LLVM API Documentation
00001 //===- InstCombinePHI.cpp -------------------------------------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the visitPHINode function. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "InstCombine.h" 00015 #include "llvm/ADT/STLExtras.h" 00016 #include "llvm/ADT/SmallPtrSet.h" 00017 #include "llvm/Analysis/InstructionSimplify.h" 00018 #include "llvm/IR/DataLayout.h" 00019 using namespace llvm; 00020 00021 #define DEBUG_TYPE "instcombine" 00022 00023 /// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)] 00024 /// and if a/b/c and the add's all have a single use, turn this into a phi 00025 /// and a single binop. 00026 Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) { 00027 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 00028 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)); 00029 unsigned Opc = FirstInst->getOpcode(); 00030 Value *LHSVal = FirstInst->getOperand(0); 00031 Value *RHSVal = FirstInst->getOperand(1); 00032 00033 Type *LHSType = LHSVal->getType(); 00034 Type *RHSType = RHSVal->getType(); 00035 00036 bool isNUW = false, isNSW = false, isExact = false; 00037 if (OverflowingBinaryOperator *BO = 00038 dyn_cast<OverflowingBinaryOperator>(FirstInst)) { 00039 isNUW = BO->hasNoUnsignedWrap(); 00040 isNSW = BO->hasNoSignedWrap(); 00041 } else if (PossiblyExactOperator *PEO = 00042 dyn_cast<PossiblyExactOperator>(FirstInst)) 00043 isExact = PEO->isExact(); 00044 00045 // Scan to see if all operands are the same opcode, and all have one use. 00046 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { 00047 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); 00048 if (!I || I->getOpcode() != Opc || !I->hasOneUse() || 00049 // Verify type of the LHS matches so we don't fold cmp's of different 00050 // types. 00051 I->getOperand(0)->getType() != LHSType || 00052 I->getOperand(1)->getType() != RHSType) 00053 return nullptr; 00054 00055 // If they are CmpInst instructions, check their predicates 00056 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 00057 if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate()) 00058 return nullptr; 00059 00060 if (isNUW) 00061 isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap(); 00062 if (isNSW) 00063 isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 00064 if (isExact) 00065 isExact = cast<PossiblyExactOperator>(I)->isExact(); 00066 00067 // Keep track of which operand needs a phi node. 00068 if (I->getOperand(0) != LHSVal) LHSVal = nullptr; 00069 if (I->getOperand(1) != RHSVal) RHSVal = nullptr; 00070 } 00071 00072 // If both LHS and RHS would need a PHI, don't do this transformation, 00073 // because it would increase the number of PHIs entering the block, 00074 // which leads to higher register pressure. This is especially 00075 // bad when the PHIs are in the header of a loop. 00076 if (!LHSVal && !RHSVal) 00077 return nullptr; 00078 00079 // Otherwise, this is safe to transform! 00080 00081 Value *InLHS = FirstInst->getOperand(0); 00082 Value *InRHS = FirstInst->getOperand(1); 00083 PHINode *NewLHS = nullptr, *NewRHS = nullptr; 00084 if (!LHSVal) { 00085 NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(), 00086 FirstInst->getOperand(0)->getName() + ".pn"); 00087 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0)); 00088 InsertNewInstBefore(NewLHS, PN); 00089 LHSVal = NewLHS; 00090 } 00091 00092 if (!RHSVal) { 00093 NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(), 00094 FirstInst->getOperand(1)->getName() + ".pn"); 00095 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0)); 00096 InsertNewInstBefore(NewRHS, PN); 00097 RHSVal = NewRHS; 00098 } 00099 00100 // Add all operands to the new PHIs. 00101 if (NewLHS || NewRHS) { 00102 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 00103 Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i)); 00104 if (NewLHS) { 00105 Value *NewInLHS = InInst->getOperand(0); 00106 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i)); 00107 } 00108 if (NewRHS) { 00109 Value *NewInRHS = InInst->getOperand(1); 00110 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i)); 00111 } 00112 } 00113 } 00114 00115 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) { 00116 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), 00117 LHSVal, RHSVal); 00118 NewCI->setDebugLoc(FirstInst->getDebugLoc()); 00119 return NewCI; 00120 } 00121 00122 BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst); 00123 BinaryOperator *NewBinOp = 00124 BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal); 00125 if (isNUW) NewBinOp->setHasNoUnsignedWrap(); 00126 if (isNSW) NewBinOp->setHasNoSignedWrap(); 00127 if (isExact) NewBinOp->setIsExact(); 00128 NewBinOp->setDebugLoc(FirstInst->getDebugLoc()); 00129 return NewBinOp; 00130 } 00131 00132 Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) { 00133 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0)); 00134 00135 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(), 00136 FirstInst->op_end()); 00137 // This is true if all GEP bases are allocas and if all indices into them are 00138 // constants. 