00371 Addend0.set(1, Opnd0); 00372 else 00373 Addend0.set(C0, nullptr); 00374 } 00375 00376 if (Opnd1) { 00377 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 00378 if (!C1) 00379 Addend.set(1, Opnd1); 00380 else 00381 Addend.set(C1, nullptr); 00382 if (Opcode == Instruction::FSub) 00383 Addend.negate(); 00384 } 00385 00386 if (Opnd0 || Opnd1) 00387 return Opnd0 && Opnd1 ? 2 : 1; 00388 00389 // Both operands are zero. Weird! 00390 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 00391 return 1; 00392 } 00393 00394 if (I->getOpcode() == Instruction::FMul) { 00395 Value *V0 = I->getOperand(0); 00396 Value *V1 = I->getOperand(1); 00397 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 00398 Addend0.set(C, V1); 00399 return 1; 00400 } 00401 00402 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 00403 Addend0.set(C, V0); 00404 return 1; 00405 } 00406 } 00407 00408 return 0; 00409 } 00410 00411 // Try to break *this* addend into two addends. e.g. Suppose this addend is 00412 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 00413 // i.e. <2.3, X> and <2.3, Y>. 00414 // 00415 unsigned FAddend::drillAddendDownOneStep 00416 (FAddend &Addend0, FAddend &Addend1) const { 00417 if (isConstant()) 00418 return 0; 00419 00420 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 00421 if (!BreakNum || Coeff.isOne()) 00422 return BreakNum; 00423 00424 Addend0.Scale(Coeff); 00425 00426 if (BreakNum == 2) 00427 Addend1.Scale(Coeff); 00428 00429 return BreakNum; 00430 } 00431 00432 // Try to perform following optimization on the input instruction I. Return the 00433 // simplified expression if was successful; otherwise, return 0. 00434 // 00435 // Instruction "I" is Simplified into 00436 // ------------------------------------------------------- 00437 // (x * y) +/- (x * z) x * (y +/- z) 00438 // (y / x) +/- (z / x) (y +/- z) / x 00439 // 00440 Value *FAddCombine::performFactorization(Instruction *I) { 00441 assert((I->getOpcode() == Instruction::FAdd || 00442 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 00443 00444 Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0)); 00445 Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1)); 00446 00447 if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode()) 00448 return nullptr; 00449 00450 bool isMpy = false; 00451 if (I0->getOpcode() == Instruction::FMul) 00452 isMpy = true; 00453 else if (I0->getOpcode() != Instruction::FDiv) 00454 return nullptr; 00455 00456 Value *Opnd0_0 = I0->getOperand(0); 00457 Value *Opnd0_1 = I0->getOperand(1); 00458 Value *Opnd1_0 = I1->getOperand(0); 00459 Value *Opnd1_1 = I1->getOperand(1); 00460 00461 // Input Instr I Factor AddSub0 AddSub1 00462 // ---------------------------------------------- 00463 // (x*y) +/- (x*z) x y z 00464 // (y/x) +/- (z/x) x y z 00465 // 00466 Value *Factor = nullptr; 00467 Value *AddSub0 = nullptr, *AddSub1 = nullptr; 00468 00469 if (isMpy) { 00470 if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1) 00471 Factor = Opnd0_0; 00472 else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1) 00473 Factor = Opnd0_1; 00474 00475 if (Factor) { 00476 AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0; 00477 AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0; 00478 } 00479 } else if (Opnd0_1 == Opnd1_1) { 00480 Factor = Opnd0_1; 00481 AddSub0 = Opnd0_0; 00482 AddSub1 = Opnd1_0; 00483 } 00484 00485 if (!Factor) 00486 return nullptr; 00487 00488 FastMathFlags Flags; 00489 Flags.setUnsafeAlgebra(); 00490 if (I0) Flags &= I->getFastMathFlags(); 00491 if (I1) Flags &= I->getFastMathFlags(); 00492 00493 // Create expression "NewAddSub = AddSub0 +/- AddsSub1" 00494 Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ? 00495 createFAdd(AddSub0, AddSub1) : 00496 createFSub(AddSub0, AddSub1); 00497 if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) { 00498 const APFloat &F = CFP->getValueAPF(); 00499 if (!F.isNormal()) 00500 return nullptr; 00501 } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub)) 00502 II->setFastMathFlags(Flags); 00503 00504 if (isMpy) { 00505 Value *RI = createFMul(Factor, NewAddSub); 00506 if (Instruction *II = dyn_cast<Instruction>(RI)) 00507 II->setFastMathFlags(Flags); 00508 return RI; 00509 } 00510 00511 Value *RI = createFDiv(NewAddSub, Factor); 00512 if (Instruction *II = dyn_cast<Instruction>(RI)) 00513 II->setFastMathFlags(Flags); 00514 return RI; 00515 } 00516 00517 Value *FAddCombine::simplify(Instruction *I) { 00518 assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode"); 00519 00520 // Currently we are not able to handle vector type. 00521 if (I->getType()->isVectorTy()) 00522 return nullptr; 00523 00524 assert((I->getOpcode() == Instruction::FAdd || 00525 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 00526 00527 // Save the instruction before calling other member-functions. 00528 Instr = I; 00529 00530 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 00531 00532 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 00533 00534 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 00535 unsigned Opnd0_ExpNum = 0; 00536 unsigned Opnd1_ExpNum = 0; 00537 00538 if (!Opnd0.isConstant()) 00539 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 00540 00541 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 00542 if (OpndNum == 2 && !Opnd1.isConstant()) 00543 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 00544 00545 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 00546 if (Opnd0_ExpNum && Opnd1_ExpNum) { 00547 AddendVect AllOpnds; 00548 AllOpnds.push_back(&Opnd0_0); 00549 AllOpnds.push_back(&Opnd1_0); 00550 if (Opnd0_ExpNum == 2) 00551 AllOpnds.push_back(&Opnd0_1); 00552 if (Opnd1_ExpNum == 2) 00553 AllOpnds.push_back(&Opnd1_1); 00554 00555 // Compute instruction quota. We should save at least one instruction. 00556 unsigned InstQuota = 0; 00557 00558 Value *V0 = I->getOperand(0); 00559 Value *V1 = I->getOperand(1); 00560 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 00561 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 00562 00563 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 00564 return R; 00565 } 00566 00567 if (OpndNum != 2) { 00568 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 00569 // splitted into two addends, say "V = X - Y", the instruction would have 00570 // been optimized into "I = Y - X" in the previous steps. 