LLVM API Documentation
00001 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file contains logic for simplifying instructions based on information 00011 // about how they are used. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #include "InstCombine.h" 00016 #include "llvm/IR/DataLayout.h" 00017 #include "llvm/IR/IntrinsicInst.h" 00018 #include "llvm/IR/PatternMatch.h" 00019 00020 using namespace llvm; 00021 using namespace llvm::PatternMatch; 00022 00023 #define DEBUG_TYPE "instcombine" 00024 00025 /// ShrinkDemandedConstant - Check to see if the specified operand of the 00026 /// specified instruction is a constant integer. If so, check to see if there 00027 /// are any bits set in the constant that are not demanded. If so, shrink the 00028 /// constant and return true. 00029 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 00030 APInt Demanded) { 00031 assert(I && "No instruction?"); 00032 assert(OpNo < I->getNumOperands() && "Operand index too large"); 00033 00034 // If the operand is not a constant integer, nothing to do. 00035 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo)); 00036 if (!OpC) return false; 00037 00038 // If there are no bits set that aren't demanded, nothing to do. 00039 Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth()); 00040 if ((~Demanded & OpC->getValue()) == 0) 00041 return false; 00042 00043 // This instruction is producing bits that are not demanded. Shrink the RHS. 00044 Demanded &= OpC->getValue(); 00045 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded)); 00046 00047 // If either 'nsw' or 'nuw' is set and the constant is negative, 00048 // removing *any* bits from the constant could make overflow occur. 00049 // Remove 'nsw' and 'nuw' from the instruction in this case. 00050 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) { 00051 assert(OBO->getOpcode() == Instruction::Add); 00052 if (OBO->hasNoSignedWrap() || OBO->hasNoUnsignedWrap()) { 00053 if (OpC->getValue().isNegative()) { 00054 cast<BinaryOperator>(OBO)->setHasNoSignedWrap(false); 00055 cast<BinaryOperator>(OBO)->setHasNoUnsignedWrap(false); 00056 } 00057 } 00058 } 00059 00060 return true; 00061 } 00062 00063 00064 00065 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that 00066 /// SimplifyDemandedBits knows about. See if the instruction has any 00067 /// properties that allow us to simplify its operands. 00068 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 00069 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 00070 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 00071 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 00072 00073 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, 00074 KnownZero, KnownOne, 0, &Inst); 00075 if (!V) return false; 00076 if (V == &Inst) return true; 00077 ReplaceInstUsesWith(Inst, V); 00078 return true; 00079 } 00080 00081 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the 00082 /// specified instruction operand if possible, updating it in place. It returns 00083 /// true if it made any change and false otherwise. 00084 bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask, 00085 APInt &KnownZero, APInt &KnownOne, 00086 unsigned Depth) { 00087 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, 00088 KnownZero, KnownOne, Depth, 00089 dyn_cast<Instruction>(U.getUser())); 00090 if (!NewVal) return false; 00091 U = NewVal; 00092 return true; 00093 } 00094 00095 00096 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler 00097 /// value based on the demanded bits. When this function is called, it is known 00098 /// that only the bits set in DemandedMask of the result of V are ever used 00099 /// downstream. Consequently, depending on the mask and V, it may be possible 00100 /// to replace V with a constant or one of its operands. In such cases, this 00101 /// function does the replacement and returns true. In all other cases, it 00102 /// returns false after analyzing the expression and setting KnownOne and known 00103 /// to be one in the expression. KnownZero contains all the bits that are known 00104 /// to be zero in the expression. These are provided to potentially allow the 00105 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify 00106 /// the expression. KnownOne and KnownZero always follow the invariant that 00107 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that 00108 /// the bits in KnownOne and KnownZero may only be accurate for those bits set 00109 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero 00110 /// and KnownOne must all be the same. 00111 /// 00112 /// This returns null if it did not change anything and it permits no 00113 /// simplification. This returns V itself if it did some simplification of V's 00114 /// operands based on the information about what bits are demanded. This returns 00115 /// some other non-null value if it found out that V is equal to another value 00116 /// in the context where the specified bits are demanded, but not for all users. 