00139 bool AllBasePointersAreAllocas = true; 00140 00141 // We don't want to replace this phi if the replacement would require 00142 // more than one phi, which leads to higher register pressure. This is 00143 // especially bad when the PHIs are in the header of a loop. 00144 bool NeededPhi = false; 00145 00146 bool AllInBounds = true; 00147 00148 // Scan to see if all operands are the same opcode, and all have one use. 00149 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { 00150 GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i)); 00151 if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() || 00152 GEP->getNumOperands() != FirstInst->getNumOperands()) 00153 return nullptr; 00154 00155 AllInBounds &= GEP->isInBounds(); 00156 00157 // Keep track of whether or not all GEPs are of alloca pointers. 00158 if (AllBasePointersAreAllocas && 00159 (!isa<AllocaInst>(GEP->getOperand(0)) || 00160 !GEP->hasAllConstantIndices())) 00161 AllBasePointersAreAllocas = false; 00162 00163 // Compare the operand lists. 00164 for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) { 00165 if (FirstInst->getOperand(op) == GEP->getOperand(op)) 00166 continue; 00167 00168 // Don't merge two GEPs when two operands differ (introducing phi nodes) 00169 // if one of the PHIs has a constant for the index. The index may be 00170 // substantially cheaper to compute for the constants, so making it a 00171 // variable index could pessimize the path. This also handles the case 00172 // for struct indices, which must always be constant. 00173 if (isa<ConstantInt>(FirstInst->getOperand(op)) || 00174 isa<ConstantInt>(GEP->getOperand(op))) 00175 return nullptr; 00176 00177 if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType()) 00178 return nullptr; 00179 00180 // If we already needed a PHI for an earlier operand, and another operand 00181 // also requires a PHI, we'd be introducing more PHIs than we're 00182 // eliminating, which increases register pressure on entry to the PHI's 00183 // block. 00184 if (NeededPhi) 00185 return nullptr; 00186 00187 FixedOperands[op] = nullptr; // Needs a PHI. 00188 NeededPhi = true; 00189 } 00190 } 00191 00192 // If all of the base pointers of the PHI'd GEPs are from allocas, don't 00193 // bother doing this transformation. At best, this will just save a bit of 00194 // offset calculation, but all the predecessors will have to materialize the 00195 // stack address into a register anyway. We'd actually rather *clone* the 00196 // load up into the predecessors so that we have a load of a gep of an alloca, 00197 // which can usually all be folded into the load. 00198 if (AllBasePointersAreAllocas) 00199 return nullptr; 00200 00201 // Otherwise, this is safe to transform. Insert PHI nodes for each operand 00202 // that is variable. 00203 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size()); 00204 00205 bool HasAnyPHIs = false; 00206 for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) { 00207 if (FixedOperands[i]) continue; // operand doesn't need a phi. 00208 Value *FirstOp = FirstInst->getOperand(i); 00209 PHINode *NewPN = PHINode::Create(FirstOp->getType(), e, 00210 FirstOp->getName()+".pn"); 00211 InsertNewInstBefore(NewPN, PN); 00212 00213 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0)); 00214 OperandPhis[i] = NewPN; 00215 FixedOperands[i] = NewPN; 00216 HasAnyPHIs = true; 00217 } 00218 00219 00220 // Add all operands to the new PHIs. 00221 if (HasAnyPHIs) { 00222 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 00223 GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i)); 00224 BasicBlock *InBB = PN.getIncomingBlock(i); 00225 00226 for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op) 00227 if (PHINode *OpPhi = OperandPhis[op]) 00228 OpPhi->addIncoming(InGEP->getOperand(op), InBB); 00229 } 00230 } 00231 00232 Value *Base = FixedOperands[0]; 00233 GetElementPtrInst *NewGEP = 00234 GetElementPtrInst::Create(Base, makeArrayRef(FixedOperands).slice(1)); 00235 if (AllInBounds) NewGEP->setIsInBounds(); 00236 NewGEP->setDebugLoc(FirstInst->getDebugLoc()); 00237 return NewGEP; 00238 } 00239 00240 00241 /// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to 00242 /// sink the load out of the block that defines it. This means that it must be 00243 /// obvious the value of the load is not changed from the point of the load to 00244 /// the end of the block it is in. 00245 /// 00246 /// Finally, it is safe, but not profitable, to sink a load targeting a 00247 /// non-address-taken alloca. Doing so will cause us to not promote the alloca 00248 /// to a register. 00249 static bool isSafeAndProfitableToSinkLoad(LoadInst *L) { 00250 BasicBlock::iterator BBI = L, E = L->getParent()->end(); 00251 00252 for (++BBI; BBI != E; ++BBI) 00253 if (BBI->mayWriteToMemory()) 00254 return false; 00255 00256 // Check for non-address taken alloca. If not address-taken already, it isn't 00257 // profitable to do this xform. 00258 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) { 00259 bool isAddressTaken = false; 00260 for (User *U : AI->users()) { 00261 if (isa<LoadInst>(U)) continue; 00262 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 00263 // If storing TO the alloca, then the address isn't taken. 00264 if (SI->getOperand(1) == AI) continue; 00265 } 00266 isAddressTaken = true; 00267 break; 00268 } 00269 00270 if (!isAddressTaken && AI->isStaticAlloca()) 00271 return false; 00272 } 00273 00274 // If this load is a load from a GEP with a constant offset from an alloca, 00275 // then we don't want to sink it. In its present form, it will be 00276 // load [constant stack offset]. Sinking it will cause us to have to 00277 // materialize the stack addresses in each predecessor in a register only to 00278 // do a shared load from register in the successor. 00279 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0))) 00280 if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0))) 00281 if (AI->isStaticAlloca() && GEP->hasAllConstantIndices()) 00282 return false; 00283 00284 return true; 00285 } 00286 00287 Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) { 00288 LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0)); 00289 00290 // FIXME: This is overconservative; this transform is allowed in some cases 00291 // for atomic operations. 00292 if (FirstLI->isAtomic()) 00293 return nullptr; 00294 00295 // When processing loads, we need to propagate two bits of information to the 00296 // sunk load: whether it is volatile, and what its alignment is. We currently 00297 // don't sink loads when some have their alignment specified and some don't. 00298 // visitLoadInst will propagate an alignment onto the load when TD is around, 00299 // and if TD isn't around, we can't handle the mixed case. 00300 bool isVolatile = FirstLI->isVolatile(); 00301 unsigned LoadAlignment = FirstLI->getAlignment(); 00302 unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace(); 00303 00304 // We can't sink the load if the loaded value could be modified between the 00305 // load and the PHI. 00306 if (FirstLI->getParent() != PN.getIncomingBlock(0) || 00307 !isSafeAndProfitableToSinkLoad(FirstLI)) 00308 return nullptr; 00309 00310 // If the PHI is of volatile loads and the load block has multiple 00311 // successors, sinking it would remove a load of the volatile value from 00312 // the path through the other successor. 00313 if (isVolatile && 00314 FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1) 00315 return nullptr; 00316 00317 // Check to see if all arguments are the same operation. 00318 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 00319 LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i)); 00320 if (!LI || !LI->hasOneUse()) 00321 return nullptr; 00322 00323 // We can't sink the load if the loaded value could be modified between 00324 // the load and the PHI. 00325 if (LI->isVolatile() != isVolatile || 00326 LI->getParent() != PN.getIncomingBlock(i) || 00327 LI->getPointerAddressSpace() != LoadAddrSpace || 00328 !isSafeAndProfitableToSinkLoad(LI)) 00329 return nullptr; 00330 00331 // If some of the loads have an alignment specified but not all of them, 00332 // we can't do the transformation. 