00571 // 00572 const FAddendCoef &CE = Opnd0.getCoef(); 00573 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 00574 } 00575 00576 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 00577 if (Opnd1_ExpNum) { 00578 AddendVect AllOpnds; 00579 AllOpnds.push_back(&Opnd0); 00580 AllOpnds.push_back(&Opnd1_0); 00581 if (Opnd1_ExpNum == 2) 00582 AllOpnds.push_back(&Opnd1_1); 00583 00584 if (Value *R = simplifyFAdd(AllOpnds, 1)) 00585 return R; 00586 } 00587 00588 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 00589 if (Opnd0_ExpNum) { 00590 AddendVect AllOpnds; 00591 AllOpnds.push_back(&Opnd1); 00592 AllOpnds.push_back(&Opnd0_0); 00593 if (Opnd0_ExpNum == 2) 00594 AllOpnds.push_back(&Opnd0_1); 00595 00596 if (Value *R = simplifyFAdd(AllOpnds, 1)) 00597 return R; 00598 } 00599 00600 // step 6: Try factorization as the last resort, 00601 return performFactorization(I); 00602 } 00603 00604 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 00605 00606 unsigned AddendNum = Addends.size(); 00607 assert(AddendNum <= 4 && "Too many addends"); 00608 00609 // For saving intermediate results; 00610 unsigned NextTmpIdx = 0; 00611 FAddend TmpResult[3]; 00612 00613 // Points to the constant addend of the resulting simplified expression. 00614 // If the resulting expr has constant-addend, this constant-addend is 00615 // desirable to reside at the top of the resulting expression tree. Placing 00616 // constant close to supper-expr(s) will potentially reveal some optimization 00617 // opportunities in super-expr(s). 00618 // 00619 const FAddend *ConstAdd = nullptr; 00620 00621 // Simplified addends are placed <SimpVect>. 00622 AddendVect SimpVect; 00623 00624 // The outer loop works on one symbolic-value at a time. Suppose the input 00625 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 00626 // The symbolic-values will be processed in this order: x, y, z. 00627 // 00628 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 00629 00630 const FAddend *ThisAddend = Addends[SymIdx]; 00631 if (!ThisAddend) { 00632 // This addend was processed before. 00633 continue; 00634 } 00635 00636 Value *Val = ThisAddend->getSymVal(); 00637 unsigned StartIdx = SimpVect.size(); 00638 SimpVect.push_back(ThisAddend); 00639 00640 // The inner loop collects addends sharing same symbolic-value, and these 00641 // addends will be later on folded into a single addend. Following above 00642 // example, if the symbolic value "y" is being processed, the inner loop 00643 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 00644 // be later on folded into "<b1+b2, y>". 00645 // 00646 for (unsigned SameSymIdx = SymIdx + 1; 00647 SameSymIdx < AddendNum; SameSymIdx++) { 00648 const FAddend *T = Addends[SameSymIdx]; 00649 if (T && T->getSymVal() == Val) { 00650 // Set null such that next iteration of the outer loop will not process 00651 // this addend again. 00652 Addends[SameSymIdx] = nullptr; 00653 SimpVect.push_back(T); 00654 } 00655 } 00656 00657 // If multiple addends share same symbolic value, fold them together. 00658 if (StartIdx + 1 != SimpVect.size()) { 00659 FAddend &R = TmpResult[NextTmpIdx ++]; 00660 R = *SimpVect[StartIdx]; 00661 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 00662 R += *SimpVect[Idx]; 00663 00664 // Pop all addends being folded and push the resulting folded addend. 00665 SimpVect.resize(StartIdx); 00666 if (Val) { 00667 if (!R.isZero()) { 00668 SimpVect.push_back(&R); 00669 } 00670 } else { 00671 // Don't push constant addend at this time. It will be the last element 00672 // of <SimpVect>. 00673 ConstAdd = &R; 00674 } 00675 } 00676 } 00677 00678 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && 00679 "out-of-bound access"); 00680 00681 if (ConstAdd) 00682 SimpVect.push_back(ConstAdd); 00683 00684 Value *Result; 00685 if (!SimpVect.empty()) 00686 Result = createNaryFAdd(SimpVect, InstrQuota); 00687 else { 00688 // The addition is folded to 0.0. 00689 Result = ConstantFP::get(Instr->getType(), 0.0); 00690 } 00691 00692 return Result; 00693 } 00694 00695 Value *FAddCombine::createNaryFAdd 00696 (const AddendVect &Opnds, unsigned InstrQuota) { 00697 assert(!Opnds.empty() && "Expect at least one addend"); 00698 00699 // Step 1: Check if the # of instructions needed exceeds the quota. 00700 // 00701 unsigned InstrNeeded = calcInstrNumber(Opnds); 00702 if (InstrNeeded > InstrQuota) 00703 return nullptr; 00704 00705 initCreateInstNum(); 00706 00707 // step 2: Emit the N-ary addition. 00708 // Note that at most three instructions are involved in Fadd-InstCombine: the 00709 // addition in question, and at most two neighboring instructions. 00710 // The resulting optimized addition should have at least one less instruction 00711 // than the original addition expression tree. This implies that the resulting 00712 // N-ary addition has at most two instructions, and we don't need to worry 00713 // about tree-height when constructing the N-ary addition. 00714 00715 Value *LastVal = nullptr; 00716 bool LastValNeedNeg = false; 00717 00718 // Iterate the addends, creating fadd/fsub using adjacent two addends. 