00117 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 00118 APInt &KnownZero, APInt &KnownOne, 00119 unsigned Depth, 00120 Instruction *CxtI) { 00121 assert(V != nullptr && "Null pointer of Value???"); 00122 assert(Depth <= 6 && "Limit Search Depth"); 00123 uint32_t BitWidth = DemandedMask.getBitWidth(); 00124 Type *VTy = V->getType(); 00125 assert((DL || !VTy->isPointerTy()) && 00126 "SimplifyDemandedBits needs to know bit widths!"); 00127 assert((!DL || DL->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) && 00128 (!VTy->isIntOrIntVectorTy() || 00129 VTy->getScalarSizeInBits() == BitWidth) && 00130 KnownZero.getBitWidth() == BitWidth && 00131 KnownOne.getBitWidth() == BitWidth && 00132 "Value *V, DemandedMask, KnownZero and KnownOne " 00133 "must have same BitWidth"); 00134 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 00135 // We know all of the bits for a constant! 00136 KnownOne = CI->getValue() & DemandedMask; 00137 KnownZero = ~KnownOne & DemandedMask; 00138 return nullptr; 00139 } 00140 if (isa<ConstantPointerNull>(V)) { 00141 // We know all of the bits for a constant! 00142 KnownOne.clearAllBits(); 00143 KnownZero = DemandedMask; 00144 return nullptr; 00145 } 00146 00147 KnownZero.clearAllBits(); 00148 KnownOne.clearAllBits(); 00149 if (DemandedMask == 0) { // Not demanding any bits from V. 00150 if (isa<UndefValue>(V)) 00151 return nullptr; 00152 return UndefValue::get(VTy); 00153 } 00154 00155 if (Depth == 6) // Limit search depth. 00156 return nullptr; 00157 00158 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 00159 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 00160 00161 Instruction *I = dyn_cast<Instruction>(V); 00162 if (!I) { 00163 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI); 00164 return nullptr; // Only analyze instructions. 00165 } 00166 00167 // If there are multiple uses of this value and we aren't at the root, then 00168 // we can't do any simplifications of the operands, because DemandedMask 00169 // only reflects the bits demanded by *one* of the users. 00170 if (Depth != 0 && !I->hasOneUse()) { 00171 // Despite the fact that we can't simplify this instruction in all User's 00172 // context, we can at least compute the knownzero/knownone bits, and we can 00173 // do simplifications that apply to *just* the one user if we know that 00174 // this instruction has a simpler value in that context. 00175 if (I->getOpcode() == Instruction::And) { 00176 // If either the LHS or the RHS are Zero, the result is zero. 00177 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1, 00178 CxtI); 00179 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1, 00180 CxtI); 00181 00182 // If all of the demanded bits are known 1 on one side, return the other. 00183 // These bits cannot contribute to the result of the 'and' in this 00184 // context. 00185 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 00186 (DemandedMask & ~LHSKnownZero)) 00187 return I->getOperand(0); 00188 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 00189 (DemandedMask & ~RHSKnownZero)) 00190 return I->getOperand(1); 00191 00192 // If all of the demanded bits in the inputs are known zeros, return zero. 00193 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) 00194 return Constant::getNullValue(VTy); 00195 00196 } else if (I->getOpcode() == Instruction::Or) { 00197 // We can simplify (X|Y) -> X or Y in the user's context if we know that 00198 // only bits from X or Y are demanded. 00199 00200 // If either the LHS or the RHS are One, the result is One. 00201 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1, 00202 CxtI); 00203 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1, 00204 CxtI); 00205 00206 // If all of the demanded bits are known zero on one side, return the 00207 // other. These bits cannot contribute to the result of the 'or' in this 00208 // context. 00209 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 00210 (DemandedMask & ~LHSKnownOne)) 00211 return I->getOperand(0); 00212 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 00213 (DemandedMask & ~RHSKnownOne)) 00214 return I->getOperand(1); 00215 00216 // If all of the potentially set bits on one side are known to be set on 00217 // the other side, just use the 'other' side. 00218 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 00219 (DemandedMask & (~RHSKnownZero))) 00220 return I->getOperand(0); 00221 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 00222 (DemandedMask & (~LHSKnownZero))) 00223 return I->getOperand(1); 00224 } else if (I->getOpcode() == Instruction::Xor) { 00225 // We can simplify (X^Y) -> X or Y in the user's context if we know that 00226 // only bits from X or Y are demanded. 