LLVM API Documentation

InstCombineAddSub.cpp
Go to the documentation of this file.
00001 //===- InstCombineAddSub.cpp ----------------------------------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file implements the visit functions for add, fadd, sub, and fsub.
00011 //
00012 //===----------------------------------------------------------------------===//
00013 
00014 #include "InstCombine.h"
00015 #include "llvm/ADT/STLExtras.h"
00016 #include "llvm/Analysis/InstructionSimplify.h"
00017 #include "llvm/IR/DataLayout.h"
00018 #include "llvm/IR/GetElementPtrTypeIterator.h"
00019 #include "llvm/IR/PatternMatch.h"
00020 using namespace llvm;
00021 using namespace PatternMatch;
00022 
00023 #define DEBUG_TYPE "instcombine"
00024 
00025 namespace {
00026 
00027   /// Class representing coefficient of floating-point addend.
00028   /// This class needs to be highly efficient, which is especially true for
00029   /// the constructor. As of I write this comment, the cost of the default
00030   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
00031   /// perform write-merging).
00032   ///
00033   class FAddendCoef {
00034   public:
00035     // The constructor has to initialize a APFloat, which is unnecessary for
00036     // most addends which have coefficient either 1 or -1. So, the constructor
00037     // is expensive. In order to avoid the cost of the constructor, we should
00038     // reuse some instances whenever possible. The pre-created instances
00039     // FAddCombine::Add[0-5] embodies this idea.
00040     //
00041     FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
00042     ~FAddendCoef();
00043 
00044     void set(short C) {
00045       assert(!insaneIntVal(C) && "Insane coefficient");
00046       IsFp = false; IntVal = C;
00047     }
00048 
00049     void set(const APFloat& C);
00050 
00051     void negate();
00052 
00053     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
00054     Value *getValue(Type *) const;
00055 
00056     // If possible, don't define operator+/operator- etc because these
00057     // operators inevitably call FAddendCoef's constructor which is not cheap.
00058     void operator=(const FAddendCoef &A);
00059     void operator+=(const FAddendCoef &A);
00060     void operator-=(const FAddendCoef &A);
00061     void operator*=(const FAddendCoef &S);
00062 
00063     bool isOne() const { return isInt() && IntVal == 1; }
00064     bool isTwo() const { return isInt() && IntVal == 2; }
00065     bool isMinusOne() const { return isInt() && IntVal == -1; }
00066     bool isMinusTwo() const { return isInt() && IntVal == -2; }
00067 
00068   private:
00069     bool insaneIntVal(int V) { return V > 4 || V < -4; }
00070     APFloat *getFpValPtr(void)
00071       { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
00072     const APFloat *getFpValPtr(void) const
00073       { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
00074 
00075     const APFloat &getFpVal(void) const {
00076       assert(IsFp && BufHasFpVal && "Incorret state");
00077       return *getFpValPtr();
00078     }
00079 
00080     APFloat &getFpVal(void) {
00081       assert(IsFp && BufHasFpVal && "Incorret state");
00082       return *getFpValPtr();
00083     }
00084 
00085     bool isInt() const { return !IsFp; }
00086 
00087     // If the coefficient is represented by an integer, promote it to a
00088     // floating point.
00089     void convertToFpType(const fltSemantics &Sem);
00090 
00091     // Construct an APFloat from a signed integer.
00092     // TODO: We should get rid of this function when APFloat can be constructed
00093     //       from an *SIGNED* integer.
00094     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
00095   private:
00096 
00097     bool IsFp;
00098 
00099     // True iff FpValBuf contains an instance of APFloat.
00100     bool BufHasFpVal;
00101 
00102     // The integer coefficient of an individual addend is either 1 or -1,
00103     // and we try to simplify at most 4 addends from neighboring at most
00104     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
00105     // is overkill of this end.
00106     short IntVal;
00107 
00108     AlignedCharArrayUnion<APFloat> FpValBuf;
00109   };
00110 
00111   /// FAddend is used to represent floating-point addend. An addend is
00112   /// represented as <C, V>, where the V is a symbolic value, and C is a
00113   /// constant coefficient. A constant addend is represented as <C, 0>.
00114   ///
00115   class FAddend {
00116   public:
00117     FAddend() { Val = nullptr; }
00118 
00119     Value *getSymVal (void) const { return Val; }
00120     const FAddendCoef &getCoef(void) const { return Coeff; }
00121 
00122     bool isConstant() const { return Val == nullptr; }
00123     bool isZero() const { return Coeff.isZero(); }
00124 
00125     void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; }
00126     void set(const APFloat& Coefficient, Value *V)
00127       { Coeff.set(Coefficient); Val = V; }
00128     void set(const ConstantFP* Coefficient, Value *V)
00129       { Coeff.set(Coefficient->getValueAPF()); Val = V; }
00130 
00131     void negate() { Coeff.negate(); }
00132 
00133     /// Drill down the U-D chain one step to find the definition of V, and
00134     /// try to break the definition into one or two addends.
00135     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
00136 
00137     /// Similar to FAddend::drillDownOneStep() except that the value being
00138     /// splitted is the addend itself.
00139     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
00140 
00141     void operator+=(const FAddend &T) {
00142       assert((Val == T.Val) && "Symbolic-values disagree");
00143       Coeff += T.Coeff;
00144     }
00145 
00146   private:
00147     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
00148 
00149     // This addend has the value of "Coeff * Val".
00150     Value *Val;
00151     FAddendCoef Coeff;
00152   };
00153 
00154   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
00155   /// with its neighboring at most two instructions.
00156   ///
00157   class FAddCombine {
00158   public:
00159     FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {}
00160     Value *simplify(Instruction *FAdd);
00161 
00162   private:
00163     typedef SmallVector<const FAddend*, 4> AddendVect;
00164 
00165     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
00166 
00167     Value *performFactorization(Instruction *I);
00168 
00169     /// Convert given addend to a Value
00170     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
00171 
00172     /// Return the number of instructions needed to emit the N-ary addition.
00173     unsigned calcInstrNumber(const AddendVect& Vect);
00174     Value *createFSub(Value *Opnd0, Value *Opnd1);
00175     Value *createFAdd(Value *Opnd0, Value *Opnd1);
00176     Value *createFMul(Value *Opnd0, Value *Opnd1);
00177     Value *createFDiv(Value *Opnd0, Value *Opnd1);
00178     Value *createFNeg(Value *V);
00179     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
00180     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
00181 
00182     InstCombiner::BuilderTy *Builder;
00183     Instruction *Instr;
00184 
00185   private:
00186      // Debugging stuff are clustered here.
00187     #ifndef NDEBUG
00188       unsigned CreateInstrNum;
00189       void initCreateInstNum() { CreateInstrNum = 0; }
00190       void incCreateInstNum() { CreateInstrNum++; }
00191     #else
00192       void initCreateInstNum() {}
00193       void incCreateInstNum() {}
00194     #endif
00195   };
00196 }
00197 
00198 //===----------------------------------------------------------------------===//
00199 //
00200 // Implementation of
00201 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
00202 //
00203 //===----------------------------------------------------------------------===//
00204 FAddendCoef::~FAddendCoef() {
00205   if (BufHasFpVal)
00206     getFpValPtr()->~APFloat();
00207 }
00208 
00209 void FAddendCoef::set(const APFloat& C) {
00210   APFloat *P = getFpValPtr();
00211 
00212   if (isInt()) {
00213     // As the buffer is meanless byte stream, we cannot call
00214     // APFloat::operator=().