00719 for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end(); 00720 I != E; I++) { 00721 bool NeedNeg; 00722 Value *V = createAddendVal(**I, NeedNeg); 00723 if (!LastVal) { 00724 LastVal = V; 00725 LastValNeedNeg = NeedNeg; 00726 continue; 00727 } 00728 00729 if (LastValNeedNeg == NeedNeg) { 00730 LastVal = createFAdd(LastVal, V); 00731 continue; 00732 } 00733 00734 if (LastValNeedNeg) 00735 LastVal = createFSub(V, LastVal); 00736 else 00737 LastVal = createFSub(LastVal, V); 00738 00739 LastValNeedNeg = false; 00740 } 00741 00742 if (LastValNeedNeg) { 00743 LastVal = createFNeg(LastVal); 00744 } 00745 00746 #ifndef NDEBUG 00747 assert(CreateInstrNum == InstrNeeded && 00748 "Inconsistent in instruction numbers"); 00749 #endif 00750 00751 return LastVal; 00752 } 00753 00754 Value *FAddCombine::createFSub 00755 (Value *Opnd0, Value *Opnd1) { 00756 Value *V = Builder->CreateFSub(Opnd0, Opnd1); 00757 if (Instruction *I = dyn_cast<Instruction>(V)) 00758 createInstPostProc(I); 00759 return V; 00760 } 00761 00762 Value *FAddCombine::createFNeg(Value *V) { 00763 Value *Zero = cast<Value>(ConstantFP::get(V->getType(), 0.0)); 00764 Value *NewV = createFSub(Zero, V); 00765 if (Instruction *I = dyn_cast<Instruction>(NewV)) 00766 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 00767 return NewV; 00768 } 00769 00770 Value *FAddCombine::createFAdd 00771 (Value *Opnd0, Value *Opnd1) { 00772 Value *V = Builder->CreateFAdd(Opnd0, Opnd1); 00773 if (Instruction *I = dyn_cast<Instruction>(V)) 00774 createInstPostProc(I); 00775 return V; 00776 } 00777 00778 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 00779 Value *V = Builder->CreateFMul(Opnd0, Opnd1); 00780 if (Instruction *I = dyn_cast<Instruction>(V)) 00781 createInstPostProc(I); 00782 return V; 00783 } 00784 00785 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) { 00786 Value *V = Builder->CreateFDiv(Opnd0, Opnd1); 00787 if (Instruction *I = dyn_cast<Instruction>(V)) 00788 createInstPostProc(I); 00789 return V; 00790 } 00791 00792 void FAddCombine::createInstPostProc(Instruction *NewInstr, 00793 bool NoNumber) { 00794 NewInstr->setDebugLoc(Instr->getDebugLoc()); 00795 00796 // Keep track of the number of instruction created. 00797 if (!NoNumber) 00798 incCreateInstNum(); 00799 00800 // Propagate fast-math flags 00801 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 00802 } 00803 00804 // Return the number of instruction needed to emit the N-ary addition. 00805 // NOTE: Keep this function in sync with createAddendVal(). 00806 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 00807 unsigned OpndNum = Opnds.size(); 00808 unsigned InstrNeeded = OpndNum - 1; 00809 00810 // The number of addends in the form of "(-1)*x". 00811 unsigned NegOpndNum = 0; 00812 00813 // Adjust the number of instructions needed to emit the N-ary add. 00814 for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end(); 00815 I != E; I++) { 00816 const FAddend *Opnd = *I; 00817 if (Opnd->isConstant()) 00818 continue; 00819 00820 const FAddendCoef &CE = Opnd->getCoef(); 00821 if (CE.isMinusOne() || CE.isMinusTwo()) 00822 NegOpndNum++; 00823 00824 // Let the addend be "c * x". If "c == +/-1", the value of the addend 00825 // is immediately available; otherwise, it needs exactly one instruction 00826 // to evaluate the value. 00827 if (!CE.isMinusOne() && !CE.isOne()) 00828 InstrNeeded++; 00829 } 00830 if (NegOpndNum == OpndNum) 00831 InstrNeeded++; 00832 return InstrNeeded; 00833 } 00834 00835 // Input Addend Value NeedNeg(output) 00836 // ================================================================ 00837 // Constant C C false 00838 // <+/-1, V> V coefficient is -1 00839 // <2/-2, V> "fadd V, V" coefficient is -2 00840 // <C, V> "fmul V, C" false 00841 // 00842 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 00843 Value *FAddCombine::createAddendVal 00844 (const FAddend &Opnd, bool &NeedNeg) { 00845 const FAddendCoef &Coeff = Opnd.getCoef(); 00846 00847 if (Opnd.isConstant()) { 00848 NeedNeg = false; 00849 return Coeff.getValue(Instr->getType()); 00850 } 00851 00852 Value *OpndVal = Opnd.getSymVal(); 00853 00854 if (Coeff.isMinusOne() || Coeff.isOne()) { 00855 NeedNeg = Coeff.isMinusOne(); 00856 return OpndVal; 00857 } 00858 00859 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 00860 NeedNeg = Coeff.isMinusTwo(); 00861 return createFAdd(OpndVal, OpndVal); 00862 } 00863 00864 NeedNeg = false; 00865 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 00866 } 00867 00868 // If one of the operands only has one non-zero bit, and if the other 00869 // operand has a known-zero bit in a more significant place than it (not 00870 // including the sign bit) the ripple may go up to and fill the zero, but 00871 // won't change the sign. For example, (X & ~4) + 1. 00872 static bool checkRippleForAdd(const APInt &Op0KnownZero, 00873 const APInt &Op1KnownZero) { 00874 APInt Op1MaybeOne = ~Op1KnownZero; 00875 // Make sure that one of the operand has at most one bit set to 1. 00876 if (Op1MaybeOne.countPopulation() != 1) 00877 return false; 00878 00879 // Find the most significant known 0 other than the sign bit. 00880 int BitWidth = Op0KnownZero.getBitWidth(); 00881 APInt Op0KnownZeroTemp(Op0KnownZero); 00882 Op0KnownZeroTemp.clearBit(BitWidth - 1); 00883 int Op0ZeroPosition = BitWidth - Op0KnownZeroTemp.countLeadingZeros() - 1; 00884 00885 int Op1OnePosition = BitWidth - Op1MaybeOne.countLeadingZeros() - 1; 00886 assert(Op1OnePosition >= 0); 00887 00888 // This also covers the case of no known zero, since in that case 00889 // Op0ZeroPosition is -1. 00890 return Op0ZeroPosition >= Op1OnePosition; 00891 } 00892 00893 /// WillNotOverflowSignedAdd - Return true if we can prove that: 00894 /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS)) 00895 /// This basically requires proving that the add in the original type would not 00896 /// overflow to change the sign bit or have a carry out. 00897 /// TODO: Handle this for Vectors. 00898 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS, 00899 Instruction *CxtI) { 00900 // There are different heuristics we can use for this. Here are some simple 00901 // ones. 00902 00903 // If LHS and RHS each have at least two sign bits, the addition will look 00904 // like 00905 // 00906 // XX..... + 00907 // YY..... 00908 // 00909 // If the carry into the most significant position is 0, X and Y can't both 00910 // be 1 and therefore the carry out of the addition is also 0. 00911 // 00912 // If the carry into the most significant position is 1, X and Y can't both 00913 // be 0 and therefore the carry out of the addition is also 1. 00914 // 00915 // Since the carry into the most significant position is always equal to 00916 // the carry out of the addition, there is no signed overflow. 