00227 00228 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1, 00229 CxtI); 00230 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1, 00231 CxtI); 00232 00233 // If all of the demanded bits are known zero on one side, return the 00234 // other. 00235 if ((DemandedMask & RHSKnownZero) == DemandedMask) 00236 return I->getOperand(0); 00237 if ((DemandedMask & LHSKnownZero) == DemandedMask) 00238 return I->getOperand(1); 00239 } 00240 00241 // Compute the KnownZero/KnownOne bits to simplify things downstream. 00242 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI); 00243 return nullptr; 00244 } 00245 00246 // If this is the root being simplified, allow it to have multiple uses, 00247 // just set the DemandedMask to all bits so that we can try to simplify the 00248 // operands. This allows visitTruncInst (for example) to simplify the 00249 // operand of a trunc without duplicating all the logic below. 00250 if (Depth == 0 && !V->hasOneUse()) 00251 DemandedMask = APInt::getAllOnesValue(BitWidth); 00252 00253 switch (I->getOpcode()) { 00254 default: 00255 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI); 00256 break; 00257 case Instruction::And: 00258 // If either the LHS or the RHS are Zero, the result is zero. 00259 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 00260 RHSKnownZero, RHSKnownOne, Depth+1) || 00261 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero, 00262 LHSKnownZero, LHSKnownOne, Depth+1)) 00263 return I; 00264 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 00265 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 00266 00267 // If the client is only demanding bits that we know, return the known 00268 // constant. 00269 if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)| 00270 (RHSKnownOne & LHSKnownOne))) == DemandedMask) 00271 return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne); 00272 00273 // If all of the demanded bits are known 1 on one side, return the other. 00274 // These bits cannot contribute to the result of the 'and'. 00275 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 00276 (DemandedMask & ~LHSKnownZero)) 00277 return I->getOperand(0); 00278 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 00279 (DemandedMask & ~RHSKnownZero)) 00280 return I->getOperand(1); 00281 00282 // If all of the demanded bits in the inputs are known zeros, return zero. 00283 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) 00284 return Constant::getNullValue(VTy); 00285 00286 // If the RHS is a constant, see if we can simplify it. 00287 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero)) 00288 return I; 00289 00290 // Output known-1 bits are only known if set in both the LHS & RHS. 00291 KnownOne = RHSKnownOne & LHSKnownOne; 00292 // Output known-0 are known to be clear if zero in either the LHS | RHS. 00293 KnownZero = RHSKnownZero | LHSKnownZero; 00294 break; 00295 case Instruction::Or: 00296 // If either the LHS or the RHS are One, the result is One. 00297 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 00298 RHSKnownZero, RHSKnownOne, Depth+1) || 00299 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne, 00300 LHSKnownZero, LHSKnownOne, Depth+1)) 00301 return I; 00302 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 00303 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 00304 00305 // If the client is only demanding bits that we know, return the known 00306 // constant. 00307 if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)| 00308 (RHSKnownOne | LHSKnownOne))) == DemandedMask) 00309 return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne); 00310 00311 // If all of the demanded bits are known zero on one side, return the other. 00312 // These bits cannot contribute to the result of the 'or'. 