00215     new(P) APFloat(C);
00216   } else
00217     *P = C;
00218 
00219   IsFp = BufHasFpVal = true;
00220 }
00221 
00222 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
00223   if (!isInt())
00224     return;
00225 
00226   APFloat *P = getFpValPtr();
00227   if (IntVal > 0)
00228     new(P) APFloat(Sem, IntVal);
00229   else {
00230     new(P) APFloat(Sem, 0 - IntVal);
00231     P->changeSign();
00232   }
00233   IsFp = BufHasFpVal = true;
00234 }
00235 
00236 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
00237   if (Val >= 0)
00238     return APFloat(Sem, Val);
00239 
00240   APFloat T(Sem, 0 - Val);
00241   T.changeSign();
00242 
00243   return T;
00244 }
00245 
00246 void FAddendCoef::operator=(const FAddendCoef &That) {
00247   if (That.isInt())
00248     set(That.IntVal);
00249   else
00250     set(That.getFpVal());
00251 }
00252 
00253 void FAddendCoef::operator+=(const FAddendCoef &That) {
00254   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
00255   if (isInt() == That.isInt()) {
00256     if (isInt())
00257       IntVal += That.IntVal;
00258     else
00259       getFpVal().add(That.getFpVal(), RndMode);
00260     return;
00261   }
00262 
00263   if (isInt()) {
00264     const APFloat &T = That.getFpVal();
00265     convertToFpType(T.getSemantics());
00266     getFpVal().add(T, RndMode);
00267     return;
00268   }
00269 
00270   APFloat &T = getFpVal();
00271   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
00272 }
00273 
00274 void FAddendCoef::operator-=(const FAddendCoef &That) {
00275   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
00276   if (isInt() == That.isInt()) {
00277     if (isInt())
00278       IntVal -= That.IntVal;
00279     else
00280       getFpVal().subtract(That.getFpVal(), RndMode);
00281     return;
00282   }
00283 
00284   if (isInt()) {
00285     const APFloat &T = That.getFpVal();
00286     convertToFpType(T.getSemantics());
00287     getFpVal().subtract(T, RndMode);
00288     return;
00289   }
00290 
00291   APFloat &T = getFpVal();
00292   T.subtract(createAPFloatFromInt(T.getSemantics(), IntVal), RndMode);
00293 }
00294 
00295 void FAddendCoef::operator*=(const FAddendCoef &That) {
00296   if (That.isOne())
00297     return;
00298 
00299   if (That.isMinusOne()) {
00300     negate();
00301     return;
00302   }
00303 
00304   if (isInt() && That.isInt()) {
00305     int Res = IntVal * (int)That.IntVal;
00306     assert(!insaneIntVal(Res) && "Insane int value");
00307     IntVal = Res;
00308     return;
00309   }
00310 
00311   const fltSemantics &Semantic =
00312     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
00313 
00314   if (isInt())
00315     convertToFpType(Semantic);
00316   APFloat &F0 = getFpVal();
00317 
00318   if (That.isInt())
00319     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
00320                 APFloat::rmNearestTiesToEven);
00321   else
00322     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
00323 
00324   return;
00325 }
00326 
00327 void FAddendCoef::negate() {
00328   if (isInt())
00329     IntVal = 0 - IntVal;
00330   else
00331     getFpVal().changeSign();
00332 }
00333 
00334 Value *FAddendCoef::getValue(Type *Ty) const {
00335   return isInt() ?
00336     ConstantFP::get(Ty, float(IntVal)) :
00337     ConstantFP::get(Ty->getContext(), getFpVal());
00338 }
00339 
00340 // The definition of <Val>     Addends
00341 // =========================================
00342 //  A + B                     <1, A>, <1,B>
00343 //  A - B                     <1, A>, <1,B>
00344 //  0 - B                     <-1, B>
00345 //  C * A,                    <C, A>
00346 //  A + C                     <1, A> <C, NULL>
00347 //  0 +/- 0                   <0, NULL> (corner case)
00348 //
00349 // Legend: A and B are not constant, C is constant
00350 //
00351 unsigned FAddend::drillValueDownOneStep
00352   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
00353   Instruction *I = nullptr;
00354   if (!Val || !(I = dyn_cast<Instruction>(Val)))
00355     return 0;
00356 
00357   unsigned Opcode = I->getOpcode();
00358 
00359   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
00360     ConstantFP *C0, *C1;
00361     Value *Opnd0 = I->getOperand(0);
00362     Value *Opnd1 = I->getOperand(1);
00363     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
00364       Opnd0 = nullptr;
00365 
00366     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
00367       Opnd1 = nullptr;
00368 
00369     if (Opnd0) {
00370       if (!C0)
00371         Addend0.set(1, Opnd0);
00372       else
00373         Addend0.set(C0, nullptr);
00374     }
00375 
00376     if (Opnd1) {
00377       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
00378       if (!C1)
00379         Addend.set(1, Opnd1);
00380       else
00381         Addend.set(C1, nullptr);
00382       if (Opcode == Instruction::FSub)
00383         Addend.negate();
00384     }
00385 
00386     if (Opnd0 || Opnd1)
00387       return Opnd0 && Opnd1 ? 2 : 1;
00388 
00389     // Both operands are zero. Weird!
00390     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
00391     return 1;
00392   }
00393 
00394   if (I->getOpcode() == Instruction::FMul) {
00395     Value *V0 = I->getOperand(0);
00396     Value *V1 = I->getOperand(1);
00397     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
00398       Addend0.set(C, V1);
00399       return 1;
00400     }
00401 
00402     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
00403       Addend0.set(C, V0);
00404       return 1;
00405     }
00406   }
00407 
00408   return 0;
00409 }
00410 
00411 // Try to break *this* addend into two addends. e.g. Suppose this addend is
00412 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
00413 // i.e. <2.3, X> and <2.3, Y>.
00414 //
00415 unsigned FAddend::drillAddendDownOneStep
00416   (FAddend &Addend0, FAddend &Addend1) const {
00417   if (isConstant())
00418     return 0;
00419 
00420   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
00421   if (!BreakNum || Coeff.isOne())
00422     return BreakNum;
00423 
00424   Addend0.Scale(Coeff);
00425 
00426   if (BreakNum == 2)
00427     Addend1.Scale(Coeff);
00428 
00429   return BreakNum;
00430 }
00431 
00432 // Try to perform following optimization on the input instruction I. Return the
00433 // simplified expression if was successful; otherwise, return 0.