00917 if (ComputeNumSignBits(LHS, 0, CxtI) > 1 && 00918 ComputeNumSignBits(RHS, 0, CxtI) > 1) 00919 return true; 00920 00921 if (IntegerType *IT = dyn_cast<IntegerType>(LHS->getType())) { 00922 int BitWidth = IT->getBitWidth(); 00923 APInt LHSKnownZero(BitWidth, 0); 00924 APInt LHSKnownOne(BitWidth, 0); 00925 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, CxtI); 00926 00927 APInt RHSKnownZero(BitWidth, 0); 00928 APInt RHSKnownOne(BitWidth, 0); 00929 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, CxtI); 00930 00931 // Addition of two 2's compliment numbers having opposite signs will never 00932 // overflow. 00933 if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) || 00934 (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1])) 00935 return true; 00936 00937 // Check if carry bit of addition will not cause overflow. 00938 if (checkRippleForAdd(LHSKnownZero, RHSKnownZero)) 00939 return true; 00940 if (checkRippleForAdd(RHSKnownZero, LHSKnownZero)) 00941 return true; 00942 } 00943 return false; 00944 } 00945 00946 /// WillNotOverflowUnsignedAdd - Return true if we can prove that: 00947 /// (zext (add LHS, RHS)) === (add (zext LHS), (zext RHS)) 00948 bool InstCombiner::WillNotOverflowUnsignedAdd(Value *LHS, Value *RHS, 00949 Instruction *CxtI) { 00950 // There are different heuristics we can use for this. Here is a simple one. 00951 // If the sign bit of LHS and that of RHS are both zero, no unsigned wrap. 00952 bool LHSKnownNonNegative, LHSKnownNegative; 00953 bool RHSKnownNonNegative, RHSKnownNegative; 00954 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, 0, AT, CxtI, DT); 00955 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, 0, AT, CxtI, DT); 00956 if (LHSKnownNonNegative && RHSKnownNonNegative) 00957 return true; 00958 00959 return false; 00960 } 00961 00962 /// \brief Return true if we can prove that: 00963 /// (sub LHS, RHS) === (sub nsw LHS, RHS) 00964 /// This basically requires proving that the add in the original type would not 00965 /// overflow to change the sign bit or have a carry out. 00966 /// TODO: Handle this for Vectors. 00967 bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS, 00968 Instruction *CxtI) { 00969 // If LHS and RHS each have at least two sign bits, the subtraction 00970 // cannot overflow. 00971 if (ComputeNumSignBits(LHS, 0, CxtI) > 1 && 00972 ComputeNumSignBits(RHS, 0, CxtI) > 1) 00973 return true; 00974 00975 if (IntegerType *IT = dyn_cast<IntegerType>(LHS->getType())) { 00976 unsigned BitWidth = IT->getBitWidth(); 00977 APInt LHSKnownZero(BitWidth, 0); 00978 APInt LHSKnownOne(BitWidth, 0); 00979 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, CxtI); 00980 00981 APInt RHSKnownZero(BitWidth, 0); 00982 APInt RHSKnownOne(BitWidth, 0); 00983 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, CxtI); 00984 00985 // Subtraction of two 2's compliment numbers having identical signs will 00986 // never overflow. 00987 if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) || 00988 (LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1])) 00989 return true; 00990 00991 // TODO: implement logic similar to checkRippleForAdd 00992 } 00993 return false; 00994 } 00995 00996 /// \brief Return true if we can prove that: 00997 /// (sub LHS, RHS) === (sub nuw LHS, RHS) 00998 bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, 00999 Instruction *CxtI) { 01000 // If the LHS is negative and the RHS is non-negative, no unsigned wrap. 01001 bool LHSKnownNonNegative, LHSKnownNegative; 01002 bool RHSKnownNonNegative, RHSKnownNegative; 01003 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, 0, AT, CxtI, DT); 01004 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, 0, AT, CxtI, DT); 01005 if (LHSKnownNegative && RHSKnownNonNegative) 01006 return true; 01007 01008 return false; 01009 } 01010 01011 // Checks if any operand is negative and we can convert add to sub. 01012 // This function checks for following negative patterns 01013 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 01014 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 01015 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 01016 static Value *checkForNegativeOperand(BinaryOperator &I, 01017 InstCombiner::BuilderTy *Builder) { 01018 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 01019 01020 // This function creates 2 instructions to replace ADD, we need at least one 01021 // of LHS or RHS to have one use to ensure benefit in transform. 01022 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 01023 return nullptr; 01024 01025 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 01026 const APInt *C1 = nullptr, *C2 = nullptr; 01027 01028 // if ONE is on other side, swap 01029 if (match(RHS, m_Add(m_Value(X), m_One()))) 01030 std::swap(LHS, RHS); 01031 01032 if (match(LHS, m_Add(m_Value(X), m_One()))) { 01033 // if XOR on other side, swap 01034 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 01035 std::swap(X, RHS); 01036 01037 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 01038 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 01039 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 01040 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 01041 Value *NewAnd = Builder->CreateAnd(Z, *C1); 01042 return Builder->CreateSub(RHS, NewAnd, "sub"); 01043 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 01044 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 01045 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 01046 Value *NewOr = Builder->CreateOr(Z, ~(*C1)); 01047 return Builder->CreateSub(RHS, NewOr, "sub"); 01048 } 01049 } 01050 } 01051 01052 // Restore LHS and RHS 01053 LHS = I.getOperand(0); 01054 RHS = I.getOperand(1); 01055 01056 // if XOR is on other side, swap 01057 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 01058 std::swap(LHS, RHS); 01059 01060 // C2 is ODD 01061 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 01062 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 01063 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 01064 if (C1->countTrailingZeros() == 0) 01065 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 01066 Value *NewOr = Builder->CreateOr(Z, ~(*C2)); 01067 return Builder->CreateSub(RHS, NewOr, "sub"); 01068 } 01069 return nullptr; 01070 } 01071 01072 Instruction *InstCombiner::visitAdd(BinaryOperator &I) { 01073 bool Changed = SimplifyAssociativeOrCommutative(I); 01074 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 01075 01076 if (Value *V = SimplifyVectorOp(I)) 01077 return ReplaceInstUsesWith(I, V); 01078 01079 if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), 01080 I.hasNoUnsignedWrap(), DL, TLI, DT, AT)) 01081 return ReplaceInstUsesWith(I, V); 01082 01083 // (A*B)+(A*C) -> A*(B+C) etc 01084 if (Value *V = SimplifyUsingDistributiveLaws(I)) 01085 return ReplaceInstUsesWith(I, V); 01086 01087 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 01088 // X + (signbit) --> X ^ signbit 01089 const APInt &Val = CI->getValue(); 01090 if (Val.isSignBit()) 01091 return BinaryOperator::CreateXor(LHS, RHS); 01092 01093 // See if SimplifyDemandedBits can simplify this. This handles stuff like 01094 // (X & 254)+1 -> (X&254)|1 01095 if (SimplifyDemandedInstructionBits(I)) 01096 return &I; 01097 01098 // zext(bool) + C -> bool ? C + 1 : C 01099 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS)) 01100 if (ZI->getSrcTy()->isIntegerTy(1)) 01101 return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI); 01102 01103 Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr; 01104 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { 01105 uint32_t TySizeBits = I.getType()->getScalarSizeInBits(); 01106 const APInt &RHSVal = CI->getValue(); 01107 unsigned ExtendAmt = 0; 01108 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. 01109 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. 01110 if (XorRHS->getValue() == -RHSVal) { 01111 if (RHSVal.isPowerOf2()) 01112 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; 01113 else if (XorRHS->getValue().isPowerOf2()) 01114 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; 01115 } 01116 01117 if (ExtendAmt) { 01118 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); 01119 if (!MaskedValueIsZero(XorLHS, Mask, 0, &I)) 01120 ExtendAmt = 0; 01121 } 01122 01123 if (ExtendAmt) { 01124 Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt); 01125 Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext"); 01126 return BinaryOperator::CreateAShr(NewShl, ShAmt); 01127 } 01128 01129 // If this is a xor that was canonicalized from a sub, turn it back into 01130 // a sub and fuse this add with it. 01131 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { 01132 IntegerType *IT = cast<IntegerType>(I.getType()); 01133 APInt LHSKnownOne(IT->getBitWidth(), 0); 01134 APInt LHSKnownZero(IT->getBitWidth(), 0); 01135 computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne, 0, &I); 01136 if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue()) 01137 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), 01138 XorLHS); 01139 } 01140 // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C, 01141 // transform them into (X + (signbit ^ C)) 01142 if (XorRHS->getValue().isSignBit()) 01143 return BinaryOperator::CreateAdd(XorLHS, 01144 ConstantExpr::getXor(XorRHS, CI)); 01145 } 01146 } 01147 01148 if (isa<Constant>(RHS) && isa<PHINode>(LHS)) 01149 if (Instruction *NV = FoldOpIntoPhi(I)) 01150 return NV; 01151 01152 if (I.getType()->getScalarType()->isIntegerTy(1)) 01153 return BinaryOperator::CreateXor(LHS, RHS); 01154 01155 // X + X --> X << 1 01156 if (LHS == RHS) { 01157 BinaryOperator *New = 01158 BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1)); 01159 New->setHasNoSignedWrap(I.hasNoSignedWrap()); 01160 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 01161 return New; 01162 } 01163 01164 // -A + B --> B - A 01165 // -A + -B --> -(A + B) 01166 if (Value *LHSV = dyn_castNegVal(LHS)) { 01167 if (!isa<Constant>(RHS)) 01168 if (Value *RHSV = dyn_castNegVal(RHS)) { 01169 Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum"); 01170 return BinaryOperator::CreateNeg(NewAdd); 01171 } 01172 01173 return BinaryOperator::CreateSub(RHS, LHSV); 01174 } 01175 01176 // A + -B --> A - B 01177 if (!isa<Constant>(RHS)) 01178 if (Value *V = dyn_castNegVal(RHS)) 01179 return BinaryOperator::CreateSub(LHS, V); 01180 01181 if (Value *V = checkForNegativeOperand(I, Builder)) 01182 return ReplaceInstUsesWith(I, V); 01183 01184 // A+B --> A|B iff A and B have no bits set in common. 01185 if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) { 01186 APInt LHSKnownOne(IT->getBitWidth(), 0); 01187 APInt LHSKnownZero(IT->getBitWidth(), 0); 01188 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &I); 01189 if (LHSKnownZero != 0) { 01190 APInt RHSKnownOne(IT->getBitWidth(), 0); 01191 APInt RHSKnownZero(IT->getBitWidth(), 0); 01192 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &I); 01193 01194 // No bits in common -> bitwise or. 01195 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue()) 01196 return BinaryOperator::CreateOr(LHS, RHS); 01197 } 01198 } 01199 01200 if (Constant *CRHS = dyn_cast<Constant>(RHS)) { 01201 Value *X; 01202 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X 01203 return BinaryOperator::CreateSub(SubOne(CRHS), X); 01204 } 01205 01206 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { 01207 // (X & FF00) + xx00 -> (X+xx00) & FF00 01208 Value *X; 01209 ConstantInt *C2; 01210 if (LHS->hasOneUse() && 01211 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && 01212 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { 01213 // See if all bits from the first bit set in the Add RHS up are included 01214 // in the mask. First, get the rightmost bit. 01215 const APInt &AddRHSV = CRHS->getValue(); 01216 01217 // Form a mask of all bits from the lowest bit added through the top. 01218 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); 01219 01220 // See if the and mask includes all of these bits. 01221 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); 01222 01223 if (AddRHSHighBits == AddRHSHighBitsAnd) { 01224 // Okay, the xform is safe. Insert the new add pronto. 01225 Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName()); 01226 return BinaryOperator::CreateAnd(NewAdd, C2); 01227 } 01228 } 01229 01230 // Try to fold constant add into select arguments. 