LLVM API Documentation

InstCombineCalls.cpp
Go to the documentation of this file.
00001 //===- InstCombineCalls.cpp -----------------------------------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file implements the visitCall and visitInvoke functions.
00011 //
00012 //===----------------------------------------------------------------------===//
00013 
00014 #include "InstCombine.h"
00015 #include "llvm/ADT/Statistic.h"
00016 #include "llvm/Analysis/MemoryBuiltins.h"
00017 #include "llvm/IR/CallSite.h"
00018 #include "llvm/IR/DataLayout.h"
00019 #include "llvm/IR/PatternMatch.h"
00020 #include "llvm/Transforms/Utils/BuildLibCalls.h"
00021 #include "llvm/Transforms/Utils/Local.h"
00022 using namespace llvm;
00023 using namespace PatternMatch;
00024 
00025 #define DEBUG_TYPE "instcombine"
00026 
00027 STATISTIC(NumSimplified, "Number of library calls simplified");
00028 
00029 /// getPromotedType - Return the specified type promoted as it would be to pass
00030 /// though a va_arg area.
00031 static Type *getPromotedType(Type *Ty) {
00032   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
00033     if (ITy->getBitWidth() < 32)
00034       return Type::getInt32Ty(Ty->getContext());
00035   }
00036   return Ty;
00037 }
00038 
00039 /// reduceToSingleValueType - Given an aggregate type which ultimately holds a
00040 /// single scalar element, like {{{type}}} or [1 x type], return type.
00041 static Type *reduceToSingleValueType(Type *T) {
00042   while (!T->isSingleValueType()) {
00043     if (StructType *STy = dyn_cast<StructType>(T)) {
00044       if (STy->getNumElements() == 1)
00045         T = STy->getElementType(0);
00046       else
00047         break;
00048     } else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) {
00049       if (ATy->getNumElements() == 1)
00050         T = ATy->getElementType();
00051       else
00052         break;
00053     } else
00054       break;
00055   }
00056 
00057   return T;
00058 }
00059 
00060 Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
00061   unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, AT, MI, DT);
00062   unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, AT, MI, DT);
00063   unsigned MinAlign = std::min(DstAlign, SrcAlign);
00064   unsigned CopyAlign = MI->getAlignment();
00065 
00066   if (CopyAlign < MinAlign) {
00067     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
00068                                              MinAlign, false));
00069     return MI;
00070   }
00071 
00072   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
00073   // load/store.
00074   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
00075   if (!MemOpLength) return nullptr;
00076 
00077   // Source and destination pointer types are always "i8*" for intrinsic.  See
00078   // if the size is something we can handle with a single primitive load/store.
00079   // A single load+store correctly handles overlapping memory in the memmove
00080   // case.
00081   uint64_t Size = MemOpLength->getLimitedValue();
00082   assert(Size && "0-sized memory transferring should be removed already.");
00083 
00084   if (Size > 8 || (Size&(Size-1)))
00085     return nullptr;  // If not 1/2/4/8 bytes, exit.
00086 
00087   // Use an integer load+store unless we can find something better.
00088   unsigned SrcAddrSp =
00089     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
00090   unsigned DstAddrSp =
00091     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
00092 
00093   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
00094   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
00095   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
00096 
00097   // Memcpy forces the use of i8* for the source and destination.  That means
00098   // that if you're using memcpy to move one double around, you'll get a cast
00099   // from double* to i8*.  We'd much rather use a double load+store rather than
00100   // an i64 load+store, here because this improves the odds that the source or
00101   // dest address will be promotable.  See if we can find a better type than the
00102   // integer datatype.
00103   Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
00104   MDNode *CopyMD = nullptr;
00105   if (StrippedDest != MI->getArgOperand(0)) {
00106     Type *SrcETy = cast<PointerType>(StrippedDest->getType())
00107                                     ->getElementType();
00108     if (DL && SrcETy->isSized() && DL->getTypeStoreSize(SrcETy) == Size) {
00109       // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
00110       // down through these levels if so.
00111       SrcETy = reduceToSingleValueType(SrcETy);
00112 
00113       if (SrcETy->isSingleValueType()) {
00114         NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
00115         NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
00116 
00117         // If the memcpy has metadata describing the members, see if we can
00118         // get the TBAA tag describing our copy.
00119         if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
00120           if (M->getNumOperands() == 3 &&
00121               M->getOperand(0) &&
00122               isa<ConstantInt>(M->getOperand(0)) &&
00123               cast<ConstantInt>(M->getOperand(0))->isNullValue() &&
00124               M->getOperand(1) &&
00125               isa<ConstantInt>(M->getOperand(1)) &&
00126               cast<ConstantInt>(M->getOperand(1))->getValue() == Size &&
00127               M->getOperand(2) &&
00128               isa<MDNode>(M->getOperand(2)))
00129             CopyMD = cast<MDNode>(M->getOperand(2));
00130         }
00131       }
00132     }
00133   }
00134 
00135   // If the memcpy/memmove provides better alignment info than we can
00136   // infer, use it.
00137   SrcAlign = std::max(SrcAlign, CopyAlign);
00138   DstAlign = std::max(DstAlign, CopyAlign);
00139 
00140   Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
00141   Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
00142   LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
00143   L->setAlignment(SrcAlign);
00144   if (CopyMD)
00145     L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
00146   StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
00147   S->setAlignment(DstAlign);
00148   if (CopyMD)
00149     S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
00150 
00151   // Set the size of the copy to 0, it will be deleted on the next iteration.
00152   MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
00153   return MI;
00154 }
00155 
00156 Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
00157   unsigned Alignment = getKnownAlignment(MI->getDest(), DL, AT, MI, DT);
00158   if (MI->getAlignment() < Alignment) {
00159     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
00160                                              Alignment, false));
00161     return MI;
00162   }
00163 
00164   // Extract the length and alignment and fill if they are constant.
00165   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
00166   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
00167   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
00168     return nullptr;
00169   uint64_t Len = LenC->getLimitedValue();
00170   Alignment = MI->getAlignment();
00171   assert(Len && "0-sized memory setting should be removed already.");
00172 
00173   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
00174   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
00175     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
00176 
00177     Value *Dest = MI->getDest();
00178     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
00179     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
00180     Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
00181 
00182     // Alignment 0 is identity for alignment 1 for memset, but not store.
00183     if (Alignment == 0) Alignment = 1;
00184 
00185     // Extract the fill value and store.
00186     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
00187     StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
00188                                         MI->isVolatile());
00189     S->setAlignment(Alignment);
00190 
00191     // Set the size of the copy to 0, it will be deleted on the next iteration.
00192     MI->setLength(Constant::getNullValue(LenC->getType()));
00193     return MI;
00194   }
00195 
00196   return nullptr;
00197 }
00198 
00199 /// visitCallInst - CallInst simplification.  This mostly only handles folding
00200 /// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
00201 /// the heavy lifting.
00202 ///
00203 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
00204   if (isFreeCall(&CI, TLI))
00205     return visitFree(CI);
00206 
00207   // If the caller function is nounwind, mark the call as nounwind, even if the
00208   // callee isn't.
00209   if (CI.getParent()->getParent()->doesNotThrow() &&
00210       !CI.doesNotThrow()) {
00211     CI.setDoesNotThrow();
00212     return &CI;
00213   }
00214 
00215   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
00216   if (!II) return visitCallSite(&CI);
00217 
00218   // Intrinsics cannot occur in an invoke, so handle them here instead of in
00219   // visitCallSite.
00220   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
00221     bool Changed = false;
00222 
00223     // memmove/cpy/set of zero bytes is a noop.
00224     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
00225       if (NumBytes->isNullValue())
00226         return EraseInstFromFunction(CI);
00227 
00228       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
00229         if (CI->getZExtValue() == 1) {
00230           // Replace the instruction with just byte operations.  We would
00231           // transform other cases to loads/stores, but we don't know if
00232           // alignment is sufficient.
00233         }
00234     }
00235 
00236     // No other transformations apply to volatile transfers.
00237     if (MI->isVolatile())
00238       return nullptr;
00239 
00240     // If we have a memmove and the source operation is a constant global,
00241     // then the source and dest pointers can't alias, so we can change this
00242     // into a call to memcpy.