00434 //
00435 //   Instruction "I" is                Simplified into
00436 // -------------------------------------------------------
00437 //   (x * y) +/- (x * z)               x * (y +/- z)
00438 //   (y / x) +/- (z / x)               (y +/- z) / x
00439 //
00440 Value *FAddCombine::performFactorization(Instruction *I) {
00441   assert((I->getOpcode() == Instruction::FAdd ||
00442           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
00443 
00444   Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
00445   Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
00446 
00447   if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
00448     return nullptr;
00449 
00450   bool isMpy = false;
00451   if (I0->getOpcode() == Instruction::FMul)
00452     isMpy = true;
00453   else if (I0->getOpcode() != Instruction::FDiv)
00454     return nullptr;
00455 
00456   Value *Opnd0_0 = I0->getOperand(0);
00457   Value *Opnd0_1 = I0->getOperand(1);
00458   Value *Opnd1_0 = I1->getOperand(0);
00459   Value *Opnd1_1 = I1->getOperand(1);
00460 
00461   //  Input Instr I       Factor   AddSub0  AddSub1
00462   //  ----------------------------------------------
00463   // (x*y) +/- (x*z)        x        y         z
00464   // (y/x) +/- (z/x)        x        y         z
00465   //
00466   Value *Factor = nullptr;
00467   Value *AddSub0 = nullptr, *AddSub1 = nullptr;
00468 
00469   if (isMpy) {
00470     if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
00471       Factor = Opnd0_0;
00472     else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
00473       Factor = Opnd0_1;
00474 
00475     if (Factor) {
00476       AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
00477       AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
00478     }
00479   } else if (Opnd0_1 == Opnd1_1) {
00480     Factor = Opnd0_1;
00481     AddSub0 = Opnd0_0;
00482     AddSub1 = Opnd1_0;
00483   }
00484 
00485   if (!Factor)
00486     return nullptr;
00487 
00488   FastMathFlags Flags;
00489   Flags.setUnsafeAlgebra();
00490   if (I0) Flags &= I->getFastMathFlags();
00491   if (I1) Flags &= I->getFastMathFlags();
00492 
00493   // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
00494   Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
00495                       createFAdd(AddSub0, AddSub1) :
00496                       createFSub(AddSub0, AddSub1);
00497   if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
00498     const APFloat &F = CFP->getValueAPF();
00499     if (!F.isNormal())
00500       return nullptr;
00501   } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub))
00502     II->setFastMathFlags(Flags);
00503 
00504   if (isMpy) {
00505     Value *RI = createFMul(Factor, NewAddSub);
00506     if (Instruction *II = dyn_cast<Instruction>(RI))
00507       II->setFastMathFlags(Flags);
00508     return RI;
00509   }
00510 
00511   Value *RI = createFDiv(NewAddSub, Factor);
00512   if (Instruction *II = dyn_cast<Instruction>(RI))
00513     II->setFastMathFlags(Flags);
00514   return RI;
00515 }
00516 
00517 Value *FAddCombine::simplify(Instruction *I) {
00518   assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
00519 
00520   // Currently we are not able to handle vector type.
00521   if (I->getType()->isVectorTy())
00522     return nullptr;
00523 
00524   assert((I->getOpcode() == Instruction::FAdd ||
00525           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
00526 
00527   // Save the instruction before calling other member-functions.
00528   Instr = I;
00529 
00530   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
00531 
00532   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
00533 
00534   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
00535   unsigned Opnd0_ExpNum = 0;
00536   unsigned Opnd1_ExpNum = 0;
00537 
00538   if (!Opnd0.isConstant())
00539     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
00540 
00541   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
00542   if (OpndNum == 2 && !Opnd1.isConstant())
00543     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
00544 
00545   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
00546   if (Opnd0_ExpNum && Opnd1_ExpNum) {
00547     AddendVect AllOpnds;
00548     AllOpnds.push_back(&Opnd0_0);
00549     AllOpnds.push_back(&Opnd1_0);
00550     if (Opnd0_ExpNum == 2)
00551       AllOpnds.push_back(&Opnd0_1);
00552     if (Opnd1_ExpNum == 2)
00553       AllOpnds.push_back(&Opnd1_1);
00554 
00555     // Compute instruction quota. We should save at least one instruction.
00556     unsigned InstQuota = 0;
00557 
00558     Value *V0 = I->getOperand(0);
00559     Value *V1 = I->getOperand(1);
00560     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
00561                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
00562 
00563     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
00564       return R;
00565   }
00566 
00567   if (OpndNum != 2) {
00568     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
00569     // splitted into two addends, say "V = X - Y", the instruction would have
00570     // been optimized into "I = Y - X" in the previous steps.
00571     //
00572     const FAddendCoef &CE = Opnd0.getCoef();
00573     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
00574   }
00575 
00576   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
00577   if (Opnd1_ExpNum) {
00578     AddendVect AllOpnds;
00579     AllOpnds.push_back(&Opnd0);
00580     AllOpnds.push_back(&Opnd1_0);
00581     if (Opnd1_ExpNum == 2)
00582       AllOpnds.push_back(&Opnd1_1);
00583 
00584     if (Value *R = simplifyFAdd(AllOpnds, 1))
00585       return R;
00586   }
00587 
00588   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
00589   if (Opnd0_ExpNum) {
00590     AddendVect AllOpnds;
00591     AllOpnds.push_back(&Opnd1);
00592     AllOpnds.push_back(&Opnd0_0);
00593     if (Opnd0_ExpNum == 2)
00594       AllOpnds.push_back(&Opnd0_1);
00595 
00596     if (Value *R = simplifyFAdd(AllOpnds, 1))
00597       return R;
00598   }
00599 
00600   // step 6: Try factorization as the last resort,
00601   return performFactorization(I);
00602 }
00603 
00604 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
00605 
00606   unsigned AddendNum = Addends.size();
00607   assert(AddendNum <= 4 && "Too many addends");
00608 
00609   // For saving intermediate results;
00610   unsigned NextTmpIdx = 0;
00611   FAddend TmpResult[3];
00612 
00613   // Points to the constant addend of the resulting simplified expression.
00614   // If the resulting expr has constant-addend, this constant-addend is
00615   // desirable to reside at the top of the resulting expression tree. Placing
00616   // constant close to supper-expr(s) will potentially reveal some optimization
00617   // opportunities in super-expr(s).
00618   //
00619   const FAddend *ConstAdd = nullptr;
00620 
00621   // Simplified addends are placed <SimpVect>.
00622   AddendVect SimpVect;
00623 
00624   // The outer loop works on one symbolic-value at a time. Suppose the input
00625   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
00626   // The symbolic-values will be processed in this order: x, y, z.
00627   //
00628   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
00629 
00630     const FAddend *ThisAddend = Addends[SymIdx];
00631     if (!ThisAddend) {
00632       // This addend was processed before.
00633       continue;
00634     }
00635 
00636     Value *Val = ThisAddend->getSymVal();
00637     unsigned StartIdx = SimpVect.size();
00638     SimpVect.push_back(ThisAddend);
00639 
00640     // The inner loop collects addends sharing same symbolic-value, and these
00641     // addends will be later on folded into a single addend. Following above
00642     // example, if the symbolic value "y" is being processed, the inner loop
00643     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
00644     // be later on folded into "<b1+b2, y>".
00645     //
00646     for (unsigned SameSymIdx = SymIdx + 1;
00647          SameSymIdx < AddendNum; SameSymIdx++) {
00648       const FAddend *T = Addends[SameSymIdx];
00649       if (T && T->getSymVal() == Val) {
00650         // Set null such that next iteration of the outer loop will not process
00651         // this addend again.
00652         Addends[SameSymIdx] = nullptr;
00653         SimpVect.push_back(T);
00654       }
00655     }
00656 
00657     // If multiple addends share same symbolic value, fold them together.
00658     if (StartIdx + 1 != SimpVect.size()) {
00659       FAddend &R = TmpResult[NextTmpIdx ++];
00660       R = *SimpVect[StartIdx];
00661       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
00662         R += *SimpVect[Idx];
00663 
00664       // Pop all addends being folded and push the resulting folded addend.
00665       SimpVect.resize(StartIdx);
00666       if (Val) {
00667         if (!R.isZero()) {
00668           SimpVect.push_back(&R);
00669         }
00670       } else {
00671         // Don't push constant addend at this time. It will be the last element
00672         // of <SimpVect>.
00673         ConstAdd = &R;
00674       }
00675     }
00676   }
00677 
00678   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
00679          "out-of-bound access");
00680 
00681   if (ConstAdd)
00682     SimpVect.push_back(ConstAdd);
00683 
00684   Value *Result;
00685   if (!SimpVect.empty())
00686     Result = createNaryFAdd(SimpVect, InstrQuota);
00687   else {
00688     // The addition is folded to 0.0.