00333 if ((LoadAlignment != 0) != (LI->getAlignment() != 0)) 00334 return nullptr; 00335 00336 LoadAlignment = std::min(LoadAlignment, LI->getAlignment()); 00337 00338 // If the PHI is of volatile loads and the load block has multiple 00339 // successors, sinking it would remove a load of the volatile value from 00340 // the path through the other successor. 00341 if (isVolatile && 00342 LI->getParent()->getTerminator()->getNumSuccessors() != 1) 00343 return nullptr; 00344 } 00345 00346 // Okay, they are all the same operation. Create a new PHI node of the 00347 // correct type, and PHI together all of the LHS's of the instructions. 00348 PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(), 00349 PN.getNumIncomingValues(), 00350 PN.getName()+".in"); 00351 00352 Value *InVal = FirstLI->getOperand(0); 00353 NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); 00354 00355 // Add all operands to the new PHI. 00356 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 00357 Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0); 00358 if (NewInVal != InVal) 00359 InVal = nullptr; 00360 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); 00361 } 00362 00363 Value *PhiVal; 00364 if (InVal) { 00365 // The new PHI unions all of the same values together. This is really 00366 // common, so we handle it intelligently here for compile-time speed. 00367 PhiVal = InVal; 00368 delete NewPN; 00369 } else { 00370 InsertNewInstBefore(NewPN, PN); 00371 PhiVal = NewPN; 00372 } 00373 00374 // If this was a volatile load that we are merging, make sure to loop through 00375 // and mark all the input loads as non-volatile. If we don't do this, we will 00376 // insert a new volatile load and the old ones will not be deletable. 00377 if (isVolatile) 00378 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 00379 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false); 00380 00381 LoadInst *NewLI = new LoadInst(PhiVal, "", isVolatile, LoadAlignment); 00382 NewLI->setDebugLoc(FirstLI->getDebugLoc()); 00383 return NewLI; 00384 } 00385 00386 00387 00388 /// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" 00389 /// operator and they all are only used by the PHI, PHI together their 00390 /// inputs, and do the operation once, to the result of the PHI. 00391 Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) { 00392 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 00393 00394 if (isa<GetElementPtrInst>(FirstInst)) 00395 return FoldPHIArgGEPIntoPHI(PN); 00396 if (isa<LoadInst>(FirstInst)) 00397 return FoldPHIArgLoadIntoPHI(PN); 00398 00399 // Scan the instruction, looking for input operations that can be folded away. 00400 // If all input operands to the phi are the same instruction (e.g. a cast from 00401 // the same type or "+42") we can pull the operation through the PHI, reducing 00402 // code size and simplifying code. 00403 Constant *ConstantOp = nullptr; 00404 Type *CastSrcTy = nullptr; 00405 bool isNUW = false, isNSW = false, isExact = false; 00406 00407 if (isa<CastInst>(FirstInst)) { 00408 CastSrcTy = FirstInst->getOperand(0)->getType(); 00409 00410 // Be careful about transforming integer PHIs. We don't want to pessimize 00411 // the code by turning an i32 into an i1293. 00412 if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) { 00413 if (!ShouldChangeType(PN.getType(), CastSrcTy)) 00414 return nullptr; 00415 } 00416 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) { 00417 // Can fold binop, compare or shift here if the RHS is a constant, 00418 // otherwise call FoldPHIArgBinOpIntoPHI. 00419 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1)); 00420 if (!ConstantOp) 00421 return FoldPHIArgBinOpIntoPHI(PN); 00422 00423 if (OverflowingBinaryOperator *BO = 00424 dyn_cast<OverflowingBinaryOperator>(FirstInst)) { 00425 isNUW = BO->hasNoUnsignedWrap(); 00426 isNSW = BO->hasNoSignedWrap(); 00427 } else if (PossiblyExactOperator *PEO = 00428 dyn_cast<PossiblyExactOperator>(FirstInst)) 00429 isExact = PEO->isExact(); 00430 } else { 00431 return nullptr; // Cannot fold this operation. 00432 } 00433 00434 // Check to see if all arguments are the same operation. 00435 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 00436 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); 00437 if (!I || !I->hasOneUse() || !I->isSameOperationAs(FirstInst)) 00438 return nullptr; 00439 if (CastSrcTy) { 00440 if (I->getOperand(0)->getType() != CastSrcTy) 00441 return nullptr; // Cast operation must match. 