00243     if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
00244       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
00245         if (GVSrc->isConstant()) {
00246           Module *M = CI.getParent()->getParent()->getParent();
00247           Intrinsic::ID MemCpyID = Intrinsic::memcpy;
00248           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
00249                            CI.getArgOperand(1)->getType(),
00250                            CI.getArgOperand(2)->getType() };
00251           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
00252           Changed = true;
00253         }
00254     }
00255 
00256     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
00257       // memmove(x,x,size) -> noop.
00258       if (MTI->getSource() == MTI->getDest())
00259         return EraseInstFromFunction(CI);
00260     }
00261 
00262     // If we can determine a pointer alignment that is bigger than currently
00263     // set, update the alignment.
00264     if (isa<MemTransferInst>(MI)) {
00265       if (Instruction *I = SimplifyMemTransfer(MI))
00266         return I;
00267     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
00268       if (Instruction *I = SimplifyMemSet(MSI))
00269         return I;
00270     }
00271 
00272     if (Changed) return II;
00273   }
00274 
00275   switch (II->getIntrinsicID()) {
00276   default: break;
00277   case Intrinsic::objectsize: {
00278     uint64_t Size;
00279     if (getObjectSize(II->getArgOperand(0), Size, DL, TLI))
00280       return ReplaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size));
00281     return nullptr;
00282   }
00283   case Intrinsic::bswap: {
00284     Value *IIOperand = II->getArgOperand(0);
00285     Value *X = nullptr;
00286 
00287     // bswap(bswap(x)) -> x
00288     if (match(IIOperand, m_BSwap(m_Value(X))))
00289         return ReplaceInstUsesWith(CI, X);
00290 
00291     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
00292     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
00293       unsigned C = X->getType()->getPrimitiveSizeInBits() -
00294         IIOperand->getType()->getPrimitiveSizeInBits();
00295       Value *CV = ConstantInt::get(X->getType(), C);
00296       Value *V = Builder->CreateLShr(X, CV);
00297       return new TruncInst(V, IIOperand->getType());
00298     }
00299     break;
00300   }
00301 
00302   case Intrinsic::powi:
00303     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
00304       // powi(x, 0) -> 1.0
00305       if (Power->isZero())
00306         return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
00307       // powi(x, 1) -> x
00308       if (Power->isOne())
00309         return ReplaceInstUsesWith(CI, II->getArgOperand(0));
00310       // powi(x, -1) -> 1/x
00311       if (Power->isAllOnesValue())
00312         return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
00313                                           II->getArgOperand(0));
00314     }
00315     break;
00316   case Intrinsic::cttz: {
00317     // If all bits below the first known one are known zero,
00318     // this value is constant.
00319     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
00320     // FIXME: Try to simplify vectors of integers.
00321     if (!IT) break;
00322     uint32_t BitWidth = IT->getBitWidth();
00323     APInt KnownZero(BitWidth, 0);
00324     APInt KnownOne(BitWidth, 0);
00325     computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
00326     unsigned TrailingZeros = KnownOne.countTrailingZeros();
00327     APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
00328     if ((Mask & KnownZero) == Mask)
00329       return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
00330                                  APInt(BitWidth, TrailingZeros)));
00331 
00332     }
00333     break;
00334   case Intrinsic::ctlz: {
00335     // If all bits above the first known one are known zero,
00336     // this value is constant.
00337     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
00338     // FIXME: Try to simplify vectors of integers.
00339     if (!IT) break;
00340     uint32_t BitWidth = IT->getBitWidth();
00341     APInt KnownZero(BitWidth, 0);
00342     APInt KnownOne(BitWidth, 0);
00343     computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
00344     unsigned LeadingZeros = KnownOne.countLeadingZeros();
00345     APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
00346     if ((Mask & KnownZero) == Mask)
00347       return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
00348                                  APInt(BitWidth, LeadingZeros)));
00349 
00350     }
00351     break;
00352   case Intrinsic::uadd_with_overflow: {
00353     Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
00354     IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
00355     uint32_t BitWidth = IT->getBitWidth();
00356     APInt LHSKnownZero(BitWidth, 0);
00357     APInt LHSKnownOne(BitWidth, 0);
00358     computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, II);
00359     bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
00360     bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
00361 
00362     if (LHSKnownNegative || LHSKnownPositive) {
00363       APInt RHSKnownZero(BitWidth, 0);
00364       APInt RHSKnownOne(BitWidth, 0);
00365       computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, II);
00366       bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
00367       bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
00368       if (LHSKnownNegative && RHSKnownNegative) {
00369         // The sign bit is set in both cases: this MUST overflow.
00370         // Create a simple add instruction, and insert it into the struct.
00371         Value *Add = Builder->CreateAdd(LHS, RHS);
00372         Add->takeName(&CI);
00373         Constant *V[] = {
00374           UndefValue::get(LHS->getType()),
00375           ConstantInt::getTrue(II->getContext())
00376         };
00377         StructType *ST = cast<StructType>(II->getType());
00378         Constant *Struct = ConstantStruct::get(ST, V);
00379         return InsertValueInst::Create(Struct, Add, 0);
00380       }
00381 
00382       if (LHSKnownPositive && RHSKnownPositive) {
00383         // The sign bit is clear in both cases: this CANNOT overflow.
00384         // Create a simple add instruction, and insert it into the struct.
00385         Value *Add = Builder->CreateNUWAdd(LHS, RHS);
00386         Add->takeName(&CI);
00387         Constant *V[] = {
00388           UndefValue::get(LHS->getType()),
00389           ConstantInt::getFalse(II->getContext())
00390         };
00391         StructType *ST = cast<StructType>(II->getType());
00392         Constant *Struct = ConstantStruct::get(ST, V);
00393         return InsertValueInst::Create(Struct, Add, 0);
00394       }
00395     }
00396   }
00397   // FALL THROUGH uadd into sadd
00398   case Intrinsic::sadd_with_overflow:
00399     // Canonicalize constants into the RHS.
00400     if (isa<Constant>(II->getArgOperand(0)) &&
00401         !isa<Constant>(II->getArgOperand(1))) {
00402       Value *LHS = II->getArgOperand(0);
00403       II->setArgOperand(0, II->getArgOperand(1));
00404       II->setArgOperand(1, LHS);
00405       return II;
00406     }
00407 
00408     // X + undef -> undef
00409     if (isa<UndefValue>(II->getArgOperand(1)))
00410       return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
00411 
00412     if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
00413       // X + 0 -> {X, false}
00414       if (RHS->isZero()) {
00415         Constant *V[] = {
00416           UndefValue::get(II->getArgOperand(0)->getType()),
00417           ConstantInt::getFalse(II->getContext())
00418         };
00419         Constant *Struct =
00420           ConstantStruct::get(cast<StructType>(II->getType()), V);
00421         return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
00422       }
00423     }
00424 
00425     // We can strength reduce reduce this signed add into a regular add if we
00426     // can prove that it will never overflow.
00427     if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow) {
00428       Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
00429       if (WillNotOverflowSignedAdd(LHS, RHS, II)) {
00430         Value *Add = Builder->CreateNSWAdd(LHS, RHS);
00431         Add->takeName(&CI);
00432         Constant *V[] = {UndefValue::get(Add->getType()), Builder->getFalse()};
00433         StructType *ST = cast<StructType>(II->getType());
00434         Constant *Struct = ConstantStruct::get(ST, V);
00435         return InsertValueInst::Create(Struct, Add, 0);
00436       }
00437     }
00438 
00439     break;
00440   case Intrinsic::usub_with_overflow:
00441   case Intrinsic::ssub_with_overflow:
00442     // undef - X -> undef
00443     // X - undef -> undef
00444     if (isa<UndefValue>(II->getArgOperand(0)) ||
00445         isa<UndefValue>(II->getArgOperand(1)))
00446       return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
00447 
00448     if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
00449       // X - 0 -> {X, false}
00450       if (RHS->isZero()) {
00451         Constant *V[] = {
00452           UndefValue::get(II->getArgOperand(0)->getType()),
00453           ConstantInt::getFalse(II->getContext())
00454         };
00455         Constant *Struct =
00456           ConstantStruct::get(cast<StructType>(II->getType()), V);
00457         return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
00458       }
00459     }
00460     break;
00461   case Intrinsic::umul_with_overflow: {
00462     Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
00463     unsigned BitWidth = cast<IntegerType>(LHS->getType())->getBitWidth();
00464 
00465     APInt LHSKnownZero(BitWidth, 0);
00466     APInt LHSKnownOne(BitWidth, 0);
00467     computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, II);
00468     APInt RHSKnownZero(BitWidth, 0);
00469     APInt RHSKnownOne(BitWidth, 0);
00470     computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, II);
00471 
00472     // Get the largest possible values for each operand.