00689     Result = ConstantFP::get(Instr->getType(), 0.0);
00690   }
00691 
00692   return Result;
00693 }
00694 
00695 Value *FAddCombine::createNaryFAdd
00696   (const AddendVect &Opnds, unsigned InstrQuota) {
00697   assert(!Opnds.empty() && "Expect at least one addend");
00698 
00699   // Step 1: Check if the # of instructions needed exceeds the quota.
00700   //
00701   unsigned InstrNeeded = calcInstrNumber(Opnds);
00702   if (InstrNeeded > InstrQuota)
00703     return nullptr;
00704 
00705   initCreateInstNum();
00706 
00707   // step 2: Emit the N-ary addition.
00708   // Note that at most three instructions are involved in Fadd-InstCombine: the
00709   // addition in question, and at most two neighboring instructions.
00710   // The resulting optimized addition should have at least one less instruction
00711   // than the original addition expression tree. This implies that the resulting
00712   // N-ary addition has at most two instructions, and we don't need to worry
00713   // about tree-height when constructing the N-ary addition.
00714 
00715   Value *LastVal = nullptr;
00716   bool LastValNeedNeg = false;
00717 
00718   // Iterate the addends, creating fadd/fsub using adjacent two addends.
00719   for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
00720        I != E; I++) {
00721     bool NeedNeg;
00722     Value *V = createAddendVal(**I, NeedNeg);
00723     if (!LastVal) {
00724       LastVal = V;
00725       LastValNeedNeg = NeedNeg;
00726       continue;
00727     }
00728 
00729     if (LastValNeedNeg == NeedNeg) {
00730       LastVal = createFAdd(LastVal, V);
00731       continue;
00732     }
00733 
00734     if (LastValNeedNeg)
00735       LastVal = createFSub(V, LastVal);
00736     else
00737       LastVal = createFSub(LastVal, V);
00738 
00739     LastValNeedNeg = false;
00740   }
00741 
00742   if (LastValNeedNeg) {
00743     LastVal = createFNeg(LastVal);
00744   }
00745 
00746   #ifndef NDEBUG
00747     assert(CreateInstrNum == InstrNeeded &&
00748            "Inconsistent in instruction numbers");
00749   #endif
00750 
00751   return LastVal;
00752 }
00753 
00754 Value *FAddCombine::createFSub
00755   (Value *Opnd0, Value *Opnd1) {
00756   Value *V = Builder->CreateFSub(Opnd0, Opnd1);
00757   if (Instruction *I = dyn_cast<Instruction>(V))
00758     createInstPostProc(I);
00759   return V;
00760 }
00761 
00762 Value *FAddCombine::createFNeg(Value *V) {
00763   Value *Zero = cast<Value>(ConstantFP::get(V->getType(), 0.0));
00764   Value *NewV = createFSub(Zero, V);
00765   if (Instruction *I = dyn_cast<Instruction>(NewV))
00766     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
00767   return NewV;
00768 }
00769 
00770 Value *FAddCombine::createFAdd
00771   (Value *Opnd0, Value *Opnd1) {
00772   Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
00773   if (Instruction *I = dyn_cast<Instruction>(V))
00774     createInstPostProc(I);
00775   return V;
00776 }
00777 
00778 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
00779   Value *V = Builder->CreateFMul(Opnd0, Opnd1);
00780   if (Instruction *I = dyn_cast<Instruction>(V))
00781     createInstPostProc(I);
00782   return V;
00783 }
00784 
00785 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
00786   Value *V = Builder->CreateFDiv(Opnd0, Opnd1);
00787   if (Instruction *I = dyn_cast<Instruction>(V))
00788     createInstPostProc(I);
00789   return V;
00790 }
00791 
00792 void FAddCombine::createInstPostProc(Instruction *NewInstr,
00793                                      bool NoNumber) {
00794   NewInstr->setDebugLoc(Instr->getDebugLoc());
00795 
00796   // Keep track of the number of instruction created.
00797   if (!NoNumber)
00798     incCreateInstNum();
00799 
00800   // Propagate fast-math flags
00801   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
00802 }
00803 
00804 // Return the number of instruction needed to emit the N-ary addition.
00805 // NOTE: Keep this function in sync with createAddendVal().
00806 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
00807   unsigned OpndNum = Opnds.size();
00808   unsigned InstrNeeded = OpndNum - 1;
00809 
00810   // The number of addends in the form of "(-1)*x".
00811   unsigned NegOpndNum = 0;
00812 
00813   // Adjust the number of instructions needed to emit the N-ary add.
00814   for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
00815        I != E; I++) {
00816     const FAddend *Opnd = *I;
00817     if (Opnd->isConstant())
00818       continue;
00819 
00820     const FAddendCoef &CE = Opnd->getCoef();
00821     if (CE.isMinusOne() || CE.isMinusTwo())
00822       NegOpndNum++;
00823 
00824     // Let the addend be "c * x". If "c == +/-1", the value of the addend
00825     // is immediately available; otherwise, it needs exactly one instruction
00826     // to evaluate the value.
00827     if (!CE.isMinusOne() && !CE.isOne())
00828       InstrNeeded++;
00829   }
00830   if (NegOpndNum == OpndNum)
00831     InstrNeeded++;
00832   return InstrNeeded;
00833 }
00834 
00835 // Input Addend        Value           NeedNeg(output)
00836 // ================================================================
00837 // Constant C          C               false
00838 // <+/-1, V>           V               coefficient is -1
00839 // <2/-2, V>          "fadd V, V"      coefficient is -2
00840 // <C, V>             "fmul V, C"      false
00841 //
00842 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
00843 Value *FAddCombine::createAddendVal
00844   (const FAddend &Opnd, bool &NeedNeg) {
00845   const FAddendCoef &Coeff = Opnd.getCoef();
00846 
00847   if (Opnd.isConstant()) {
00848     NeedNeg = false;
00849     return Coeff.getValue(Instr->getType());
00850   }
00851 
00852   Value *OpndVal = Opnd.getSymVal();
00853 
00854   if (Coeff.isMinusOne() || Coeff.isOne()) {
00855     NeedNeg = Coeff.isMinusOne();
00856     return OpndVal;
00857   }
00858 
00859   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
00860     NeedNeg = Coeff.isMinusTwo();
00861     return createFAdd(OpndVal, OpndVal);
00862   }
00863 
00864   NeedNeg = false;
00865   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
00866 }
00867 
00868 // If one of the operands only has one non-zero bit, and if the other
00869 // operand has a known-zero bit in a more significant place than it (not
00870 // including the sign bit) the ripple may go up to and fill the zero, but
00871 // won't change the sign. For example, (X & ~4) + 1.
00872 static bool checkRippleForAdd(const APInt &Op0KnownZero,
00873                               const APInt &Op1KnownZero) {
00874   APInt Op1MaybeOne = ~Op1KnownZero;
00875   // Make sure that one of the operand has at most one bit set to 1.
00876   if (Op1MaybeOne.countPopulation() != 1)
00877     return false;
00878 
00879   // Find the most significant known 0 other than the sign bit.
00880   int BitWidth = Op0KnownZero.getBitWidth();
00881   APInt Op0KnownZeroTemp(Op0KnownZero);
00882   Op0KnownZeroTemp.clearBit(BitWidth - 1);
00883   int Op0ZeroPosition = BitWidth - Op0KnownZeroTemp.countLeadingZeros() - 1;
00884 
00885   int Op1OnePosition = BitWidth - Op1MaybeOne.countLeadingZeros() - 1;
00886   assert(Op1OnePosition >= 0);
00887 
00888   // This also covers the case of no known zero, since in that case
00889   // Op0ZeroPosition is -1.