00313 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 00314 (DemandedMask & ~LHSKnownOne)) 00315 return I->getOperand(0); 00316 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 00317 (DemandedMask & ~RHSKnownOne)) 00318 return I->getOperand(1); 00319 00320 // If all of the potentially set bits on one side are known to be set on 00321 // the other side, just use the 'other' side. 00322 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 00323 (DemandedMask & (~RHSKnownZero))) 00324 return I->getOperand(0); 00325 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 00326 (DemandedMask & (~LHSKnownZero))) 00327 return I->getOperand(1); 00328 00329 // If the RHS is a constant, see if we can simplify it. 00330 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 00331 return I; 00332 00333 // Output known-0 bits are only known if clear in both the LHS & RHS. 00334 KnownZero = RHSKnownZero & LHSKnownZero; 00335 // Output known-1 are known to be set if set in either the LHS | RHS. 00336 KnownOne = RHSKnownOne | LHSKnownOne; 00337 break; 00338 case Instruction::Xor: { 00339 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 00340 RHSKnownZero, RHSKnownOne, Depth+1) || 00341 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 00342 LHSKnownZero, LHSKnownOne, Depth+1)) 00343 return I; 00344 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 00345 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 00346 00347 // Output known-0 bits are known if clear or set in both the LHS & RHS. 00348 APInt IKnownZero = (RHSKnownZero & LHSKnownZero) | 00349 (RHSKnownOne & LHSKnownOne); 00350 // Output known-1 are known to be set if set in only one of the LHS, RHS. 00351 APInt IKnownOne = (RHSKnownZero & LHSKnownOne) | 00352 (RHSKnownOne & LHSKnownZero); 00353 00354 // If the client is only demanding bits that we know, return the known 00355 // constant. 00356 if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask) 00357 return Constant::getIntegerValue(VTy, IKnownOne); 00358 00359 // If all of the demanded bits are known zero on one side, return the other. 00360 // These bits cannot contribute to the result of the 'xor'. 00361 if ((DemandedMask & RHSKnownZero) == DemandedMask) 00362 return I->getOperand(0); 00363 if ((DemandedMask & LHSKnownZero) == DemandedMask) 00364 return I->getOperand(1); 00365 00366 // If all of the demanded bits are known to be zero on one side or the 00367 // other, turn this into an *inclusive* or. 00368 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 00369 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) { 00370 Instruction *Or = 00371 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 00372 I->getName()); 00373 return InsertNewInstWith(Or, *I); 00374 } 00375 00376 // If all of the demanded bits on one side are known, and all of the set 00377 // bits on that side are also known to be set on the other side, turn this 00378 // into an AND, as we know the bits will be cleared. 00379 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 00380 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { 00381 // all known 00382 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) { 00383 Constant *AndC = Constant::getIntegerValue(VTy, 00384 ~RHSKnownOne & DemandedMask); 00385 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 00386 return InsertNewInstWith(And, *I); 00387 } 00388 } 00389 00390 // If the RHS is a constant, see if we can simplify it. 00391 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 00392 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 00393 return I; 00394 00395 // If our LHS is an 'and' and if it has one use, and if any of the bits we 00396 // are flipping are known to be set, then the xor is just resetting those 00397 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 00398 // simplifying both of them. 00399 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 00400 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 00401 isa<ConstantInt>(I->getOperand(1)) && 00402 isa<ConstantInt>(LHSInst->getOperand(1)) && 00403 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) { 00404 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 00405 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 00406 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask); 00407 00408 Constant *AndC = 00409 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 00410 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 00411 InsertNewInstWith(NewAnd, *I); 00412 00413 Constant *XorC = 00414 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 00415 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 00416 return InsertNewInstWith(NewXor, *I); 00417 } 00418 00419 // Output known-0 bits are known if clear or set in both the LHS & RHS. 00420 KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne); 00421 // Output known-1 are known to be set if set in only one of the LHS, RHS. 00422 KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero); 00423 break; 00424 } 00425 case Instruction::Select: 00426 if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, 00427 RHSKnownZero, RHSKnownOne, Depth+1) || 00428 SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 00429 LHSKnownZero, LHSKnownOne, Depth+1)) 00430 return I; 00431 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 00432 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 00433 00434 // If