00473     APInt LHSMax = ~LHSKnownZero;
00474     APInt RHSMax = ~RHSKnownZero;
00475 
00476     // If multiplying the maximum values does not overflow then we can turn
00477     // this into a plain NUW mul.
00478     bool Overflow;
00479     LHSMax.umul_ov(RHSMax, Overflow);
00480     if (!Overflow) {
00481       Value *Mul = Builder->CreateNUWMul(LHS, RHS, "umul_with_overflow");
00482       Constant *V[] = {
00483         UndefValue::get(LHS->getType()),
00484         Builder->getFalse()
00485       };
00486       Constant *Struct = ConstantStruct::get(cast<StructType>(II->getType()),V);
00487       return InsertValueInst::Create(Struct, Mul, 0);
00488     }
00489   } // FALL THROUGH
00490   case Intrinsic::smul_with_overflow:
00491     // Canonicalize constants into the RHS.
00492     if (isa<Constant>(II->getArgOperand(0)) &&
00493         !isa<Constant>(II->getArgOperand(1))) {
00494       Value *LHS = II->getArgOperand(0);
00495       II->setArgOperand(0, II->getArgOperand(1));
00496       II->setArgOperand(1, LHS);
00497       return II;
00498     }
00499 
00500     // X * undef -> undef
00501     if (isa<UndefValue>(II->getArgOperand(1)))
00502       return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
00503 
00504     if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
00505       // X*0 -> {0, false}
00506       if (RHSI->isZero())
00507         return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
00508 
00509       // X * 1 -> {X, false}
00510       if (RHSI->equalsInt(1)) {
00511         Constant *V[] = {
00512           UndefValue::get(II->getArgOperand(0)->getType()),
00513           ConstantInt::getFalse(II->getContext())
00514         };
00515         Constant *Struct =
00516           ConstantStruct::get(cast<StructType>(II->getType()), V);
00517         return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
00518       }
00519     }
00520     break;
00521   case Intrinsic::ppc_altivec_lvx:
00522   case Intrinsic::ppc_altivec_lvxl:
00523     // Turn PPC lvx -> load if the pointer is known aligned.
00524     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16,
00525                                    DL, AT, II, DT) >= 16) {
00526       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
00527                                          PointerType::getUnqual(II->getType()));
00528       return new LoadInst(Ptr);
00529     }
00530     break;
00531   case Intrinsic::ppc_altivec_stvx:
00532   case Intrinsic::ppc_altivec_stvxl:
00533     // Turn stvx -> store if the pointer is known aligned.
00534     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16,
00535                                    DL, AT, II, DT) >= 16) {
00536       Type *OpPtrTy =
00537         PointerType::getUnqual(II->getArgOperand(0)->getType());
00538       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
00539       return new StoreInst(II->getArgOperand(0), Ptr);
00540     }
00541     break;
00542   case Intrinsic::x86_sse_storeu_ps:
00543   case Intrinsic::x86_sse2_storeu_pd:
00544   case Intrinsic::x86_sse2_storeu_dq:
00545     // Turn X86 storeu -> store if the pointer is known aligned.
00546     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16,
00547                                    DL, AT, II, DT) >= 16) {
00548       Type *OpPtrTy =
00549         PointerType::getUnqual(II->getArgOperand(1)->getType());
00550       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
00551       return new StoreInst(II->getArgOperand(1), Ptr);
00552     }
00553     break;
00554 
00555   case Intrinsic::x86_sse_cvtss2si:
00556   case Intrinsic::x86_sse_cvtss2si64:
00557   case Intrinsic::x86_sse_cvttss2si:
00558   case Intrinsic::x86_sse_cvttss2si64:
00559   case Intrinsic::x86_sse2_cvtsd2si:
00560   case Intrinsic::x86_sse2_cvtsd2si64:
00561   case Intrinsic::x86_sse2_cvttsd2si:
00562   case Intrinsic::x86_sse2_cvttsd2si64: {
00563     // These intrinsics only demand the 0th element of their input vectors. If
00564     // we can simplify the input based on that, do so now.
00565     unsigned VWidth =
00566       cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
00567     APInt DemandedElts(VWidth, 1);
00568     APInt UndefElts(VWidth, 0);
00569     if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
00570                                               DemandedElts, UndefElts)) {
00571       II->setArgOperand(0, V);
00572       return II;
00573     }
00574     break;
00575   }
00576 
00577   // Constant fold <A x Bi> << Ci.
00578   // FIXME: We don't handle _dq because it's a shift of an i128, but is
00579   // represented in the IR as <2 x i64>. A per element shift is wrong.
00580   case Intrinsic::x86_sse2_psll_d:
00581   case Intrinsic::x86_sse2_psll_q:
00582   case Intrinsic::x86_sse2_psll_w:
00583   case Intrinsic::x86_sse2_pslli_d:
00584   case Intrinsic::x86_sse2_pslli_q:
00585   case Intrinsic::x86_sse2_pslli_w:
00586   case Intrinsic::x86_avx2_psll_d:
00587   case Intrinsic::x86_avx2_psll_q:
00588   case Intrinsic::x86_avx2_psll_w:
00589   case Intrinsic::x86_avx2_pslli_d:
00590   case Intrinsic::x86_avx2_pslli_q:
00591   case Intrinsic::x86_avx2_pslli_w:
00592   case Intrinsic::x86_sse2_psrl_d:
00593   case Intrinsic::x86_sse2_psrl_q:
00594   case Intrinsic::x86_sse2_psrl_w:
00595   case Intrinsic::x86_sse2_psrli_d:
00596   case Intrinsic::x86_sse2_psrli_q:
00597   case Intrinsic::x86_sse2_psrli_w:
00598   case Intrinsic::x86_avx2_psrl_d:
00599   case Intrinsic::x86_avx2_psrl_q:
00600   case Intrinsic::x86_avx2_psrl_w:
00601   case Intrinsic::x86_avx2_psrli_d:
00602   case Intrinsic::x86_avx2_psrli_q:
00603   case Intrinsic::x86_avx2_psrli_w: {
00604     // Simplify if count is constant. To 0 if >= BitWidth,
00605     // otherwise to shl/lshr.
00606     auto CDV = dyn_cast<ConstantDataVector>(II->getArgOperand(1));
00607     auto CInt = dyn_cast<ConstantInt>(II->getArgOperand(1));
00608     if (!CDV && !CInt)
00609       break;
00610     ConstantInt *Count;
00611     if (CDV)
00612       Count = cast<ConstantInt>(CDV->getElementAsConstant(0));
00613     else
00614       Count = CInt;
00615 
00616     auto Vec = II->getArgOperand(0);
00617     auto VT = cast<VectorType>(Vec->getType());
00618     if (Count->getZExtValue() >
00619         VT->getElementType()->getPrimitiveSizeInBits() - 1)
00620       return ReplaceInstUsesWith(
00621           CI, ConstantAggregateZero::get(Vec->getType()));
00622 
00623     bool isPackedShiftLeft = true;
00624     switch (II->getIntrinsicID()) {
00625     default : break;
00626     case Intrinsic::x86_sse2_psrl_d:
00627     case Intrinsic::x86_sse2_psrl_q:
00628     case Intrinsic::x86_sse2_psrl_w:
00629     case Intrinsic::x86_sse2_psrli_d:
00630     case Intrinsic::x86_sse2_psrli_q:
00631     case Intrinsic::x86_sse2_psrli_w:
00632     case Intrinsic::x86_avx2_psrl_d:
00633     case Intrinsic::x86_avx2_psrl_q:
00634     case Intrinsic::x86_avx2_psrl_w:
00635     case Intrinsic::x86_avx2_psrli_d:
00636     case Intrinsic::x86_avx2_psrli_q:
00637     case Intrinsic::x86_avx2_psrli_w: isPackedShiftLeft = false; break;
00638     }
00639 
00640     unsigned VWidth = VT->getNumElements();
00641     // Get a constant vector of the same type as the first operand.