00890   return Op0ZeroPosition >= Op1OnePosition;
00891 }
00892 
00893 /// WillNotOverflowSignedAdd - Return true if we can prove that:
00894 ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
00895 /// This basically requires proving that the add in the original type would not
00896 /// overflow to change the sign bit or have a carry out.
00897 /// TODO: Handle this for Vectors.
00898 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS,
00899                                             Instruction *CxtI) {
00900   // There are different heuristics we can use for this.  Here are some simple
00901   // ones.
00902 
00903   // If LHS and RHS each have at least two sign bits, the addition will look
00904   // like
00905   //
00906   // XX..... +
00907   // YY.....
00908   //
00909   // If the carry into the most significant position is 0, X and Y can't both
00910   // be 1 and therefore the carry out of the addition is also 0.
00911   //
00912   // If the carry into the most significant position is 1, X and Y can't both
00913   // be 0 and therefore the carry out of the addition is also 1.
00914   //
00915   // Since the carry into the most significant position is always equal to
00916   // the carry out of the addition, there is no signed overflow.
00917   if (ComputeNumSignBits(LHS, 0, CxtI) > 1 &&
00918       ComputeNumSignBits(RHS, 0, CxtI) > 1)
00919     return true;
00920 
00921   if (IntegerType *IT = dyn_cast<IntegerType>(LHS->getType())) {
00922     int BitWidth = IT->getBitWidth();
00923     APInt LHSKnownZero(BitWidth, 0);
00924     APInt LHSKnownOne(BitWidth, 0);
00925     computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, CxtI);
00926 
00927     APInt RHSKnownZero(BitWidth, 0);
00928     APInt RHSKnownOne(BitWidth, 0);
00929     computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, CxtI);
00930 
00931     // Addition of two 2's compliment numbers having opposite signs will never
00932     // overflow.
00933     if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) ||
00934         (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1]))
00935       return true;
00936 
00937     // Check if carry bit of addition will not cause overflow.
00938     if (checkRippleForAdd(LHSKnownZero, RHSKnownZero))
00939       return true;
00940     if (checkRippleForAdd(RHSKnownZero, LHSKnownZero))
00941       return true;
00942   }
00943   return false;
00944 }
00945 
00946 /// WillNotOverflowUnsignedAdd - Return true if we can prove that:
00947 ///    (zext (add LHS, RHS))  === (add (zext LHS), (zext RHS))
00948 bool InstCombiner::WillNotOverflowUnsignedAdd(Value *LHS, Value *RHS,
00949                                               Instruction *CxtI) {
00950   // There are different heuristics we can use for this. Here is a simple one.
00951   // If the sign bit of LHS and that of RHS are both zero, no unsigned wrap.
00952   bool LHSKnownNonNegative, LHSKnownNegative;
00953   bool RHSKnownNonNegative, RHSKnownNegative;
00954   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, 0, AT, CxtI, DT);
00955   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, 0, AT, CxtI, DT);
00956   if (LHSKnownNonNegative && RHSKnownNonNegative)
00957     return true;
00958 
00959   return false;
00960 }
00961 
00962 /// \brief Return true if we can prove that:
00963 ///    (sub LHS, RHS)  === (sub nsw LHS, RHS)
00964 /// This basically requires proving that the add in the original type would not
00965 /// overflow to change the sign bit or have a carry out.
00966 /// TODO: Handle this for Vectors.
00967 bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS,
00968                                             Instruction *CxtI) {
00969   // If LHS and RHS each have at least two sign bits, the subtraction
00970   // cannot overflow.
00971   if (ComputeNumSignBits(LHS, 0, CxtI) > 1 &&
00972       ComputeNumSignBits(RHS, 0, CxtI) > 1)
00973     return true;
00974 
00975   if (IntegerType *IT = dyn_cast<IntegerType>(LHS->getType())) {
00976     unsigned BitWidth = IT->getBitWidth();
00977     APInt LHSKnownZero(BitWidth, 0);
00978     APInt LHSKnownOne(BitWidth, 0);
00979     computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, CxtI);
00980 
00981     APInt RHSKnownZero(BitWidth, 0);
00982     APInt RHSKnownOne(BitWidth, 0);
00983     computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, CxtI);
00984 
00985     // Subtraction of two 2's compliment numbers having identical signs will
00986     // never overflow.
00987     if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) ||
00988         (LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1]))
00989       return true;
00990 
00991     // TODO: implement logic similar to checkRippleForAdd
00992   }
00993   return false;
00994 }
00995 
00996 /// \brief Return true if we can prove that:
00997 ///    (sub LHS, RHS)  === (sub nuw LHS, RHS)
00998 bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS,
00999                                               Instruction *CxtI) {
01000   // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
01001   bool LHSKnownNonNegative, LHSKnownNegative;
01002   bool RHSKnownNonNegative, RHSKnownNegative;
01003   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, 0, AT, CxtI, DT);
01004   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, 0, AT, CxtI, DT);
01005   if (LHSKnownNegative && RHSKnownNonNegative)
01006     return true;
01007 
01008   return false;
01009 }
01010 
01011 // Checks if any operand is negative and we can convert add to sub.
01012 // This function checks for following negative patterns
01013 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
01014 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
01015 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
01016 static Value *checkForNegativeOperand(BinaryOperator &I,
01017                                       InstCombiner::BuilderTy *Builder) {
01018   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
01019 
01020   // This function creates 2 instructions to replace ADD, we need at least one
01021   // of LHS or RHS to have one use to ensure benefit in transform.