the operands are constants, see if we can simplify them. 00435 if (ShrinkDemandedConstant(I, 1, DemandedMask) || 00436 ShrinkDemandedConstant(I, 2, DemandedMask)) 00437 return I; 00438 00439 // Only known if known in both the LHS and RHS. 00440 KnownOne = RHSKnownOne & LHSKnownOne; 00441 KnownZero = RHSKnownZero & LHSKnownZero; 00442 break; 00443 case Instruction::Trunc: { 00444 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits(); 00445 DemandedMask = DemandedMask.zext(truncBf); 00446 KnownZero = KnownZero.zext(truncBf); 00447 KnownOne = KnownOne.zext(truncBf); 00448 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 00449 KnownZero, KnownOne, Depth+1)) 00450 return I; 00451 DemandedMask = DemandedMask.trunc(BitWidth); 00452 KnownZero = KnownZero.trunc(BitWidth); 00453 KnownOne = KnownOne.trunc(BitWidth); 00454 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 00455 break; 00456 } 00457 case Instruction::BitCast: 00458 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 00459 return nullptr; // vector->int or fp->int? 00460 00461 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 00462 if (VectorType *SrcVTy = 00463 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 00464 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 00465 // Don't touch a bitcast between vectors of different element counts. 00466 return nullptr; 00467 } else 00468 // Don't touch a scalar-to-vector bitcast. 00469 return nullptr; 00470 } else if (I->getOperand(0)->getType()->isVectorTy()) 00471 // Don't touch a vector-to-scalar bitcast. 00472 return nullptr; 00473 00474 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 00475 KnownZero, KnownOne, Depth+1)) 00476 return I; 00477 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 00478 break; 00479 case Instruction::ZExt: { 00480 // Compute the bits in the result that are not present in the input. 00481 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 00482 00483 DemandedMask = DemandedMask.trunc(SrcBitWidth); 00484 KnownZero = KnownZero.trunc(SrcBitWidth); 00485 KnownOne = KnownOne.trunc(SrcBitWidth); 00486 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 00487 KnownZero, KnownOne, Depth+1)) 00488 return I; 00489 DemandedMask = DemandedMask.zext(BitWidth); 00490 KnownZero = KnownZero.zext(BitWidth); 00491 KnownOne = KnownOne.zext(BitWidth); 00492 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 00493 // The top bits are known to be zero. 00494 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 00495 break; 00496 } 00497 case Instruction::SExt: { 00498 // Compute the bits in the result that are not present in the input. 00499 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 00500 00501 APInt InputDemandedBits = DemandedMask & 00502 APInt::getLowBitsSet(BitWidth, SrcBitWidth); 00503 00504 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth)); 00505 // If any of the sign extended bits are demanded, we know that the sign 00506 // bit is demanded. 00507 if ((NewBits & DemandedMask) != 0) 00508 InputDemandedBits.setBit(SrcBitWidth-1); 00509 00510 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth); 00511 KnownZero = KnownZero.trunc(SrcBitWidth); 00512 KnownOne = KnownOne.trunc(SrcBitWidth); 00513 if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, 00514 KnownZero, KnownOne, Depth+1)) 00515 return I; 00516 InputDemandedBits = InputDemandedBits.zext(BitWidth); 00517 KnownZero = KnownZero.zext(BitWidth); 00518 KnownOne = KnownOne.zext(BitWidth); 00519 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 00520 00521 // If the sign bit of the input is known set or clear, then we know the 00522 // top bits of the result. 00523 00524 // If the input sign bit is known zero, or if the NewBits are not demanded 00525 // convert this into a zero extension. 00526 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) { 00527 // Convert to ZExt cast 00528 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 00529 return InsertNewInstWith(NewCast, *I); 00530 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set 00531 KnownOne |= NewBits; 00532 } 00533 break; 00534 } 00535 case Instruction::Add: { 00536 // Figure out what the input bits are. If the top bits of the and result 00537 // are not demanded, then the add doesn't demand them from its input 00538 // either. 00539 unsigned NLZ = DemandedMask.countLeadingZeros(); 00540 00541 // If there is a constant on the RHS, there are a variety of xformations 00542 // we can do. 00543 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 00544 // If null, this should be simplified elsewhere. Some of the xforms here 00545 // won't work if the RHS is zero. 00546 if (RHS->isZero()) 00547 break; 00548 00549 // If the top bit of the output is demanded, demand everything from the 00550 // input. Otherwise, we demand all the input bits except NLZ top bits. 00551 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ)); 00552 00553 // Find information about known zero/one bits in the input. 