00442 } else if (I->getOperand(1) != ConstantOp) { 00443 return nullptr; 00444 } 00445 00446 if (isNUW) 00447 isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap(); 00448 if (isNSW) 00449 isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 00450 if (isExact) 00451 isExact = cast<PossiblyExactOperator>(I)->isExact(); 00452 } 00453 00454 // Okay, they are all the same operation. Create a new PHI node of the 00455 // correct type, and PHI together all of the LHS's of the instructions. 00456 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(), 00457 PN.getNumIncomingValues(), 00458 PN.getName()+".in"); 00459 00460 Value *InVal = FirstInst->getOperand(0); 00461 NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); 00462 00463 // Add all operands to the new PHI. 00464 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 00465 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0); 00466 if (NewInVal != InVal) 00467 InVal = nullptr; 00468 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); 00469 } 00470 00471 Value *PhiVal; 00472 if (InVal) { 00473 // The new PHI unions all of the same values together. This is really 00474 // common, so we handle it intelligently here for compile-time speed. 00475 PhiVal = InVal; 00476 delete NewPN; 00477 } else { 00478 InsertNewInstBefore(NewPN, PN); 00479 PhiVal = NewPN; 00480 } 00481 00482 // Insert and return the new operation. 00483 if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) { 00484 CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal, 00485 PN.getType()); 00486 NewCI->setDebugLoc(FirstInst->getDebugLoc()); 00487 return NewCI; 00488 } 00489 00490 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) { 00491 BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp); 00492 if (isNUW) BinOp->setHasNoUnsignedWrap(); 00493 if (isNSW) BinOp->setHasNoSignedWrap(); 00494 if (isExact) BinOp->setIsExact(); 00495 BinOp->setDebugLoc(FirstInst->getDebugLoc()); 00496 return BinOp; 00497 } 00498 00499 CmpInst *CIOp = cast<CmpInst>(FirstInst); 00500 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), 00501 PhiVal, ConstantOp); 00502 NewCI->setDebugLoc(FirstInst->getDebugLoc()); 00503 return NewCI; 00504 } 00505 00506 /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle 00507 /// that is dead. 00508 static bool DeadPHICycle(PHINode *PN, 00509 SmallPtrSetImpl<PHINode*> &PotentiallyDeadPHIs) { 00510 if (PN->use_empty()) return true; 00511 if (!PN->hasOneUse()) return false; 00512 00513 // Remember this node, and if we find the cycle, return. 00514 if (!PotentiallyDeadPHIs.insert(PN)) 00515 return true; 00516 00517 // Don't scan crazily complex things. 00518 if (PotentiallyDeadPHIs.size() == 16) 00519 return false; 00520 00521 if (PHINode *PU = dyn_cast<PHINode>(PN->user_back())) 00522 return DeadPHICycle(PU, PotentiallyDeadPHIs); 00523 00524 return false; 00525 } 00526 00527 /// PHIsEqualValue - Return true if this phi node is always equal to 00528 /// NonPhiInVal. This happens with mutually cyclic phi nodes like: 00529 /// z = some value; x = phi (y, z); y = phi (x, z) 00530 static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, 00531 SmallPtrSetImpl<PHINode*> &ValueEqualPHIs) { 00532 // See if we already saw this PHI node. 00533 if (!ValueEqualPHIs.insert(PN)) 00534 return true; 00535 00536 // Don't scan crazily complex things. 00537 if (ValueEqualPHIs.size() == 16) 00538 return false; 00539 00540 // Scan the operands to see if they are either phi nodes or are equal to 00541 // the value. 00542 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 00543 Value *Op = PN->getIncomingValue(i); 00544 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) { 00545 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) 00546 return false; 00547 } else if (Op != NonPhiInVal) 00548 return false; 00549 } 00550 00551 return true; 00552 } 00553 00554 00555 namespace { 00556 struct PHIUsageRecord { 00557 unsigned PHIId; // The ID # of the PHI (something determinstic to sort on) 00558 unsigned Shift; // The amount shifted. 00559 Instruction *Inst; // The trunc instruction. 00560 00561 PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User) 00562 : PHIId(pn), Shift(Sh), Inst(User) {} 00563 00564 bool operator<(const PHIUsageRecord &RHS) const { 00565 if (PHIId < RHS.PHIId) return true; 00566 if (PHIId > RHS.PHIId) return false; 00567 if (Shift < RHS.Shift) return true; 00568 if (Shift > RHS.Shift) return false; 00569 return Inst->getType()->getPrimitiveSizeInBits() < 00570 RHS.Inst->getType()->getPrimitiveSizeInBits(); 00571 } 00572 }; 00573 00574 struct LoweredPHIRecord { 00575 PHINode *PN; // The PHI that was lowered. 