00642     auto VTCI = ConstantInt::get(VT->getElementType(), Count->getZExtValue());
00643     if (isPackedShiftLeft)
00644       return BinaryOperator::CreateShl(Vec,
00645           Builder->CreateVectorSplat(VWidth, VTCI));
00646 
00647     return BinaryOperator::CreateLShr(Vec,
00648         Builder->CreateVectorSplat(VWidth, VTCI));
00649   }
00650 
00651   case Intrinsic::x86_sse41_pmovsxbw:
00652   case Intrinsic::x86_sse41_pmovsxwd:
00653   case Intrinsic::x86_sse41_pmovsxdq:
00654   case Intrinsic::x86_sse41_pmovzxbw:
00655   case Intrinsic::x86_sse41_pmovzxwd:
00656   case Intrinsic::x86_sse41_pmovzxdq: {
00657     // pmov{s|z}x ignores the upper half of their input vectors.
00658     unsigned VWidth =
00659       cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
00660     unsigned LowHalfElts = VWidth / 2;
00661     APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
00662     APInt UndefElts(VWidth, 0);
00663     if (Value *TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0),
00664                                                  InputDemandedElts,
00665                                                  UndefElts)) {
00666       II->setArgOperand(0, TmpV);
00667       return II;
00668     }
00669     break;
00670   }
00671 
00672   case Intrinsic::x86_sse4a_insertqi: {
00673     // insertqi x, y, 64, 0 can just copy y's lower bits and leave the top
00674     // ones undef
00675     // TODO: eventually we should lower this intrinsic to IR
00676     if (auto CIWidth = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
00677       if (auto CIStart = dyn_cast<ConstantInt>(II->getArgOperand(3))) {
00678         if (CIWidth->equalsInt(64) && CIStart->isZero()) {
00679           Value *Vec = II->getArgOperand(1);
00680           Value *Undef = UndefValue::get(Vec->getType());
00681           const uint32_t Mask[] = { 0, 2 };
00682           return ReplaceInstUsesWith(
00683               CI,
00684               Builder->CreateShuffleVector(
00685                   Vec, Undef, ConstantDataVector::get(
00686                                   II->getContext(), makeArrayRef(Mask))));
00687 
00688         } else if (auto Source =
00689                        dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
00690           if (Source->hasOneUse() &&
00691               Source->getArgOperand(1) == II->getArgOperand(1)) {
00692             // If the source of the insert has only one use and it's another
00693             // insert (and they're both inserting from the same vector), try to
00694             // bundle both together.
00695             auto CISourceWidth =
00696                 dyn_cast<ConstantInt>(Source->getArgOperand(2));
00697             auto CISourceStart =
00698                 dyn_cast<ConstantInt>(Source->getArgOperand(3));
00699             if (CISourceStart && CISourceWidth) {
00700               unsigned Start = CIStart->getZExtValue();
00701               unsigned Width = CIWidth->getZExtValue();
00702               unsigned End = Start + Width;
00703               unsigned SourceStart = CISourceStart->getZExtValue();
00704               unsigned SourceWidth = CISourceWidth->getZExtValue();
00705               unsigned SourceEnd = SourceStart + SourceWidth;
00706               unsigned NewStart, NewWidth;
00707               bool ShouldReplace = false;
00708               if (Start <= SourceStart && SourceStart <= End) {
00709                 NewStart = Start;
00710                 NewWidth = std::max(End, SourceEnd) - NewStart;
00711                 ShouldReplace = true;
00712               } else if (SourceStart <= Start && Start <= SourceEnd) {
00713                 NewStart = SourceStart;
00714                 NewWidth = std::max(SourceEnd, End) - NewStart;
00715                 ShouldReplace = true;
00716               }
00717 
00718               if (ShouldReplace) {
00719                 Constant *ConstantWidth = ConstantInt::get(
00720                     II->getArgOperand(2)->getType(), NewWidth, false);
00721                 Constant *ConstantStart = ConstantInt::get(
00722                     II->getArgOperand(3)->getType(), NewStart, false);
00723                 Value *Args[4] = { Source->getArgOperand(0),
00724                                    II->getArgOperand(1), ConstantWidth,
00725                                    ConstantStart };
00726                 Module *M = CI.getParent()->getParent()->getParent();
00727                 Value *F =
00728                     Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
00729                 return ReplaceInstUsesWith(CI, Builder->CreateCall(F, Args));
00730               }
00731             }
00732           }
00733         }
00734       }
00735     }
00736     break;
00737   }
00738 
00739   case Intrinsic::x86_sse41_pblendvb:
00740   case Intrinsic::x86_sse41_blendvps:
00741   case Intrinsic::x86_sse41_blendvpd:
00742   case Intrinsic::x86_avx_blendv_ps_256:
00743   case Intrinsic::x86_avx_blendv_pd_256:
00744   case Intrinsic::x86_avx2_pblendvb: {
00745     // Convert blendv* to vector selects if the mask is constant.
00746     // This optimization is convoluted because the intrinsic is defined as
00747     // getting a vector of floats or doubles for the ps and pd versions.
00748     // FIXME: That should be changed.
00749     Value *Mask = II->getArgOperand(2);
00750     if (auto C = dyn_cast<ConstantDataVector>(Mask)) {
00751       auto Tyi1 = Builder->getInt1Ty();
00752       auto SelectorType = cast<VectorType>(Mask->getType());
00753       auto EltTy = SelectorType->getElementType();
00754       unsigned Size = SelectorType->getNumElements();
00755       unsigned BitWidth =
00756           EltTy->isFloatTy()
00757               ? 32
00758               : (EltTy->isDoubleTy() ? 64 : EltTy->getIntegerBitWidth());
00759       assert((BitWidth == 64 || BitWidth == 32 || BitWidth == 8) &&
00760              "Wrong arguments for variable blend intrinsic");
00761       SmallVector<Constant *, 32> Selectors;
00762       for (unsigned I = 0; I < Size; ++I) {
00763         // The intrinsics only read the top bit
00764         uint64_t Selector;
00765         if (BitWidth == 8)
00766           Selector = C->getElementAsInteger(I);
00767         else
00768           Selector = C->getElementAsAPFloat(I).bitcastToAPInt().getZExtValue();
00769         Selectors.push_back(ConstantInt::get(Tyi1, Selector >> (BitWidth - 1)));
00770       }
00771       auto NewSelector = ConstantVector::get(Selectors);
00772       return SelectInst::Create(NewSelector, II->getArgOperand(1),
00773                                 II->getArgOperand(0), "blendv");
00774     } else {
00775       break;
00776     }
00777   }
00778 
00779   case Intrinsic::x86_avx_vpermilvar_ps:
00780   case Intrinsic::x86_avx_vpermilvar_ps_256:
00781   case Intrinsic::x86_avx_vpermilvar_pd:
00782   case Intrinsic::x86_avx_vpermilvar_pd_256: {
00783     // Convert vpermil* to shufflevector if the mask is constant.
00784     Value *V = II->getArgOperand(1);
00785     unsigned Size = cast<VectorType>(V->getType())->getNumElements();
00786     assert(Size == 8 || Size == 4 || Size == 2);
00787     uint32_t Indexes[8];
00788     if (auto C = dyn_cast<ConstantDataVector>(V)) {
00789       // The intrinsics only read one or two bits, clear the rest.
00790       for (unsigned I = 0; I < Size; ++I) {
00791         uint32_t Index = C->getElementAsInteger(I) & 0x3;
00792         if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd ||
00793             II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256)
00794           Index >>= 1;
00795         Indexes[I] = Index;
00796       }
00797     } else if (isa<ConstantAggregateZero>(V)) {
00798       for (unsigned I = 0; I < Size; ++I)
00799         Indexes[I] = 0;
00800     } else {
00801       break;
00802     }
00803     // The _256 variants are a bit trickier since the mask bits always index
00804     // into the corresponding 128 half. In order to convert to a generic
00805     // shuffle, we have to make that explicit.