00554 if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits, 00555 LHSKnownZero, LHSKnownOne, Depth+1)) 00556 return I; 00557 00558 // If the RHS of the add has bits set that can't affect the input, reduce 00559 // the constant. 00560 if (ShrinkDemandedConstant(I, 1, InDemandedBits)) 00561 return I; 00562 00563 // Avoid excess work. 00564 if (LHSKnownZero == 0 && LHSKnownOne == 0) 00565 break; 00566 00567 // Turn it into OR if input bits are zero. 00568 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) { 00569 Instruction *Or = 00570 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 00571 I->getName()); 00572 return InsertNewInstWith(Or, *I); 00573 } 00574 00575 // We can say something about the output known-zero and known-one bits, 00576 // depending on potential carries from the input constant and the 00577 // unknowns. For example if the LHS is known to have at most the 0x0F0F0 00578 // bits set and the RHS constant is 0x01001, then we know we have a known 00579 // one mask of 0x00001 and a known zero mask of 0xE0F0E. 00580 00581 // To compute this, we first compute the potential carry bits. These are 00582 // the bits which may be modified. I'm not aware of a better way to do 00583 // this scan. 00584 const APInt &RHSVal = RHS->getValue(); 00585 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal)); 00586 00587 // Now that we know which bits have carries, compute the known-1/0 sets. 00588 00589 // Bits are known one if they are known zero in one operand and one in the 00590 // other, and there is no input carry. 00591 KnownOne = ((LHSKnownZero & RHSVal) | 00592 (LHSKnownOne & ~RHSVal)) & ~CarryBits; 00593 00594 // Bits are known zero if they are known zero in both operands and there 00595 // is no input carry. 00596 KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits; 00597 } else { 00598 // If the high-bits of this ADD are not demanded, then it does not demand 00599 // the high bits of its LHS or RHS. 00600 if (DemandedMask[BitWidth-1] == 0) { 00601 // Right fill the mask of bits for this ADD to demand the most 00602 // significant bit and all those below it. 00603 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 00604 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, 00605 LHSKnownZero, LHSKnownOne, Depth+1) || 00606 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, 00607 LHSKnownZero, LHSKnownOne, Depth+1)) 00608 return I; 00609 } 00610 } 00611 break; 00612 } 00613 case Instruction::Sub: 00614 // If the high-bits of this SUB are not demanded, then it does not demand 00615 // the high bits of its LHS or RHS. 00616 if (DemandedMask[BitWidth-1] == 0) { 00617 // Right fill the mask of bits for this SUB to demand the most 00618 // significant bit and all those below it. 00619 uint32_t NLZ = DemandedMask.countLeadingZeros(); 00620 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 00621 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, 00622 LHSKnownZero, LHSKnownOne, Depth+1) || 00623 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, 00624 LHSKnownZero, LHSKnownOne, Depth+1)) 00625 return I; 00626 } 00627 00628 // Otherwise just hand the sub off to computeKnownBits to fill in 00629 // the known zeros and ones. 00630 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI); 00631 00632 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 00633 // zero. 00634 if (ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(0))) { 00635 APInt I0 = C0->getValue(); 00636 if ((I0 + 1).isPowerOf2() && (I0 | KnownZero).isAllOnesValue()) { 00637 Instruction *Xor = BinaryOperator::CreateXor(I->getOperand(1), C0); 00638 return InsertNewInstWith(Xor, *I); 00639 } 00640 } 00641 break; 00642 case Instruction::Shl: 00643 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 00644 { 00645 Value *VarX; ConstantInt *C1; 00646 if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) { 00647 Instruction *Shr = cast<Instruction>(I->getOperand(0)); 00648 Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask, 00649 KnownZero, KnownOne); 00650 if (R) 00651 return R; 00652 } 00653 } 00654 00655 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 00656 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 00657 00658 // If the shift is NUW/NSW, then it does demand the high bits. 00659 ShlOperator *IOp = cast<ShlOperator>(I); 00660 if (IOp->hasNoSignedWrap()) 00661 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); 00662 else if (IOp->hasNoUnsignedWrap()) 00663 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 00664 00665 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 00666 KnownZero, KnownOne, Depth+1)) 00667 return I; 00668 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 00669 KnownZero <<= ShiftAmt; 00670 KnownOne <<= ShiftAmt; 00671 // low bits known zero. 00672 if (ShiftAmt) 00673 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 00674 } 00675 break; 00676 case Instruction::LShr: 00677 // For a logical shift right 00678 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 00679 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 00680 00681 // Unsigned shift right. 