00576 unsigned Shift; // The amount shifted. 00577 unsigned Width; // The width extracted. 00578 00579 LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty) 00580 : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {} 00581 00582 // Ctor form used by DenseMap. 00583 LoweredPHIRecord(PHINode *pn, unsigned Sh) 00584 : PN(pn), Shift(Sh), Width(0) {} 00585 }; 00586 } 00587 00588 namespace llvm { 00589 template<> 00590 struct DenseMapInfo<LoweredPHIRecord> { 00591 static inline LoweredPHIRecord getEmptyKey() { 00592 return LoweredPHIRecord(nullptr, 0); 00593 } 00594 static inline LoweredPHIRecord getTombstoneKey() { 00595 return LoweredPHIRecord(nullptr, 1); 00596 } 00597 static unsigned getHashValue(const LoweredPHIRecord &Val) { 00598 return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^ 00599 (Val.Width>>3); 00600 } 00601 static bool isEqual(const LoweredPHIRecord &LHS, 00602 const LoweredPHIRecord &RHS) { 00603 return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift && 00604 LHS.Width == RHS.Width; 00605 } 00606 }; 00607 } 00608 00609 00610 /// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an 00611 /// illegal type: see if it is only used by trunc or trunc(lshr) operations. If 00612 /// so, we split the PHI into the various pieces being extracted. This sort of 00613 /// thing is introduced when SROA promotes an aggregate to large integer values. 00614 /// 00615 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an 00616 /// inttoptr. We should produce new PHIs in the right type. 00617 /// 00618 Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) { 00619 // PHIUsers - Keep track of all of the truncated values extracted from a set 00620 // of PHIs, along with their offset. These are the things we want to rewrite. 00621 SmallVector<PHIUsageRecord, 16> PHIUsers; 00622 00623 // PHIs are often mutually cyclic, so we keep track of a whole set of PHI 00624 // nodes which are extracted from. PHIsToSlice is a set we use to avoid 00625 // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to 00626 // check the uses of (to ensure they are all extracts). 00627 SmallVector<PHINode*, 8> PHIsToSlice; 00628 SmallPtrSet<PHINode*, 8> PHIsInspected; 00629 00630 PHIsToSlice.push_back(&FirstPhi); 00631 PHIsInspected.insert(&FirstPhi); 00632 00633 for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) { 00634 PHINode *PN = PHIsToSlice[PHIId]; 00635 00636 // Scan the input list of the PHI. If any input is an invoke, and if the 00637 // input is defined in the predecessor, then we won't be split the critical 00638 // edge which is required to insert a truncate. Because of this, we have to 00639 // bail out. 00640 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 00641 InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i)); 00642 if (!II) continue; 00643 if (II->getParent() != PN->getIncomingBlock(i)) 00644 continue; 00645 00646 // If we have a phi, and if it's directly in the predecessor, then we have 00647 // a critical edge where we need to put the truncate. Since we can't 00648 // split the edge in instcombine, we have to bail out. 00649 return nullptr; 00650 } 00651 00652 for (User *U : PN->users()) { 00653 Instruction *UserI = cast<Instruction>(U); 00654 00655 // If the user is a PHI, inspect its uses recursively. 00656 if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) { 00657 if (PHIsInspected.insert(UserPN)) 00658 PHIsToSlice.push_back(UserPN); 00659 continue; 00660 } 00661 00662 // Truncates are always ok. 00663 if (isa<TruncInst>(UserI)) { 00664 PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI)); 00665 continue; 00666 } 00667 00668 // Otherwise it must be a lshr which can only be used by one trunc. 00669 if (UserI->getOpcode() != Instruction::LShr || 00670 !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) || 00671 !isa<ConstantInt>(UserI->getOperand(1))) 00672 return nullptr; 00673 00674 unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue(); 00675 PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back())); 00676 } 00677 } 00678 00679 // If we have no users, they must be all self uses, just nuke the PHI. 00680 if (PHIUsers.empty()) 00681 return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType())); 00682 00683 // If this phi node is transformable, create new PHIs for all the pieces 00684 // extracted out of it. First, sort the users by their offset and size. 00685 array_pod_sort(PHIUsers.begin(), PHIUsers.end()); 00686 00687 DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n'; 00688 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) 00689 dbgs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] << '\n'; 00690 ); 00691 00692 // PredValues - This is a temporary used when rewriting PHI nodes. It is 00693 // hoisted out here to avoid construction/destruction thrashing. 