00806     if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_ps_256 ||
00807         II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) {
00808       for (unsigned I = Size / 2; I < Size; ++I)
00809         Indexes[I] += Size / 2;
00810     }
00811     auto NewC =
00812         ConstantDataVector::get(V->getContext(), makeArrayRef(Indexes, Size));
00813     auto V1 = II->getArgOperand(0);
00814     auto V2 = UndefValue::get(V1->getType());
00815     auto Shuffle = Builder->CreateShuffleVector(V1, V2, NewC);
00816     return ReplaceInstUsesWith(CI, Shuffle);
00817   }
00818 
00819   case Intrinsic::ppc_altivec_vperm:
00820     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
00821     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
00822     // a vectorshuffle for little endian, we must undo the transformation
00823     // performed on vec_perm in altivec.h.  That is, we must complement
00824     // the permutation mask with respect to 31 and reverse the order of
00825     // V1 and V2.
00826     if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
00827       assert(Mask->getType()->getVectorNumElements() == 16 &&
00828              "Bad type for intrinsic!");
00829 
00830       // Check that all of the elements are integer constants or undefs.
00831       bool AllEltsOk = true;
00832       for (unsigned i = 0; i != 16; ++i) {
00833         Constant *Elt = Mask->getAggregateElement(i);
00834         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
00835           AllEltsOk = false;
00836           break;
00837         }
00838       }
00839 
00840       if (AllEltsOk) {
00841         // Cast the input vectors to byte vectors.
00842         Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
00843                                             Mask->getType());
00844         Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
00845                                             Mask->getType());
00846         Value *Result = UndefValue::get(Op0->getType());
00847 
00848         // Only extract each element once.
00849         Value *ExtractedElts[32];
00850         memset(ExtractedElts, 0, sizeof(ExtractedElts));
00851 
00852         for (unsigned i = 0; i != 16; ++i) {
00853           if (isa<UndefValue>(Mask->getAggregateElement(i)))
00854             continue;
00855           unsigned Idx =
00856             cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
00857           Idx &= 31;  // Match the hardware behavior.
00858           if (DL && DL->isLittleEndian())
00859             Idx = 31 - Idx;
00860 
00861           if (!ExtractedElts[Idx]) {
00862             Value *Op0ToUse = (DL && DL->isLittleEndian()) ? Op1 : Op0;
00863             Value *Op1ToUse = (DL && DL->isLittleEndian()) ? Op0 : Op1;
00864             ExtractedElts[Idx] =
00865               Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
00866                                             Builder->getInt32(Idx&15));
00867           }
00868 
00869           // Insert this value into the result vector.
00870           Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
00871                                                 Builder->getInt32(i));
00872         }
00873         return CastInst::Create(Instruction::BitCast, Result, CI.getType());
00874       }
00875     }
00876     break;
00877 
00878   case Intrinsic::arm_neon_vld1:
00879   case Intrinsic::arm_neon_vld2:
00880   case Intrinsic::arm_neon_vld3:
00881   case Intrinsic::arm_neon_vld4:
00882   case Intrinsic::arm_neon_vld2lane:
00883   case Intrinsic::arm_neon_vld3lane:
00884   case Intrinsic::arm_neon_vld4lane:
00885   case Intrinsic::arm_neon_vst1:
00886   case Intrinsic::arm_neon_vst2:
00887   case Intrinsic::arm_neon_vst3:
00888   case Intrinsic::arm_neon_vst4:
00889   case Intrinsic::arm_neon_vst2lane:
00890   case Intrinsic::arm_neon_vst3lane:
00891   case Intrinsic::arm_neon_vst4lane: {
00892     unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, AT, II, DT);
00893     unsigned AlignArg = II->getNumArgOperands() - 1;
00894     ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
00895     if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
00896       II->setArgOperand(AlignArg,
00897                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
00898                                          MemAlign, false));
00899       return II;
00900     }
00901     break;
00902   }
00903 
00904   case Intrinsic::arm_neon_vmulls:
00905   case Intrinsic::arm_neon_vmullu:
00906   case Intrinsic::aarch64_neon_smull:
00907   case Intrinsic::aarch64_neon_umull: {
00908     Value *Arg0 = II->getArgOperand(0);
00909     Value *Arg1 = II->getArgOperand(1);
00910 
00911     // Handle mul by zero first:
00912     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
00913       return ReplaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
00914     }
00915 
00916     // Check for constant LHS & RHS - in this case we just simplify.
00917     bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
00918                  II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
00919     VectorType *NewVT = cast<VectorType>(II->getType());
00920     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
00921       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
00922         CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
00923         CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
00924 
00925         return ReplaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
00926       }
00927 
00928       // Couldn't simplify - canonicalize constant to the RHS.
00929       std::swap(Arg0, Arg1);
00930     }
00931 
00932     // Handle mul by one:
00933     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
00934       if (ConstantInt *Splat =
00935               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
00936         if (Splat->isOne())
00937           return CastInst::CreateIntegerCast(Arg0, II->getType(),
00938                                              /*isSigned=*/!Zext);
00939 
00940     break;
00941   }
00942 
00943   case Intrinsic::AMDGPU_rcp: {
00944     if (const ConstantFP *C = dyn_cast<ConstantFP>(II->getArgOperand(0))) {
00945       const APFloat &ArgVal = C->getValueAPF();
00946       APFloat Val(ArgVal.getSemantics(), 1.0);
00947       APFloat::opStatus Status = Val.divide(ArgVal,
00948                                             APFloat::rmNearestTiesToEven);
00949       // Only do this if it was exact and therefore not dependent on the
00950       // rounding mode.
00951       if (Status == APFloat::opOK)
00952         return ReplaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
00953     }
00954 
00955     break;
00956   }
00957   case Intrinsic::stackrestore: {
00958     // If the save is right next to the restore, remove the restore.  This can
00959     // happen when variable allocas are DCE'd.
00960     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
00961       if (SS->getIntrinsicID() == Intrinsic::stacksave) {
00962         BasicBlock::iterator BI = SS;
00963         if (&*++BI == II)
00964           return EraseInstFromFunction(CI);
00965       }
00966     }
00967 
00968     // Scan down this block to see if there is another stack restore in the
00969     // same block without an intervening call/alloca.
00970     BasicBlock::iterator BI = II;
00971     TerminatorInst *TI = II->getParent()->getTerminator();
00972     bool CannotRemove = false;
00973     for (++BI; &*BI != TI; ++BI) {
00974       if (isa<AllocaInst>(BI)) {
00975         CannotRemove = true;
00976         break;
00977       }
00978       if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
00979         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
00980           // If there is a stackrestore below this one, remove this one.
00981           if (II->getIntrinsicID() == Intrinsic::stackrestore)
00982             return EraseInstFromFunction(CI);
00983           // Otherwise, ignore the intrinsic.
00984         } else {
00985           // If we found a non-intrinsic call, we can't remove the stack
00986           // restore.
00987           CannotRemove = true;
00988           break;
00989         }
00990       }
00991     }
00992 
00993     // If the stack restore is in a return, resume, or unwind block and if there
00994     // are no allocas or calls between the restore and the return, nuke the
00995     // restore.
00996     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
00997       return EraseInstFromFunction(CI);
00998     break;
00999   }
01000   case Intrinsic::assume: {
01001     // Canonicalize assume(a && b) -> assume(a); assume(b);
01002     // Note: New assumption intrinsics created here are registered by
01003     // the InstCombineIRInserter object.
01004     Value *IIOperand = II->getArgOperand(0), *A, *B,
01005           *AssumeIntrinsic = II->getCalledValue();
01006     if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
01007       Builder->CreateCall(AssumeIntrinsic, A, II->getName());
01008       Builder->CreateCall(AssumeIntrinsic, B, II->getName());
01009       return EraseInstFromFunction(*II);
01010     }
01011     // assume(!(a || b)) -> assume(!a); assume(!b);
01012     if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
01013       Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A),
01014                           II->getName());
01015       Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B),
01016                           II->getName());
01017       return EraseInstFromFunction(*II);
01018     }
01019     break;
01020   }
01021   }
01022 
01023   return visitCallSite(II);
01024 }
01025 
01026 // InvokeInst simplification
01027 //
01028 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
01029   return visitCallSite(&II);
01030 }
01031 
01032 /// isSafeToEliminateVarargsCast - If this cast does not affect the value
01033 /// passed through the varargs area, we can eliminate the use of the cast.