00682 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 00683 00684 // If the shift is exact, then it does demand the low bits (and knows that 00685 // they are zero). 00686 if (cast<LShrOperator>(I)->isExact()) 00687 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 00688 00689 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 00690 KnownZero, KnownOne, Depth+1)) 00691 return I; 00692 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 00693 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 00694 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 00695 if (ShiftAmt) { 00696 // Compute the new bits that are at the top now. 00697 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 00698 KnownZero |= HighBits; // high bits known zero. 00699 } 00700 } 00701 break; 00702 case Instruction::AShr: 00703 // If this is an arithmetic shift right and only the low-bit is set, we can 00704 // always convert this into a logical shr, even if the shift amount is 00705 // variable. The low bit of the shift cannot be an input sign bit unless 00706 // the shift amount is >= the size of the datatype, which is undefined. 00707 if (DemandedMask == 1) { 00708 // Perform the logical shift right. 00709 Instruction *NewVal = BinaryOperator::CreateLShr( 00710 I->getOperand(0), I->getOperand(1), I->getName()); 00711 return InsertNewInstWith(NewVal, *I); 00712 } 00713 00714 // If the sign bit is the only bit demanded by this ashr, then there is no 00715 // need to do it, the shift doesn't change the high bit. 00716 if (DemandedMask.isSignBit()) 00717 return I->getOperand(0); 00718 00719 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 00720 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 00721 00722 // Signed shift right. 00723 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 00724 // If any of the "high bits" are demanded, we should set the sign bit as 00725 // demanded. 00726 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 00727 DemandedMaskIn.setBit(BitWidth-1); 00728 00729 // If the shift is exact, then it does demand the low bits (and knows that 00730 // they are zero). 00731 if (cast<AShrOperator>(I)->isExact()) 00732 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 00733 00734 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 00735 KnownZero, KnownOne, Depth+1)) 00736 return I; 00737 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 00738 // Compute the new bits that are at the top now. 00739 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 00740 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 00741 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 00742 00743 // Handle the sign bits. 00744 APInt SignBit(APInt::getSignBit(BitWidth)); 00745 // Adjust to where it is now in the mask. 00746 SignBit = APIntOps::lshr(SignBit, ShiftAmt); 00747 00748 // If the input sign bit is known to be zero, or if none of the top bits 00749 // are demanded, turn this into an unsigned shift right. 00750 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] || 00751 (HighBits & ~DemandedMask) == HighBits) { 00752 // Perform the logical shift right. 00753 BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0), 00754 SA, I->getName()); 00755 NewVal->setIsExact(cast<BinaryOperator>(I)->isExact()); 00756 return InsertNewInstWith(NewVal, *I); 00757 } else if ((KnownOne & SignBit) != 0) { // New bits are known one. 00758 KnownOne |= HighBits; 00759 } 00760 } 00761 break; 00762 case Instruction::SRem: 00763 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 00764 // X % -1 demands all the bits because we don't want to introduce 00765 // INT_MIN % -1 (== undef) by accident. 