00694 DenseMap<BasicBlock*, Value*> PredValues; 00695 00696 // ExtractedVals - Each new PHI we introduce is saved here so we don't 00697 // introduce redundant PHIs. 00698 DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals; 00699 00700 for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) { 00701 unsigned PHIId = PHIUsers[UserI].PHIId; 00702 PHINode *PN = PHIsToSlice[PHIId]; 00703 unsigned Offset = PHIUsers[UserI].Shift; 00704 Type *Ty = PHIUsers[UserI].Inst->getType(); 00705 00706 PHINode *EltPHI; 00707 00708 // If we've already lowered a user like this, reuse the previously lowered 00709 // value. 00710 if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) { 00711 00712 // Otherwise, Create the new PHI node for this user. 00713 EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(), 00714 PN->getName()+".off"+Twine(Offset), PN); 00715 assert(EltPHI->getType() != PN->getType() && 00716 "Truncate didn't shrink phi?"); 00717 00718 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 00719 BasicBlock *Pred = PN->getIncomingBlock(i); 00720 Value *&PredVal = PredValues[Pred]; 00721 00722 // If we already have a value for this predecessor, reuse it. 00723 if (PredVal) { 00724 EltPHI->addIncoming(PredVal, Pred); 00725 continue; 00726 } 00727 00728 // Handle the PHI self-reuse case. 00729 Value *InVal = PN->getIncomingValue(i); 00730 if (InVal == PN) { 00731 PredVal = EltPHI; 00732 EltPHI->addIncoming(PredVal, Pred); 00733 continue; 00734 } 00735 00736 if (PHINode *InPHI = dyn_cast<PHINode>(PN)) { 00737 // If the incoming value was a PHI, and if it was one of the PHIs we 00738 // already rewrote it, just use the lowered value. 00739 if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) { 00740 PredVal = Res; 00741 EltPHI->addIncoming(PredVal, Pred); 00742 continue; 00743 } 00744 } 00745 00746 // Otherwise, do an extract in the predecessor. 00747 Builder->SetInsertPoint(Pred, Pred->getTerminator()); 00748 Value *Res = InVal; 00749 if (Offset) 00750 Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(), 00751 Offset), "extract"); 00752 Res = Builder->CreateTrunc(Res, Ty, "extract.t"); 00753 PredVal = Res; 00754 EltPHI->addIncoming(Res, Pred); 00755 00756 // If the incoming value was a PHI, and if it was one of the PHIs we are 00757 // rewriting, we will ultimately delete the code we inserted. This 00758 // means we need to revisit that PHI to make sure we extract out the 00759 // needed piece. 00760 if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i))) 00761 if (PHIsInspected.count(OldInVal)) { 00762 unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(), 00763 OldInVal)-PHIsToSlice.begin(); 00764 PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset, 00765 cast<Instruction>(Res))); 00766 ++UserE; 00767 } 00768 } 00769 PredValues.clear(); 00770 00771 DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": " 00772 << *EltPHI << '\n'); 00773 ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI; 00774 } 00775 00776 // Replace the use of this piece with the PHI node. 00777 ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI); 00778 } 00779 00780 // Replace all the remaining uses of the PHI nodes (self uses and the lshrs) 00781 // with undefs. 00782 Value *Undef = UndefValue::get(FirstPhi.getType()); 00783 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) 00784 ReplaceInstUsesWith(*PHIsToSlice[i], Undef); 00785 return ReplaceInstUsesWith(FirstPhi, Undef); 00786 } 00787 00788 // PHINode simplification 00789 // 00790 Instruction *InstCombiner::visitPHINode(PHINode &PN) { 00791 if (Value *V = SimplifyInstruction(&PN, DL, TLI, DT, AT)) 00792 return ReplaceInstUsesWith(PN, V); 00793 00794 // If all PHI operands are the same operation, pull them through the PHI, 00795 // reducing code size. 00796 if (isa<Instruction>(PN.getIncomingValue(0)) && 00797 isa<Instruction>(PN.getIncomingValue(1)) && 00798 cast<Instruction>(PN.getIncomingValue(0))->getOpcode() == 00799 cast<Instruction>(PN.getIncomingValue(1))->getOpcode() && 00800 // FIXME: The hasOneUse check will fail for PHIs that use the value more 00801 // than themselves more than once. 00802 PN.getIncomingValue(0)->hasOneUse()) 00803 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN)) 00804 return Result; 00805 00806 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if 00807 // this PHI only has a single use (a PHI), and if that PHI only has one use (a 00808 // PHI)... break the cycle. 