01022   if (!LHS->hasOneUse() && !RHS->hasOneUse())
01023     return nullptr;
01024 
01025   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
01026   const APInt *C1 = nullptr, *C2 = nullptr;
01027 
01028   // if ONE is on other side, swap
01029   if (match(RHS, m_Add(m_Value(X), m_One())))
01030     std::swap(LHS, RHS);
01031 
01032   if (match(LHS, m_Add(m_Value(X), m_One()))) {
01033     // if XOR on other side, swap
01034     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
01035       std::swap(X, RHS);
01036 
01037     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
01038       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
01039       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
01040       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
01041         Value *NewAnd = Builder->CreateAnd(Z, *C1);
01042         return Builder->CreateSub(RHS, NewAnd, "sub");
01043       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
01044         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
01045         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
01046         Value *NewOr = Builder->CreateOr(Z, ~(*C1));
01047         return Builder->CreateSub(RHS, NewOr, "sub");
01048       }
01049     }
01050   }
01051 
01052   // Restore LHS and RHS
01053   LHS = I.getOperand(0);
01054   RHS = I.getOperand(1);
01055 
01056   // if XOR is on other side, swap
01057   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
01058     std::swap(LHS, RHS);
01059 
01060   // C2 is ODD
01061   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
01062   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
01063   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
01064     if (C1->countTrailingZeros() == 0)
01065       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
01066         Value *NewOr = Builder->CreateOr(Z, ~(*C2));
01067         return Builder->CreateSub(RHS, NewOr, "sub");
01068       }
01069   return nullptr;
01070 }
01071 
01072 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
01073    bool Changed = SimplifyAssociativeOrCommutative(I);
01074    Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
01075 
01076    if (Value *V = SimplifyVectorOp(I))
01077      return ReplaceInstUsesWith(I, V);
01078 
01079    if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
01080                                   I.hasNoUnsignedWrap(), DL, TLI, DT, AT))
01081      return ReplaceInstUsesWith(I, V);
01082 
01083    // (A*B)+(A*C) -> A*(B+C) etc
01084   if (Value *V = SimplifyUsingDistributiveLaws(I))
01085     return ReplaceInstUsesWith(I, V);
01086 
01087   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
01088     // X + (signbit) --> X ^ signbit
01089     const APInt &Val = CI->getValue();
01090     if (Val.isSignBit())
01091       return BinaryOperator::CreateXor(LHS, RHS);
01092 
01093     // See if SimplifyDemandedBits can simplify this.  This handles stuff like
01094     // (X & 254)+1 -> (X&254)|1
01095     if (SimplifyDemandedInstructionBits(I))
01096       return &I;
01097 
01098     // zext(bool) + C -> bool ? C + 1 : C
01099     if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
01100       if (ZI->getSrcTy()->isIntegerTy(1))
01101         return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
01102 
01103     Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
01104     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
01105       uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
01106       const APInt &RHSVal = CI->getValue();
01107       unsigned ExtendAmt = 0;
01108       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
01109       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
01110       if (XorRHS->getValue() == -RHSVal) {
01111         if (RHSVal.isPowerOf2())
01112           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
01113         else if (XorRHS->getValue().isPowerOf2())
01114           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
01115       }
01116 
01117       if (ExtendAmt) {
01118         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
01119         if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
01120           ExtendAmt = 0;
01121       }
01122 
01123       if (ExtendAmt) {
01124         Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
01125         Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
01126         return BinaryOperator::CreateAShr(NewShl, ShAmt);
01127       }
01128 
01129       // If this is a xor that was canonicalized from a sub, turn it back into
01130       // a sub and fuse this add with it.
01131       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
01132         IntegerType *IT = cast<IntegerType>(I.getType());
01133         APInt LHSKnownOne(IT->getBitWidth(), 0);
01134         APInt LHSKnownZero(IT->getBitWidth(), 0);
01135         computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne, 0, &I);
01136         if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
01137           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
01138                                            XorLHS);
01139       }
01140       // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C,
01141       // transform them into (X + (signbit ^ C))
01142       if (XorRHS->getValue().isSignBit())
01143           return BinaryOperator::CreateAdd(XorLHS,
01144                                            ConstantExpr::getXor(XorRHS, CI));
01145     }
01146   }
01147 
01148   if (isa<Constant>(RHS) && isa<PHINode>(LHS))
01149     if (Instruction *NV = FoldOpIntoPhi(I))
01150       return NV;
01151 
01152   if (I.getType()->getScalarType()->isIntegerTy(1))
01153     return BinaryOperator::CreateXor(LHS, RHS);
01154 
01155   // X + X --> X << 1
01156   if (LHS == RHS) {
01157     BinaryOperator *New =
01158       BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
01159     New->setHasNoSignedWrap(I.hasNoSignedWrap());
01160     New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
01161     return New;
01162   }
01163 
01164   // -A + B  -->  B - A
01165   // -A + -B  -->  -(A + B)
01166   if (Value *LHSV = dyn_castNegVal(LHS)) {
01167     if (!isa<Constant>(RHS))
01168       if (Value *RHSV = dyn_castNegVal(RHS)) {
01169         Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
01170         return BinaryOperator::CreateNeg(NewAdd);
01171       }
01172 
01173     return BinaryOperator::CreateSub(RHS, LHSV);
01174   }
01175 
01176   // A + -B  -->  A - B
01177   if (!isa<Constant>(RHS))
01178     if (Value *V = dyn_castNegVal(RHS))
01179       return BinaryOperator::CreateSub(LHS, V);
01180 
01181   if (Value *V = checkForNegativeOperand(I, Builder))
01182     return ReplaceInstUsesWith(I, V);
01183 
01184   // A+B --> A|B iff A and B have no bits set in common.
01185   if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
01186     APInt LHSKnownOne(IT->getBitWidth(), 0);
01187     APInt LHSKnownZero(IT->getBitWidth(), 0);
01188     computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &I);
01189     if (LHSKnownZero != 0) {
01190       APInt RHSKnownOne(IT->getBitWidth(), 0);
01191       APInt RHSKnownZero(IT->getBitWidth(), 0);
01192       computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &I);
01193 
01194       // No bits in common -> bitwise or.
01195       if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
01196         return BinaryOperator::CreateOr(LHS, RHS);
01197     }
01198   }
01199 
01200   if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
01201     Value *X;
01202     if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
01203       return BinaryOperator::CreateSub(SubOne(CRHS), X);
01204   }
01205 
01206   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
01207     // (X & FF00) + xx00  -> (X+xx00) & FF00
01208     Value *X;
01209     ConstantInt *C2;
01210     if (LHS->hasOneUse() &&
01211         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
01212         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
01213       // See if all bits from the first bit set in the Add RHS up are included
01214       // in the mask.  First, get the rightmost bit.
01215       const APInt &AddRHSV = CRHS->getValue();
01216 
01217       // Form a mask of all bits from the lowest bit added through the top.
01218       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
01219 
01220       // See if the and mask includes all of these bits.
01221       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
01222 
01223       if (AddRHSHighBits == AddRHSHighBitsAnd) {
01224         // Okay, the xform is safe.  Insert the new add pronto.
01225         Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
01226         return BinaryOperator::CreateAnd(NewAdd, C2);
01227       }
01228     }
01229 
01230     // Try to fold constant add into select arguments.
01231     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
01232       if (Instruction *R = FoldOpIntoSelect(I, SI))
01233         return R;
01234   }
01235 
01236   // add (select X 0 (sub n A)) A  -->  select X A n
01237   {
01238     SelectInst *SI = dyn_cast<SelectInst>(LHS);
01239     Value *A = RHS;
01240     if (!SI) {
01241       SI = dyn_cast<SelectInst>(RHS);
01242       A = LHS;
01243     }
01244     if (SI && SI->hasOneUse()) {
01245       Value *TV = SI->getTrueValue();
01246       Value *FV = SI->getFalseValue();
01247       Value *N;
01248 
01249       // Can we fold the add into the argument of the select?
01250       // We check both true and false select arguments for a matching subtract.
01251       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
01252         // Fold the add into the true select value.
01253         return SelectInst::Create(SI->getCondition(), N, A);
01254 
01255       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
01256         // Fold the add into the false select value.
01257         return SelectInst::Create(SI->getCondition(), A, N);
01258     }
01259   }
01260 
01261   // Check for (add (sext x), y), see if we can merge this into an
01262   // integer add followed by a sext.
01263   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
01264     // (add (sext x), cst) --> (sext (add x, cst'))
01265     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
01266       Constant *CI =
01267         ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
01268       if (LHSConv->hasOneUse() &&
01269           ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
01270           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, &I)) {
01271         // Insert the new, smaller add.
01272         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
01273                                               CI, "addconv");
01274         return new SExtInst(NewAdd, I.getType());
01275       }
01276     }
01277 
01278     // (add (sext x), (sext y)) --> (sext (add int x, y))
01279     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
01280       // Only do this if x/y have the same type, if at last one of them has a
01281       // single use (so we don't increase the number of sexts), and if the
01282       // integer add will not overflow.
01283       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
01284           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
01285           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
01286                                    RHSConv->getOperand(0), &I)) {
01287         // Insert the new integer add.