01231 if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) 01232 if (Instruction *R = FoldOpIntoSelect(I, SI)) 01233 return R; 01234 } 01235 01236 // add (select X 0 (sub n A)) A --> select X A n 01237 { 01238 SelectInst *SI = dyn_cast<SelectInst>(LHS); 01239 Value *A = RHS; 01240 if (!SI) { 01241 SI = dyn_cast<SelectInst>(RHS); 01242 A = LHS; 01243 } 01244 if (SI && SI->hasOneUse()) { 01245 Value *TV = SI->getTrueValue(); 01246 Value *FV = SI->getFalseValue(); 01247 Value *N; 01248 01249 // Can we fold the add into the argument of the select? 01250 // We check both true and false select arguments for a matching subtract. 01251 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 01252 // Fold the add into the true select value. 01253 return SelectInst::Create(SI->getCondition(), N, A); 01254 01255 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 01256 // Fold the add into the false select value. 01257 return SelectInst::Create(SI->getCondition(), A, N); 01258 } 01259 } 01260 01261 // Check for (add (sext x), y), see if we can merge this into an 01262 // integer add followed by a sext. 01263 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) { 01264 // (add (sext x), cst) --> (sext (add x, cst')) 01265 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 01266 Constant *CI = 01267 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); 01268 if (LHSConv->hasOneUse() && 01269 ConstantExpr::getSExt(CI, I.getType()) == RHSC && 01270 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, &I)) { 01271 // Insert the new, smaller add. 01272 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 01273 CI, "addconv"); 01274 return new SExtInst(NewAdd, I.getType()); 01275 } 01276 } 01277 01278 // (add (sext x), (sext y)) --> (sext (add int x, y)) 01279 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) { 01280 // Only do this if x/y have the same type, if at last one of them has a 01281 // single use (so we don't increase the number of sexts), and if the 01282 // integer add will not overflow. 01283 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& 01284 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 01285 WillNotOverflowSignedAdd(LHSConv->getOperand(0), 01286 RHSConv->getOperand(0), &I)) { 01287 // Insert the new integer add. 01288 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 01289 RHSConv->getOperand(0), "addconv"); 01290 return new SExtInst(NewAdd, I.getType()); 01291 } 01292 } 01293 } 01294 01295 // (add (xor A, B) (and A, B)) --> (or A, B) 01296 { 01297 Value *A = nullptr, *B = nullptr; 01298 if (match(RHS, m_Xor(m_Value(A), m_Value(B))) && 01299 (match(LHS, m_And(m_Specific(A), m_Specific(B))) || 01300 match(LHS, m_And(m_Specific(B), m_Specific(A))))) 01301 return BinaryOperator::CreateOr(A, B); 01302 01303 if (match(LHS, m_Xor(m_Value(A), m_Value(B))) && 01304 (match(RHS, m_And(m_Specific(A), m_Specific(B))) || 01305 match(RHS, m_And(m_Specific(B), m_Specific(A))))) 01306 return BinaryOperator::CreateOr(A, B); 01307 } 01308 01309 // (add (or A, B) (and A, B)) --> (add A, B) 01310 { 01311 Value *A = nullptr, *B = nullptr; 01312 if (match(RHS, m_Or(m_Value(A), m_Value(B))) && 01313 (match(LHS, m_And(m_Specific(A), m_Specific(B))) || 01314 match(LHS, m_And(m_Specific(B), m_Specific(A))))) { 01315 auto *New = BinaryOperator::CreateAdd(A, B); 01316 New->setHasNoSignedWrap(I.hasNoSignedWrap()); 01317 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 01318 return New; 01319 } 01320 01321 if (match(LHS, m_Or(m_Value(A), m_Value(B))) && 01322 (match(RHS, m_And(m_Specific(A), m_Specific(B))) || 01323 match(RHS, m_And(m_Specific(B), m_Specific(A))))) { 01324 auto *New = BinaryOperator::CreateAdd(A, B); 01325 New->setHasNoSignedWrap(I.hasNoSignedWrap()); 01326 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 01327 return New; 01328 } 01329 } 01330 01331 // TODO(jingyue): Consider WillNotOverflowSignedAdd and 01332 // WillNotOverflowUnsignedAdd to reduce the number of invocations of 01333 // computeKnownBits. 01334 if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, &I)) { 01335 Changed = true; 01336 I.setHasNoSignedWrap(true); 01337 } 01338 if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedAdd(LHS, RHS, &I)) { 01339 Changed = true; 01340 I.setHasNoUnsignedWrap(true); 01341 } 01342 01343 return Changed ? &I : nullptr; 01344 } 01345 01346 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { 01347 bool Changed = SimplifyAssociativeOrCommutative(I); 01348 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 01349 01350 if (Value *V = SimplifyVectorOp(I)) 01351 return ReplaceInstUsesWith(I, V); 01352 01353 if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL, 01354 TLI, DT, AT)) 01355 return ReplaceInstUsesWith(I, V); 01356 01357 if (isa<Constant>(RHS)) { 01358 if (isa<PHINode>(LHS)) 01359 if (Instruction *NV = FoldOpIntoPhi(I)) 01360 return NV; 01361 01362 if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) 01363 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 01364 return NV; 01365 } 01366 01367 // -A + B --> B - A 01368 // -A + -B --> -(A + B) 01369 if (Value *LHSV = dyn_castFNegVal(LHS)) { 01370 Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV); 01371 RI->copyFastMathFlags(&I); 01372 return RI; 01373 } 01374 01375 // A + -B --> A - B 01376 if (!isa<Constant>(RHS)) 01377 if (Value *V = dyn_castFNegVal(RHS)) { 01378 Instruction *RI = BinaryOperator::CreateFSub(LHS, V); 01379 RI->copyFastMathFlags(&I); 01380 return RI; 01381 } 01382 01383 // Check for (fadd double (sitofp x), y), see if we can merge this into an 01384 // integer add followed by a promotion. 01385 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 01386 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 01387 // ... if the constant fits in the integer value. This is useful for things 01388 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 01389 // requires a constant pool load, and generally allows the add to be better 01390 // instcombined. 