01034 static bool isSafeToEliminateVarargsCast(const CallSite CS,
01035                                          const CastInst * const CI,
01036                                          const DataLayout * const DL,
01037                                          const int ix) {
01038   if (!CI->isLosslessCast())
01039     return false;
01040 
01041   // The size of ByVal or InAlloca arguments is derived from the type, so we
01042   // can't change to a type with a different size.  If the size were
01043   // passed explicitly we could avoid this check.
01044   if (!CS.isByValOrInAllocaArgument(ix))
01045     return true;
01046 
01047   Type* SrcTy =
01048             cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
01049   Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
01050   if (!SrcTy->isSized() || !DstTy->isSized())
01051     return false;
01052   if (!DL || DL->getTypeAllocSize(SrcTy) != DL->getTypeAllocSize(DstTy))
01053     return false;
01054   return true;
01055 }
01056 
01057 // Try to fold some different type of calls here.
01058 // Currently we're only working with the checking functions, memcpy_chk,
01059 // mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
01060 // strcat_chk and strncat_chk.
01061 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const DataLayout *DL) {
01062   if (!CI->getCalledFunction()) return nullptr;
01063 
01064   if (Value *With = Simplifier->optimizeCall(CI)) {
01065     ++NumSimplified;
01066     return CI->use_empty() ? CI : ReplaceInstUsesWith(*CI, With);
01067   }
01068 
01069   return nullptr;
01070 }
01071 
01072 static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) {
01073   // Strip off at most one level of pointer casts, looking for an alloca.  This
01074   // is good enough in practice and simpler than handling any number of casts.
01075   Value *Underlying = TrampMem->stripPointerCasts();
01076   if (Underlying != TrampMem &&
01077       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
01078     return nullptr;
01079   if (!isa<AllocaInst>(Underlying))
01080     return nullptr;
01081 
01082   IntrinsicInst *InitTrampoline = nullptr;
01083   for (User *U : TrampMem->users()) {
01084     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
01085     if (!II)
01086       return nullptr;
01087     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
01088       if (InitTrampoline)
01089         // More than one init_trampoline writes to this value.  Give up.
01090         return nullptr;
01091       InitTrampoline = II;
01092       continue;
01093     }
01094     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
01095       // Allow any number of calls to adjust.trampoline.
01096       continue;
01097     return nullptr;
01098   }
01099 
01100   // No call to init.trampoline found.
01101   if (!InitTrampoline)
01102     return nullptr;
01103 
01104   // Check that the alloca is being used in the expected way.
01105   if (InitTrampoline->getOperand(0) != TrampMem)
01106     return nullptr;
01107 
01108   return InitTrampoline;
01109 }
01110 
01111 static IntrinsicInst *FindInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
01112                                                Value *TrampMem) {
01113   // Visit all the previous instructions in the basic block, and try to find a
01114   // init.trampoline which has a direct path to the adjust.trampoline.
01115   for (BasicBlock::iterator I = AdjustTramp,
01116        E = AdjustTramp->getParent()->begin(); I != E; ) {
01117     Instruction *Inst = --I;
01118     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
01119       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
01120           II->getOperand(0) == TrampMem)
01121         return II;
01122     if (Inst->mayWriteToMemory())
01123       return nullptr;
01124   }
01125   return nullptr;
01126 }
01127 
01128 // Given a call to llvm.adjust.trampoline, find and return the corresponding
01129 // call to llvm.init.trampoline if the call to the trampoline can be optimized
01130 // to a direct call to a function.  Otherwise return NULL.
01131 //
01132 static IntrinsicInst *FindInitTrampoline(Value *Callee) {
01133   Callee = Callee->stripPointerCasts();
01134   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
01135   if (!AdjustTramp ||
01136       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
01137     return nullptr;
01138 
01139   Value *TrampMem = AdjustTramp->getOperand(0);
01140 
01141   if (IntrinsicInst *IT = FindInitTrampolineFromAlloca(TrampMem))
01142     return IT;
01143   if (IntrinsicInst *IT = FindInitTrampolineFromBB(AdjustTramp, TrampMem))
01144     return IT;
01145   return nullptr;
01146 }
01147 
01148 // visitCallSite - Improvements for call and invoke instructions.
01149 //
01150 Instruction *InstCombiner::visitCallSite(CallSite CS) {
01151   if (isAllocLikeFn(CS.getInstruction(), TLI))
01152     return visitAllocSite(*CS.getInstruction());
01153 
01154   bool Changed = false;
01155 
01156   // If the callee is a pointer to a function, attempt to move any casts to the
01157   // arguments of the call/invoke.
01158   Value *Callee = CS.getCalledValue();
01159   if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
01160     return nullptr;
01161 
01162   if (Function *CalleeF = dyn_cast<Function>(Callee))
01163     // If the call and callee calling conventions don't match, this call must
01164     // be unreachable, as the call is undefined.
01165     if (CalleeF->getCallingConv() != CS.getCallingConv() &&
01166         // Only do this for calls to a function with a body.  A prototype may
01167         // not actually end up matching the implementation's calling conv for a
01168         // variety of reasons (e.g. it may be written in assembly).
01169         !CalleeF->isDeclaration()) {
01170       Instruction *OldCall = CS.getInstruction();
01171       new StoreInst(ConstantInt::getTrue(Callee->getContext()),
01172                 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
01173                                   OldCall);
01174       // If OldCall does not return void then replaceAllUsesWith undef.
01175       // This allows ValueHandlers and custom metadata to adjust itself.
01176       if (!OldCall->getType()->isVoidTy())
01177         ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
01178       if (isa<CallInst>(OldCall))
01179         return EraseInstFromFunction(*OldCall);
01180 
01181       // We cannot remove an invoke, because it would change the CFG, just
01182       // change the callee to a null pointer.
01183       cast<InvokeInst>(OldCall)->setCalledFunction(
01184                                     Constant::getNullValue(CalleeF->getType()));
01185       return nullptr;
01186     }
01187 
01188   if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
01189     // If CS does not return void then replaceAllUsesWith undef.
01190     // This allows ValueHandlers and custom metadata to adjust itself.
01191     if (!CS.getInstruction()->getType()->isVoidTy())
01192       ReplaceInstUsesWith(*CS.getInstruction(),
01193                           UndefValue::get(CS.getInstruction()->getType()));
01194 
01195     if (isa<InvokeInst>(CS.getInstruction())) {
01196       // Can't remove an invoke because we cannot change the CFG.
01197       return nullptr;
01198     }
01199 
01200     // This instruction is not reachable, just remove it.  We insert a store to
01201     // undef so that we know that this code is not reachable, despite the fact
01202     // that we can't modify the CFG here.
01203     new StoreInst(ConstantInt::getTrue(Callee->getContext()),
01204                   UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
01205                   CS.getInstruction());
01206 
01207     return EraseInstFromFunction(*CS.getInstruction());
01208   }
01209 
01210   if (IntrinsicInst *II = FindInitTrampoline(Callee))
01211     return transformCallThroughTrampoline(CS, II);
01212 
01213   PointerType *PTy = cast<PointerType>(Callee->getType());
01214   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
01215   if (FTy->isVarArg()) {
01216     int ix = FTy->getNumParams();
01217     // See if we can optimize any arguments passed through the varargs area of
01218     // the call.
01219     for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
01220            E = CS.arg_end(); I != E; ++I, ++ix) {
01221       CastInst *CI = dyn_cast<CastInst>(*I);
01222       if (CI && isSafeToEliminateVarargsCast(CS, CI, DL, ix)) {
01223         *I = CI->getOperand(0);
01224         Changed = true;
01225       }
01226     }
01227   }
01228 
01229   if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
01230     // Inline asm calls cannot throw - mark them 'nounwind'.