01288         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
01289                                              RHSConv->getOperand(0), "addconv");
01290         return new SExtInst(NewAdd, I.getType());
01291       }
01292     }
01293   }
01294 
01295   // (add (xor A, B) (and A, B)) --> (or A, B)
01296   {
01297     Value *A = nullptr, *B = nullptr;
01298     if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
01299         (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
01300          match(LHS, m_And(m_Specific(B), m_Specific(A)))))
01301       return BinaryOperator::CreateOr(A, B);
01302 
01303     if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
01304         (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
01305          match(RHS, m_And(m_Specific(B), m_Specific(A)))))
01306       return BinaryOperator::CreateOr(A, B);
01307   }
01308 
01309   // (add (or A, B) (and A, B)) --> (add A, B)
01310   {
01311     Value *A = nullptr, *B = nullptr;
01312     if (match(RHS, m_Or(m_Value(A), m_Value(B))) &&
01313         (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
01314          match(LHS, m_And(m_Specific(B), m_Specific(A))))) {
01315       auto *New = BinaryOperator::CreateAdd(A, B);
01316       New->setHasNoSignedWrap(I.hasNoSignedWrap());
01317       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
01318       return New;
01319     }
01320 
01321     if (match(LHS, m_Or(m_Value(A), m_Value(B))) &&
01322         (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
01323          match(RHS, m_And(m_Specific(B), m_Specific(A))))) {
01324       auto *New = BinaryOperator::CreateAdd(A, B);
01325       New->setHasNoSignedWrap(I.hasNoSignedWrap());
01326       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
01327       return New;
01328     }
01329   }
01330 
01331   // TODO(jingyue): Consider WillNotOverflowSignedAdd and
01332   // WillNotOverflowUnsignedAdd to reduce the number of invocations of
01333   // computeKnownBits.
01334   if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, &I)) {
01335     Changed = true;
01336     I.setHasNoSignedWrap(true);
01337   }
01338   if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedAdd(LHS, RHS, &I)) {
01339     Changed = true;
01340     I.setHasNoUnsignedWrap(true);
01341   }
01342 
01343   return Changed ? &I : nullptr;
01344 }
01345 
01346 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
01347   bool Changed = SimplifyAssociativeOrCommutative(I);
01348   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
01349 
01350   if (Value *V = SimplifyVectorOp(I))
01351     return ReplaceInstUsesWith(I, V);
01352 
01353   if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL,
01354                                   TLI, DT, AT))
01355     return ReplaceInstUsesWith(I, V);
01356 
01357   if (isa<Constant>(RHS)) {
01358     if (isa<PHINode>(LHS))
01359       if (Instruction *NV = FoldOpIntoPhi(I))
01360         return NV;
01361 
01362     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
01363       if (Instruction *NV = FoldOpIntoSelect(I, SI))
01364         return NV;
01365   }
01366 
01367   // -A + B  -->  B - A
01368   // -A + -B  -->  -(A + B)
01369   if (Value *LHSV = dyn_castFNegVal(LHS)) {
01370     Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV);
01371     RI->copyFastMathFlags(&I);
01372     return RI;
01373   }
01374 
01375   // A + -B  -->  A - B
01376   if (!isa<Constant>(RHS))
01377     if (Value *V = dyn_castFNegVal(RHS)) {
01378       Instruction *RI = BinaryOperator::CreateFSub(LHS, V);
01379       RI->copyFastMathFlags(&I);
01380       return RI;
01381     }
01382 
01383   // Check for (fadd double (sitofp x), y), see if we can merge this into an
01384   // integer add followed by a promotion.
01385   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
01386     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
01387     // ... if the constant fits in the integer value.  This is useful for things
01388     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
01389     // requires a constant pool load, and generally allows the add to be better
01390     // instcombined.
01391     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
01392       Constant *CI =
01393       ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
01394       if (LHSConv->hasOneUse() &&
01395           ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
01396           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, &I)) {
01397         // Insert the new integer add.
01398         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
01399                                               CI, "addconv");
01400         return new SIToFPInst(NewAdd, I.getType());
01401       }
01402     }
01403 
01404     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
01405     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
01406       // Only do this if x/y have the same type, if at last one of them has a
01407       // single use (so we don't increase the number of int->fp conversions),
01408       // and if the integer add will not overflow.
01409       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
01410           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
01411           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
01412                                    RHSConv->getOperand(0), &I)) {
01413         // Insert the new integer add.
01414         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
01415                                               RHSConv->getOperand(0),"addconv");
01416         return new SIToFPInst(NewAdd, I.getType());
01417       }
01418     }
01419   }
01420 
01421   // select C, 0, B + select C, A, 0 -> select C, A, B
01422   {
01423     Value *A1, *B1, *C1, *A2, *B2, *C2;
01424     if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) &&
01425         match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) {
01426       if (C1 == C2) {
01427         Constant *Z1=nullptr, *Z2=nullptr;
01428         Value *A, *B, *C=C1;
01429         if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) {
01430             Z1 = dyn_cast<Constant>(A1); A = A2;
01431             Z2 = dyn_cast<Constant>(B2); B = B1;
01432         } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) {
01433             Z1 = dyn_cast<Constant>(B1); B = B2;
01434             Z2 = dyn_cast<Constant>(A2); A = A1; 
01435         }
01436         
01437         if (Z1 && Z2 && 
01438             (I.hasNoSignedZeros() || 
01439              (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) {
01440           return SelectInst::Create(C, A, B);
01441         }
01442       }
01443     }
01444   }
01445 
01446   if (I.hasUnsafeAlgebra()) {
01447     if (Value *V = FAddCombine(Builder).simplify(&I))
01448       return ReplaceInstUsesWith(I, V);
01449   }
01450 
01451   return Changed ? &I : nullptr;
01452 }
01453 
01454 
01455 /// Optimize pointer differences into the same array into a size.  Consider:
01456 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
01457 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
01458 ///
01459 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
01460                                                Type *Ty) {
01461   assert(DL && "Must have target data info for this");
01462 
01463   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
01464   // this.
01465   bool Swapped = false;
01466   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
01467 
01468   // For now we require one side to be the base pointer "A" or a constant
01469   // GEP derived from it.
01470   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
01471     // (gep X, ...) - X
01472     if (LHSGEP->getOperand(0) == RHS) {
01473       GEP1 = LHSGEP;
01474       Swapped = false;
01475     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
01476       // (gep X, ...) - (gep X, ...)
01477       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
01478             RHSGEP->getOperand(0)->stripPointerCasts()) {
01479         GEP2 = RHSGEP;
01480         GEP1 = LHSGEP;
01481         Swapped = false;
01482       }
01483     }
01484   }
01485 
01486   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
01487     // X - (gep X, ...)
01488     if (RHSGEP->getOperand(0) == LHS) {
01489       GEP1 = RHSGEP;
01490       Swapped = true;
01491     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
01492       // (gep X, ...) - (gep X, ...)
01493       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
01494             LHSGEP->getOperand(0)->stripPointerCasts()) {
01495         GEP2 = LHSGEP;
01496         GEP1 = RHSGEP;
01497         Swapped = true;
01498       }
01499     }
01500   }
01501 
01502   // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
01503   // multiple users.
01504   if (!GEP1 ||
01505       (GEP2 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
01506     return nullptr;
01507 
01508   // Emit the offset of the GEP and an intptr_t.
01509   Value *Result = EmitGEPOffset(GEP1);
01510 
01511   // If we had a constant expression GEP on the other side offsetting the
01512   // pointer, subtract it from the offset we have.