01391 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) { 01392 Constant *CI = 01393 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType()); 01394 if (LHSConv->hasOneUse() && 01395 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 01396 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, &I)) { 01397 // Insert the new integer add. 01398 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 01399 CI, "addconv"); 01400 return new SIToFPInst(NewAdd, I.getType()); 01401 } 01402 } 01403 01404 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 01405 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 01406 // Only do this if x/y have the same type, if at last one of them has a 01407 // single use (so we don't increase the number of int->fp conversions), 01408 // and if the integer add will not overflow. 01409 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& 01410 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 01411 WillNotOverflowSignedAdd(LHSConv->getOperand(0), 01412 RHSConv->getOperand(0), &I)) { 01413 // Insert the new integer add. 01414 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 01415 RHSConv->getOperand(0),"addconv"); 01416 return new SIToFPInst(NewAdd, I.getType()); 01417 } 01418 } 01419 } 01420 01421 // select C, 0, B + select C, A, 0 -> select C, A, B 01422 { 01423 Value *A1, *B1, *C1, *A2, *B2, *C2; 01424 if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) && 01425 match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) { 01426 if (C1 == C2) { 01427 Constant *Z1=nullptr, *Z2=nullptr; 01428 Value *A, *B, *C=C1; 01429 if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) { 01430 Z1 = dyn_cast<Constant>(A1); A = A2; 01431 Z2 = dyn_cast<Constant>(B2); B = B1; 01432 } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) { 01433 Z1 = dyn_cast<Constant>(B1); B = B2; 01434 Z2 = dyn_cast<Constant>(A2); A = A1; 01435 } 01436 01437 if (Z1 && Z2 && 01438 (I.hasNoSignedZeros() || 01439 (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) { 01440 return SelectInst::Create(C, A, B); 01441 } 01442 } 01443 } 01444 } 01445 01446 if (I.hasUnsafeAlgebra()) { 01447 if (Value *V = FAddCombine(Builder).simplify(&I)) 01448 return ReplaceInstUsesWith(I, V); 01449 } 01450 01451 return Changed ? &I : nullptr; 01452 } 01453 01454 01455 /// Optimize pointer differences into the same array into a size. Consider: 01456 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 01457 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 01458 /// 01459 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, 01460 Type *Ty) { 01461 assert(DL && "Must have target data info for this"); 01462 01463 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 01464 // this. 01465 bool Swapped = false; 01466 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 01467 01468 // For now we require one side to be the base pointer "A" or a constant 01469 // GEP derived from it. 01470 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 01471 // (gep X, ...) - X 01472 if (LHSGEP->getOperand(0) == RHS) { 01473 GEP1 = LHSGEP; 01474 Swapped = false; 01475 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 01476 // (gep X, ...) - (gep X, ...) 01477 if (LHSGEP->getOperand(0)->stripPointerCasts() == 01478 RHSGEP->getOperand(0)->stripPointerCasts()) { 01479 GEP2 = RHSGEP; 01480 GEP1 = LHSGEP; 01481 Swapped = false; 01482 } 01483 } 01484 } 01485 01486 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 01487 // X - (gep X, ...) 01488 if (RHSGEP->getOperand(0) == LHS) { 01489 GEP1 = RHSGEP; 01490 Swapped = true; 01491 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 01492 // (gep X, ...) - (gep X, ...) 01493 if (RHSGEP->getOperand(0)->stripPointerCasts() == 01494 LHSGEP->getOperand(0)->stripPointerCasts()) { 01495 GEP2 = LHSGEP; 01496 GEP1 = RHSGEP; 01497 Swapped = true; 01498 } 01499 } 01500 } 01501 01502 // Avoid duplicating the arithmetic if GEP2 has non-constant indices and 01503 // multiple users. 01504 if (!GEP1 || 01505 (GEP2 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse())) 01506 return nullptr; 01507 01508 // Emit the offset of the GEP and an intptr_t. 01509 Value *Result = EmitGEPOffset(GEP1); 01510 01511 // If we had a constant expression GEP on the other side offsetting the 01512 // pointer, subtract it from the offset we have. 01513 if (GEP2) { 01514 Value *Offset = EmitGEPOffset(GEP2); 01515 Result = Builder->CreateSub(Result, Offset); 01516 } 01517 01518 // If we have p - gep(p, ...) then we have to negate the result. 01519 if (Swapped) 01520 Result = Builder->CreateNeg(Result, "diff.neg"); 01521 01522 return Builder->CreateIntCast(Result, Ty, true); 01523 } 01524 01525 01526 Instruction *InstCombiner::visitSub(BinaryOperator &I) { 01527 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 01528 01529 if (Value *V = SimplifyVectorOp(I)) 01530 return ReplaceInstUsesWith(I, V); 01531 01532 if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(), 01533 I.hasNoUnsignedWrap(), DL, TLI, DT, AT)) 01534 return ReplaceInstUsesWith(I, V); 01535 01536 // (A*B)-(A*C) -> A*(B-C) etc 01537 if (Value *V = SimplifyUsingDistributiveLaws(I)) 01538 return ReplaceInstUsesWith(I, V); 01539 01540 // If this is a 'B = x-(-A)', change to B = x+A. 01541 if (Value *V = dyn_castNegVal(Op1)) { 01542 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 01543 01544 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 01545 assert(BO->getOpcode() == Instruction::Sub && 01546 "Expected a subtraction operator!"); 01547 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 01548 Res->setHasNoSignedWrap(true); 01549 } else { 01550 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 01551 Res->setHasNoSignedWrap(true); 01552 } 01553 01554 return Res; 01555 } 01556 01557 if (I.getType()->isIntegerTy(1)) 01558 return BinaryOperator::CreateXor(Op0, Op1); 01559 01560 // Replace (-1 - A) with (~A). 01561 if (match(Op0, m_AllOnes())) 01562 return BinaryOperator::CreateNot(Op1); 01563 01564 if (Constant *C = dyn_cast<Constant>(Op0)) { 01565 // C - ~X == X + (1+C) 01566 Value *X = nullptr; 01567 if (match(Op1, m_Not(m_Value(X)))) 01568 return BinaryOperator::CreateAdd(X, AddOne(C)); 01569 01570 // Try to fold constant sub into select arguments. 