01231     CS.setDoesNotThrow();
01232     Changed = true;
01233   }
01234 
01235   // Try to optimize the call if possible, we require DataLayout for most of
01236   // this.  None of these calls are seen as possibly dead so go ahead and
01237   // delete the instruction now.
01238   if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
01239     Instruction *I = tryOptimizeCall(CI, DL);
01240     // If we changed something return the result, etc. Otherwise let
01241     // the fallthrough check.
01242     if (I) return EraseInstFromFunction(*I);
01243   }
01244 
01245   return Changed ? CS.getInstruction() : nullptr;
01246 }
01247 
01248 // transformConstExprCastCall - If the callee is a constexpr cast of a function,
01249 // attempt to move the cast to the arguments of the call/invoke.
01250 //
01251 bool InstCombiner::transformConstExprCastCall(CallSite CS) {
01252   Function *Callee =
01253     dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
01254   if (!Callee)
01255     return false;
01256   Instruction *Caller = CS.getInstruction();
01257   const AttributeSet &CallerPAL = CS.getAttributes();
01258 
01259   // Okay, this is a cast from a function to a different type.  Unless doing so
01260   // would cause a type conversion of one of our arguments, change this call to
01261   // be a direct call with arguments casted to the appropriate types.
01262   //
01263   FunctionType *FT = Callee->getFunctionType();
01264   Type *OldRetTy = Caller->getType();
01265   Type *NewRetTy = FT->getReturnType();
01266 
01267   // Check to see if we are changing the return type...
01268   if (OldRetTy != NewRetTy) {
01269 
01270     if (NewRetTy->isStructTy())
01271       return false; // TODO: Handle multiple return values.
01272 
01273     if (!CastInst::isBitCastable(NewRetTy, OldRetTy)) {
01274       if (Callee->isDeclaration())
01275         return false;   // Cannot transform this return value.
01276 
01277       if (!Caller->use_empty() &&
01278           // void -> non-void is handled specially
01279           !NewRetTy->isVoidTy())
01280       return false;   // Cannot transform this return value.
01281     }
01282 
01283     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
01284       AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
01285       if (RAttrs.
01286           hasAttributes(AttributeFuncs::
01287                         typeIncompatible(NewRetTy, AttributeSet::ReturnIndex),
01288                         AttributeSet::ReturnIndex))
01289         return false;   // Attribute not compatible with transformed value.
01290     }
01291 
01292     // If the callsite is an invoke instruction, and the return value is used by
01293     // a PHI node in a successor, we cannot change the return type of the call
01294     // because there is no place to put the cast instruction (without breaking
01295     // the critical edge).  Bail out in this case.
01296     if (!Caller->use_empty())
01297       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
01298         for (User *U : II->users())
01299           if (PHINode *PN = dyn_cast<PHINode>(U))
01300             if (PN->getParent() == II->getNormalDest() ||
01301                 PN->getParent() == II->getUnwindDest())
01302               return false;
01303   }
01304 
01305   unsigned NumActualArgs = CS.arg_size();
01306   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
01307 
01308   CallSite::arg_iterator AI = CS.arg_begin();
01309   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
01310     Type *ParamTy = FT->getParamType(i);
01311     Type *ActTy = (*AI)->getType();
01312 
01313     if (!CastInst::isBitCastable(ActTy, ParamTy))
01314       return false;   // Cannot transform this parameter value.
01315 
01316     if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1).
01317           hasAttributes(AttributeFuncs::
01318                         typeIncompatible(ParamTy, i + 1), i + 1))
01319       return false;   // Attribute not compatible with transformed value.
01320 
01321     if (CS.isInAllocaArgument(i))
01322       return false;   // Cannot transform to and from inalloca.
01323 
01324     // If the parameter is passed as a byval argument, then we have to have a
01325     // sized type and the sized type has to have the same size as the old type.
01326     if (ParamTy != ActTy &&
01327         CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1,
01328                                                          Attribute::ByVal)) {
01329       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
01330       if (!ParamPTy || !ParamPTy->getElementType()->isSized() || !DL)
01331         return false;
01332 
01333       Type *CurElTy = ActTy->getPointerElementType();
01334       if (DL->getTypeAllocSize(CurElTy) !=
01335           DL->getTypeAllocSize(ParamPTy->getElementType()))
01336         return false;
01337     }
01338   }
01339 
01340   if (Callee->isDeclaration()) {
01341     // Do not delete arguments unless we have a function body.
01342     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
01343       return false;
01344 
01345     // If the callee is just a declaration, don't change the varargsness of the
01346     // call.  We don't want to introduce a varargs call where one doesn't
01347     // already exist.
01348     PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
01349     if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
01350       return false;
01351 
01352     // If both the callee and the cast type are varargs, we still have to make
01353     // sure the number of fixed parameters are the same or we have the same
01354     // ABI issues as if we introduce a varargs call.
01355     if (FT->isVarArg() &&
01356         cast<FunctionType>(APTy->getElementType())->isVarArg() &&
01357         FT->getNumParams() !=
01358         cast<FunctionType>(APTy->getElementType())->getNumParams())
01359       return false;
01360   }
01361 
01362   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
01363       !CallerPAL.isEmpty())
01364     // In this case we have more arguments than the new function type, but we
01365     // won't be dropping them.  Check that these extra arguments have attributes
01366     // that are compatible with being a vararg call argument.
01367     for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
01368       unsigned Index = CallerPAL.getSlotIndex(i - 1);
01369       if (Index <= FT->getNumParams())
01370         break;
01371 
01372       // Check if it has an attribute that's incompatible with varargs.
01373       AttributeSet PAttrs = CallerPAL.getSlotAttributes(i - 1);
01374       if (PAttrs.hasAttribute(Index, Attribute::StructRet))
01375         return false;
01376     }
01377 
01378 
01379   // Okay, we decided that this is a safe thing to do: go ahead and start
01380   // inserting cast instructions as necessary.
01381   std::vector<Value*> Args;
01382   Args.reserve(NumActualArgs);
01383   SmallVector<AttributeSet, 8> attrVec;
01384   attrVec.reserve(NumCommonArgs);
01385 
01386   // Get any return attributes.
01387   AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
01388 
01389   // If the return value is not being used, the type may not be compatible
01390   // with the existing attributes.  Wipe out any problematic attributes.
01391   RAttrs.
01392     removeAttributes(AttributeFuncs::
01393                      typeIncompatible(NewRetTy, AttributeSet::ReturnIndex),
01394                      AttributeSet::ReturnIndex);
01395 
01396   // Add the new return attributes.
01397   if (RAttrs.hasAttributes())
01398     attrVec.push_back(AttributeSet::get(Caller->getContext(),
01399                                         AttributeSet::ReturnIndex, RAttrs));
01400 
01401   AI = CS.arg_begin();
01402   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
01403     Type *ParamTy = FT->getParamType(i);
01404 
01405     if ((*AI)->getType() == ParamTy) {
01406       Args.push_back(*AI);
01407     } else {
01408       Args.push_back(Builder->CreateBitCast(*AI, ParamTy));
01409     }
01410 
01411     // Add any parameter attributes.
01412     AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
01413     if (PAttrs.hasAttributes())
01414       attrVec.push_back(AttributeSet::get(Caller->getContext(), i + 1,
01415                                           PAttrs));
01416   }
01417 
01418   // If the function takes more arguments than the call was taking, add them
01419   // now.
01420   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
01421     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
01422 
01423   // If we are removing arguments to the function, emit an obnoxious warning.
01424   if (FT->getNumParams() < NumActualArgs) {
01425     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
01426     if (FT->isVarArg()) {
01427       // Add all of the arguments in their promoted form to the arg list.
01428       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
01429         Type *PTy = getPromotedType((*AI)->getType());
01430         if (PTy != (*AI)->getType()) {
01431           // Must promote to pass through va_arg area!
01432           Instruction::CastOps opcode =
01433             CastInst::getCastOpcode(*AI, false, PTy, false);
01434           Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
01435         } else {
01436           Args.push_back(*AI);
01437         }
01438 
01439         // Add any parameter attributes.