00809 if (PN.hasOneUse()) { 00810 Instruction *PHIUser = cast<Instruction>(PN.user_back()); 00811 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) { 00812 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs; 00813 PotentiallyDeadPHIs.insert(&PN); 00814 if (DeadPHICycle(PU, PotentiallyDeadPHIs)) 00815 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); 00816 } 00817 00818 // If this phi has a single use, and if that use just computes a value for 00819 // the next iteration of a loop, delete the phi. This occurs with unused 00820 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this 00821 // common case here is good because the only other things that catch this 00822 // are induction variable analysis (sometimes) and ADCE, which is only run 00823 // late. 00824 if (PHIUser->hasOneUse() && 00825 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) && 00826 PHIUser->user_back() == &PN) { 00827 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); 00828 } 00829 } 00830 00831 // We sometimes end up with phi cycles that non-obviously end up being the 00832 // same value, for example: 00833 // z = some value; x = phi (y, z); y = phi (x, z) 00834 // where the phi nodes don't necessarily need to be in the same block. Do a 00835 // quick check to see if the PHI node only contains a single non-phi value, if 00836 // so, scan to see if the phi cycle is actually equal to that value. 00837 { 00838 unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues(); 00839 // Scan for the first non-phi operand. 00840 while (InValNo != NumIncomingVals && 00841 isa<PHINode>(PN.getIncomingValue(InValNo))) 00842 ++InValNo; 00843 00844 if (InValNo != NumIncomingVals) { 00845 Value *NonPhiInVal = PN.getIncomingValue(InValNo); 00846 00847 // Scan the rest of the operands to see if there are any conflicts, if so 00848 // there is no need to recursively scan other phis. 00849 for (++InValNo; InValNo != NumIncomingVals; ++InValNo) { 00850 Value *OpVal = PN.getIncomingValue(InValNo); 00851 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal)) 00852 break; 00853 } 00854 00855 // If we scanned over all operands, then we have one unique value plus 00856 // phi values. Scan PHI nodes to see if they all merge in each other or 00857 // the value. 00858 if (InValNo == NumIncomingVals) { 00859 SmallPtrSet<PHINode*, 16> ValueEqualPHIs; 00860 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs)) 00861 return ReplaceInstUsesWith(PN, NonPhiInVal); 00862 } 00863 } 00864 } 00865 00866 // If there are multiple PHIs, sort their operands so that they all list 00867 // the blocks in the same order. This will help identical PHIs be eliminated 00868 // by other passes. Other passes shouldn't depend on this for correctness 00869 // however. 00870 PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin()); 00871 if (&PN != FirstPN) 00872 for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) { 00873 BasicBlock *BBA = PN.getIncomingBlock(i); 00874 BasicBlock *BBB = FirstPN->getIncomingBlock(i); 00875 if (BBA != BBB) { 00876 Value *VA = PN.getIncomingValue(i); 00877 unsigned j = PN.getBasicBlockIndex(BBB); 00878 Value *VB = PN.getIncomingValue(j); 00879 PN.setIncomingBlock(i, BBB); 00880 PN.setIncomingValue(i, VB); 00881 PN.setIncomingBlock(j, BBA); 00882 PN.setIncomingValue(j, VA); 00883 // NOTE: Instcombine normally would want us to "return &PN" if we 00884 // modified any of the operands of an instruction. However, since we 00885 // aren't adding or removing uses (just rearranging them) we don't do 00886 // this in this case. 00887 } 00888 } 00889 00890 // If this is an integer PHI and we know that it has an illegal type, see if 00891 // it is only used by trunc or trunc(lshr) operations. If so, we split the 00892 // PHI into the various pieces being extracted. This sort of thing is 00893 // introduced when SROA promotes an aggregate to a single large integer type. 00894 if (PN.getType()->isIntegerTy() && DL && 00895 !DL->isLegalInteger(PN.getType()->getPrimitiveSizeInBits())) 00896 if (Instruction *Res = SliceUpIllegalIntegerPHI(PN)) 00897 return Res; 00898 00899 return nullptr; 00900 }