01571 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 01572 if (Instruction *R = FoldOpIntoSelect(I, SI)) 01573 return R; 01574 01575 // C-(X+C2) --> (C-C2)-X 01576 Constant *C2; 01577 if (match(Op1, m_Add(m_Value(X), m_Constant(C2)))) 01578 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 01579 01580 if (SimplifyDemandedInstructionBits(I)) 01581 return &I; 01582 01583 // Fold (sub 0, (zext bool to B)) --> (sext bool to B) 01584 if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X)))) 01585 if (X->getType()->getScalarType()->isIntegerTy(1)) 01586 return CastInst::CreateSExtOrBitCast(X, Op1->getType()); 01587 01588 // Fold (sub 0, (sext bool to B)) --> (zext bool to B) 01589 if (C->isNullValue() && match(Op1, m_SExt(m_Value(X)))) 01590 if (X->getType()->getScalarType()->isIntegerTy(1)) 01591 return CastInst::CreateZExtOrBitCast(X, Op1->getType()); 01592 } 01593 01594 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) { 01595 // -(X >>u 31) -> (X >>s 31) 01596 // -(X >>s 31) -> (X >>u 31) 01597 if (C->isZero()) { 01598 Value *X; ConstantInt *CI; 01599 if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) && 01600 // Verify we are shifting out everything but the sign bit. 01601 CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1) 01602 return BinaryOperator::CreateAShr(X, CI); 01603 01604 if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) && 01605 // Verify we are shifting out everything but the sign bit. 01606 CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1) 01607 return BinaryOperator::CreateLShr(X, CI); 01608 } 01609 } 01610 01611 01612 { Value *Y; 01613 // X-(X+Y) == -Y X-(Y+X) == -Y 01614 if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) || 01615 match(Op1, m_Add(m_Value(Y), m_Specific(Op0)))) 01616 return BinaryOperator::CreateNeg(Y); 01617 01618 // (X-Y)-X == -Y 01619 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 01620 return BinaryOperator::CreateNeg(Y); 01621 } 01622 01623 if (Op1->hasOneUse()) { 01624 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 01625 Constant *C = nullptr; 01626 Constant *CI = nullptr; 01627 01628 // (X - (Y - Z)) --> (X + (Z - Y)). 01629 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) 01630 return BinaryOperator::CreateAdd(Op0, 01631 Builder->CreateSub(Z, Y, Op1->getName())); 01632 01633 // (X - (X & Y)) --> (X & ~Y) 01634 // 01635 if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) || 01636 match(Op1, m_And(m_Specific(Op0), m_Value(Y)))) 01637 return BinaryOperator::CreateAnd(Op0, 01638 Builder->CreateNot(Y, Y->getName() + ".not")); 01639 01640 // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow. 01641 if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) && 01642 C->isNotMinSignedValue() && !C->isOneValue()) 01643 return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C)); 01644 01645 // 0 - (X << Y) -> (-X << Y) when X is freely negatable. 01646 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) 01647 if (Value *XNeg = dyn_castNegVal(X)) 01648 return BinaryOperator::CreateShl(XNeg, Y); 01649 01650 // X - A*-B -> X + A*B 01651 // X - -A*B -> X + A*B 01652 Value *A, *B; 01653 if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) || 01654 match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B)))) 01655 return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B)); 01656 01657 // X - A*CI -> X + A*-CI 01658 // X - CI*A -> X + A*-CI 01659 if (match(Op1, m_Mul(m_Value(A), m_Constant(CI))) || 01660 match(Op1, m_Mul(m_Constant(CI), m_Value(A)))) { 01661 Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI)); 01662 return BinaryOperator::CreateAdd(Op0, NewMul); 01663 } 01664 } 01665 01666 // Optimize pointer differences into the same array into a size. Consider: 01667 // &A[10] - &A[0]: we should compile this to "10". 01668 if (DL) { 01669 Value *LHSOp, *RHSOp; 01670 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 01671 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 01672 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 01673 return ReplaceInstUsesWith(I, Res); 01674 01675 // trunc(p)-trunc(q) -> trunc(p-q) 01676 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 01677 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 01678 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 01679 return ReplaceInstUsesWith(I, Res); 01680 } 01681 01682 bool Changed = false; 01683 if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, &I)) { 01684 Changed = true; 01685 I.setHasNoSignedWrap(true); 01686 } 01687 if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, &I)) { 01688 Changed = true; 01689 I.setHasNoUnsignedWrap(true); 01690 } 01691 01692 return Changed ? &I : nullptr; 01693 } 01694 01695 Instruction *InstCombiner::visitFSub(BinaryOperator &I) { 01696 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 01697 01698 if (Value *V = SimplifyVectorOp(I)) 01699 return ReplaceInstUsesWith(I, V); 01700 01701 if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL, 01702 TLI, DT, AT)) 01703 return ReplaceInstUsesWith(I, V); 01704 01705 if (isa<Constant>(Op0)) 01706 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 01707 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 01708 return NV; 01709 01710 // If this is a 'B = x-(-A)', change to B = x+A, potentially looking 01711 // through FP extensions/truncations along the way. 01712 if (Value *V = dyn_castFNegVal(Op1)) { 01713 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V); 01714 NewI->copyFastMathFlags(&I); 01715 return NewI; 01716 } 01717 if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) { 01718 if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) { 01719 Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType()); 01720 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc); 01721 NewI->copyFastMathFlags(&I); 01722 return NewI; 01723 } 01724 } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) { 01725 if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) { 01726 Value *NewExt = Builder->CreateFPExt(V, I.getType()); 01727 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt); 01728 NewI->copyFastMathFlags(&I); 01729 return NewI; 01730 } 01731 } 01732 01733 if (I.hasUnsafeAlgebra()) { 01734 if (Value *V = FAddCombine(Builder).simplify(&I)) 01735 return ReplaceInstUsesWith(I, V); 01736 } 01737 01738 return nullptr; 01739 }