01440         AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
01441         if (PAttrs.hasAttributes())
01442           attrVec.push_back(AttributeSet::get(FT->getContext(), i + 1,
01443                                               PAttrs));
01444       }
01445     }
01446   }
01447 
01448   AttributeSet FnAttrs = CallerPAL.getFnAttributes();
01449   if (CallerPAL.hasAttributes(AttributeSet::FunctionIndex))
01450     attrVec.push_back(AttributeSet::get(Callee->getContext(), FnAttrs));
01451 
01452   if (NewRetTy->isVoidTy())
01453     Caller->setName("");   // Void type should not have a name.
01454 
01455   const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(),
01456                                                        attrVec);
01457 
01458   Instruction *NC;
01459   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
01460     NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
01461                                II->getUnwindDest(), Args);
01462     NC->takeName(II);
01463     cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
01464     cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
01465   } else {
01466     CallInst *CI = cast<CallInst>(Caller);
01467     NC = Builder->CreateCall(Callee, Args);
01468     NC->takeName(CI);
01469     if (CI->isTailCall())
01470       cast<CallInst>(NC)->setTailCall();
01471     cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
01472     cast<CallInst>(NC)->setAttributes(NewCallerPAL);
01473   }
01474 
01475   // Insert a cast of the return type as necessary.
01476   Value *NV = NC;
01477   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
01478     if (!NV->getType()->isVoidTy()) {
01479       NV = NC = CastInst::Create(CastInst::BitCast, NC, OldRetTy);
01480       NC->setDebugLoc(Caller->getDebugLoc());
01481 
01482       // If this is an invoke instruction, we should insert it after the first
01483       // non-phi, instruction in the normal successor block.
01484       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
01485         BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
01486         InsertNewInstBefore(NC, *I);
01487       } else {
01488         // Otherwise, it's a call, just insert cast right after the call.
01489         InsertNewInstBefore(NC, *Caller);
01490       }
01491       Worklist.AddUsersToWorkList(*Caller);
01492     } else {
01493       NV = UndefValue::get(Caller->getType());
01494     }
01495   }
01496 
01497   if (!Caller->use_empty())
01498     ReplaceInstUsesWith(*Caller, NV);
01499   else if (Caller->hasValueHandle())
01500     ValueHandleBase::ValueIsRAUWd(Caller, NV);
01501 
01502   EraseInstFromFunction(*Caller);
01503   return true;
01504 }
01505 
01506 // transformCallThroughTrampoline - Turn a call to a function created by
01507 // init_trampoline / adjust_trampoline intrinsic pair into a direct call to the
01508 // underlying function.
01509 //
01510 Instruction *
01511 InstCombiner::transformCallThroughTrampoline(CallSite CS,
01512                                              IntrinsicInst *Tramp) {
01513   Value *Callee = CS.getCalledValue();
01514   PointerType *PTy = cast<PointerType>(Callee->getType());
01515   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
01516   const AttributeSet &Attrs = CS.getAttributes();
01517 
01518   // If the call already has the 'nest' attribute somewhere then give up -
01519   // otherwise 'nest' would occur twice after splicing in the chain.
01520   if (Attrs.hasAttrSomewhere(Attribute::Nest))
01521     return nullptr;
01522 
01523   assert(Tramp &&
01524          "transformCallThroughTrampoline called with incorrect CallSite.");
01525 
01526   Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
01527   PointerType *NestFPTy = cast<PointerType>(NestF->getType());
01528   FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
01529 
01530   const AttributeSet &NestAttrs = NestF->getAttributes();
01531   if (!NestAttrs.isEmpty()) {
01532     unsigned NestIdx = 1;
01533     Type *NestTy = nullptr;
01534     AttributeSet NestAttr;
01535 
01536     // Look for a parameter marked with the 'nest' attribute.
01537     for (FunctionType::param_iterator I = NestFTy->param_begin(),
01538          E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
01539       if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) {
01540         // Record the parameter type and any other attributes.
01541         NestTy = *I;
01542         NestAttr = NestAttrs.getParamAttributes(NestIdx);
01543         break;
01544       }
01545 
01546     if (NestTy) {
01547       Instruction *Caller = CS.getInstruction();
01548       std::vector<Value*> NewArgs;
01549       NewArgs.reserve(CS.arg_size() + 1);
01550 
01551       SmallVector<AttributeSet, 8> NewAttrs;
01552       NewAttrs.reserve(Attrs.getNumSlots() + 1);
01553 
01554       // Insert the nest argument into the call argument list, which may
01555       // mean appending it.  Likewise for attributes.
01556 
01557       // Add any result attributes.
01558       if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
01559         NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
01560                                              Attrs.getRetAttributes()));
01561 
01562       {
01563         unsigned Idx = 1;
01564         CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
01565         do {
01566           if (Idx == NestIdx) {
01567             // Add the chain argument and attributes.
01568             Value *NestVal = Tramp->getArgOperand(2);
01569             if (NestVal->getType() != NestTy)
01570               NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
01571             NewArgs.push_back(NestVal);
01572             NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
01573                                                  NestAttr));
01574           }
01575 
01576           if (I == E)
01577             break;
01578 
01579           // Add the original argument and attributes.
01580           NewArgs.push_back(*I);
01581           AttributeSet Attr = Attrs.getParamAttributes(Idx);
01582           if (Attr.hasAttributes(Idx)) {
01583             AttrBuilder B(Attr, Idx);
01584             NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
01585                                                  Idx + (Idx >= NestIdx), B));
01586           }
01587 
01588           ++Idx, ++I;
01589         } while (1);
01590       }
01591 
01592       // Add any function attributes.
01593       if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
01594         NewAttrs.push_back(AttributeSet::get(FTy->getContext(),
01595                                              Attrs.getFnAttributes()));
01596 
01597       // The trampoline may have been bitcast to a bogus type (FTy).
01598       // Handle this by synthesizing a new function type, equal to FTy
01599       // with the chain parameter inserted.
01600 
01601       std::vector<Type*> NewTypes;
01602       NewTypes.reserve(FTy->getNumParams()+1);
01603 
01604       // Insert the chain's type into the list of parameter types, which may
01605       // mean appending it.
01606       {
01607         unsigned Idx = 1;
01608         FunctionType::param_iterator I = FTy->param_begin(),
01609           E = FTy->param_end();
01610 
01611         do {
01612           if (Idx == NestIdx)
01613             // Add the chain's type.
01614             NewTypes.push_back(NestTy);
01615 
01616           if (I == E)
01617             break;
01618 
01619           // Add the original type.
01620           NewTypes.push_back(*I);
01621 
01622           ++Idx, ++I;
01623         } while (1);
01624       }
01625 
01626       // Replace the trampoline call with a direct call.  Let the generic
01627       // code sort out any function type mismatches.
01628       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
01629                                                 FTy->isVarArg());
01630       Constant *NewCallee =
01631         NestF->getType() == PointerType::getUnqual(NewFTy) ?
01632         NestF : ConstantExpr::getBitCast(NestF,
01633                                          PointerType::getUnqual(NewFTy));
01634       const AttributeSet &NewPAL =
01635           AttributeSet::get(FTy->getContext(), NewAttrs);
01636 
01637       Instruction *NewCaller;
01638       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
01639         NewCaller = InvokeInst::Create(NewCallee,
01640                                        II->getNormalDest(), II->getUnwindDest(),
01641                                        NewArgs);
01642         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
01643         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
01644       } else {
01645         NewCaller = CallInst::Create(NewCallee, NewArgs);
01646         if (cast<CallInst>(Caller)->isTailCall())
01647           cast<CallInst>(NewCaller)->setTailCall();
01648         cast<CallInst>(NewCaller)->
01649           setCallingConv(cast<CallInst>(Caller)->getCallingConv());
01650         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
01651       }
01652 
01653       return NewCaller;
01654     }
01655   }
01656 
01657   // Replace the trampoline call with a direct call.  Since there is no 'nest'
01658   // parameter, there is no need to adjust the argument list.  Let the generic
01659   // code sort out any function type mismatches.
01660   Constant *NewCallee =
01661     NestF->getType() == PTy ? NestF :
01662                               ConstantExpr::getBitCast(NestF, PTy);
01663   CS.setCalledFunction(NewCallee);
01664   return CS.getInstruction();
01665 }