01513   if (GEP2) {
01514     Value *Offset = EmitGEPOffset(GEP2);
01515     Result = Builder->CreateSub(Result, Offset);
01516   }
01517 
01518   // If we have p - gep(p, ...)  then we have to negate the result.
01519   if (Swapped)
01520     Result = Builder->CreateNeg(Result, "diff.neg");
01521 
01522   return Builder->CreateIntCast(Result, Ty, true);
01523 }
01524 
01525 
01526 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
01527   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
01528 
01529   if (Value *V = SimplifyVectorOp(I))
01530     return ReplaceInstUsesWith(I, V);
01531 
01532   if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
01533                                  I.hasNoUnsignedWrap(), DL, TLI, DT, AT))
01534     return ReplaceInstUsesWith(I, V);
01535 
01536   // (A*B)-(A*C) -> A*(B-C) etc
01537   if (Value *V = SimplifyUsingDistributiveLaws(I))
01538     return ReplaceInstUsesWith(I, V);
01539 
01540   // If this is a 'B = x-(-A)', change to B = x+A.
01541   if (Value *V = dyn_castNegVal(Op1)) {
01542     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
01543 
01544     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
01545       assert(BO->getOpcode() == Instruction::Sub &&
01546              "Expected a subtraction operator!");
01547       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
01548         Res->setHasNoSignedWrap(true);
01549     } else {
01550       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
01551         Res->setHasNoSignedWrap(true);
01552     }
01553 
01554     return Res;
01555   }
01556 
01557   if (I.getType()->isIntegerTy(1))
01558     return BinaryOperator::CreateXor(Op0, Op1);
01559 
01560   // Replace (-1 - A) with (~A).
01561   if (match(Op0, m_AllOnes()))
01562     return BinaryOperator::CreateNot(Op1);
01563 
01564   if (Constant *C = dyn_cast<Constant>(Op0)) {
01565     // C - ~X == X + (1+C)
01566     Value *X = nullptr;
01567     if (match(Op1, m_Not(m_Value(X))))
01568       return BinaryOperator::CreateAdd(X, AddOne(C));
01569 
01570     // Try to fold constant sub into select arguments.
01571     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
01572       if (Instruction *R = FoldOpIntoSelect(I, SI))
01573         return R;
01574 
01575     // C-(X+C2) --> (C-C2)-X
01576     Constant *C2;
01577     if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
01578       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
01579 
01580     if (SimplifyDemandedInstructionBits(I))
01581       return &I;
01582 
01583     // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
01584     if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X))))
01585       if (X->getType()->getScalarType()->isIntegerTy(1))
01586         return CastInst::CreateSExtOrBitCast(X, Op1->getType());
01587 
01588     // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
01589     if (C->isNullValue() && match(Op1, m_SExt(m_Value(X))))
01590       if (X->getType()->getScalarType()->isIntegerTy(1))
01591         return CastInst::CreateZExtOrBitCast(X, Op1->getType());
01592   }
01593 
01594   if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
01595     // -(X >>u 31) -> (X >>s 31)
01596     // -(X >>s 31) -> (X >>u 31)
01597     if (C->isZero()) {
01598       Value *X; ConstantInt *CI;
01599       if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
01600           // Verify we are shifting out everything but the sign bit.
01601           CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
01602         return BinaryOperator::CreateAShr(X, CI);
01603 
01604       if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
01605           // Verify we are shifting out everything but the sign bit.
01606           CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
01607         return BinaryOperator::CreateLShr(X, CI);
01608     }
01609   }
01610 
01611 
01612   { Value *Y;
01613     // X-(X+Y) == -Y    X-(Y+X) == -Y
01614     if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
01615         match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
01616       return BinaryOperator::CreateNeg(Y);
01617 
01618     // (X-Y)-X == -Y
01619     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
01620       return BinaryOperator::CreateNeg(Y);
01621   }
01622 
01623   if (Op1->hasOneUse()) {
01624     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
01625     Constant *C = nullptr;
01626     Constant *CI = nullptr;
01627 
01628     // (X - (Y - Z))  -->  (X + (Z - Y)).
01629     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
01630       return BinaryOperator::CreateAdd(Op0,
01631                                       Builder->CreateSub(Z, Y, Op1->getName()));
01632 
01633     // (X - (X & Y))   -->   (X & ~Y)
01634     //
01635     if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
01636         match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
01637       return BinaryOperator::CreateAnd(Op0,
01638                                   Builder->CreateNot(Y, Y->getName() + ".not"));
01639 
01640     // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
01641     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
01642         C->isNotMinSignedValue() && !C->isOneValue())
01643       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
01644 
01645     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
01646     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
01647       if (Value *XNeg = dyn_castNegVal(X))
01648         return BinaryOperator::CreateShl(XNeg, Y);
01649 
01650     // X - A*-B -> X + A*B
01651     // X - -A*B -> X + A*B
01652     Value *A, *B;
01653     if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
01654         match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
01655       return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
01656 
01657     // X - A*CI -> X + A*-CI
01658     // X - CI*A -> X + A*-CI
01659     if (match(Op1, m_Mul(m_Value(A), m_Constant(CI))) ||
01660         match(Op1, m_Mul(m_Constant(CI), m_Value(A)))) {
01661       Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
01662       return BinaryOperator::CreateAdd(Op0, NewMul);
01663     }
01664   }
01665 
01666   // Optimize pointer differences into the same array into a size.  Consider:
01667   //  &A[10] - &A[0]: we should compile this to "10".
01668   if (DL) {
01669     Value *LHSOp, *RHSOp;
01670     if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
01671         match(Op1, m_PtrToInt(m_Value(RHSOp))))
01672       if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
01673         return ReplaceInstUsesWith(I, Res);
01674 
01675     // trunc(p)-trunc(q) -> trunc(p-q)
01676     if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
01677         match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
01678       if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
01679         return ReplaceInstUsesWith(I, Res);
01680       }
01681 
01682   bool Changed = false;
01683   if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, &I)) {
01684     Changed = true;
01685     I.setHasNoSignedWrap(true);
01686   }
01687   if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, &I)) {
01688     Changed = true;
01689     I.setHasNoUnsignedWrap(true);
01690   }
01691 
01692   return Changed ? &I : nullptr;
01693 }
01694 
01695 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
01696   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
01697 
01698   if (Value *V = SimplifyVectorOp(I))
01699     return ReplaceInstUsesWith(I, V);
01700 
01701   if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL,
01702                                   TLI, DT, AT))
01703     return ReplaceInstUsesWith(I, V);
01704 
01705   if (isa<Constant>(Op0))
01706     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
01707       if (Instruction *NV = FoldOpIntoSelect(I, SI))
01708         return NV;
01709 
01710   // If this is a 'B = x-(-A)', change to B = x+A, potentially looking
01711   // through FP extensions/truncations along the way.
01712   if (Value *V = dyn_castFNegVal(Op1)) {
01713     Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V);
01714     NewI->copyFastMathFlags(&I);
01715     return NewI;
01716   }
01717   if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) {
01718     if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) {
01719       Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType());
01720       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc);
01721       NewI->copyFastMathFlags(&I);
01722       return NewI;
01723     }
01724   } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) {
01725     if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) {
01726       Value *NewExt = Builder->CreateFPExt(V, I.getType());
01727       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt);
01728       NewI->copyFastMathFlags(&I);
01729       return NewI;
01730     }
01731   }
01732 
01733   if (I.hasUnsafeAlgebra()) {
01734     if (Value *V = FAddCombine(Builder).simplify(&I))
01735       return ReplaceInstUsesWith(I, V);
01736   }
01737 
01738   return nullptr;
01739 }