00766 if (Rem->isAllOnesValue()) 00767 break; 00768 APInt RA = Rem->getValue().abs(); 00769 if (RA.isPowerOf2()) { 00770 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 00771 return I->getOperand(0); 00772 00773 APInt LowBits = RA - 1; 00774 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); 00775 if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, 00776 LHSKnownZero, LHSKnownOne, Depth+1)) 00777 return I; 00778 00779 // The low bits of LHS are unchanged by the srem. 00780 KnownZero = LHSKnownZero & LowBits; 00781 KnownOne = LHSKnownOne & LowBits; 00782 00783 // If LHS is non-negative or has all low bits zero, then the upper bits 00784 // are all zero. 00785 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits)) 00786 KnownZero |= ~LowBits; 00787 00788 // If LHS is negative and not all low bits are zero, then the upper bits 00789 // are all one. 00790 if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0)) 00791 KnownOne |= ~LowBits; 00792 00793 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 00794 } 00795 } 00796 00797 // The sign bit is the LHS's sign bit, except when the result of the 00798 // remainder is zero. 00799 if (DemandedMask.isNegative() && KnownZero.isNonNegative()) { 00800 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 00801 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1, 00802 CxtI); 00803 // If it's known zero, our sign bit is also zero. 00804 if (LHSKnownZero.isNegative()) 00805 KnownZero.setBit(KnownZero.getBitWidth() - 1); 00806 } 00807 break; 00808 case Instruction::URem: { 00809 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); 00810 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 00811 if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, 00812 KnownZero2, KnownOne2, Depth+1) || 00813 SimplifyDemandedBits(I->getOperandUse(1), AllOnes, 00814 KnownZero2, KnownOne2, Depth+1)) 00815 return I; 00816 00817 unsigned Leaders = KnownZero2.countLeadingOnes(); 00818 Leaders = std::max(Leaders, 00819 KnownZero2.countLeadingOnes()); 00820 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 00821 break; 00822 } 00823 case Instruction::Call: 00824 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 00825 switch (II->getIntrinsicID()) { 00826 default: break; 00827 case Intrinsic::bswap: { 00828 // If the only bits demanded come from one byte of the bswap result, 00829 // just shift the input byte into position to eliminate the bswap. 00830 unsigned NLZ = DemandedMask.countLeadingZeros(); 00831 unsigned NTZ = DemandedMask.countTrailingZeros(); 00832 00833 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 00834 // we need all the bits down to bit 8. Likewise, round NLZ. If we 00835 // have 14 leading zeros, round to 8. 00836 NLZ &= ~7; 00837 NTZ &= ~7; 00838 // If we need exactly one byte, we can do this transformation. 00839 if (BitWidth-NLZ-NTZ == 8) { 00840 unsigned ResultBit = NTZ; 00841 unsigned InputBit = BitWidth-NTZ-8; 00842 00843 // Replace this with either a left or right shift to get the byte into 00844 // the right place. 00845 Instruction *NewVal; 00846 if (InputBit > ResultBit) 00847 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 00848 ConstantInt::get(I->getType(), InputBit-ResultBit)); 00849 else 00850 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 00851 ConstantInt::get(I->getType(), ResultBit-InputBit)); 00852 NewVal->takeName(I); 00853 return InsertNewInstWith(NewVal, *I); 00854 } 00855 00856 // TODO: Could compute known zero/one bits based on the input. 00857 break; 00858 } 00859 case Intrinsic::x86_sse42_crc32_64_64: 00860 KnownZero = APInt::getHighBitsSet(64, 32); 00861 return nullptr; 00862 } 00863 } 00864 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI); 00865 break; 00866 } 00867 00868 // If the client is only demanding bits that we know, return the known 00869 // constant. 00870 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) 00871 return Constant::getIntegerValue(VTy, KnownOne); 00872 return nullptr; 00873 } 00874 00875 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 00876 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 00877 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 00878 /// of "C2-C1". 00879 /// 00880 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 00881 /// ..., bn}, without considering the specific value X is holding. 00882 /// This transformation is legal iff one of following conditions is hold: 00883 /// 1) All the bit in S are 0, in this case E1 == E2. 00884 /// 2) We don't care those bits in S, per the input DemandedMask. 00885 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 00886 /// rest bits. 00887 /// 00888 /// Currently we only test condition 2). 00889 /// 00890 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 00891 /// not successful. 00892 Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr, 00893 Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) { 00894 00895 const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue(); 00896 const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue(); 00897 if (!ShlOp1 || !ShrOp1) 00898 return nullptr; // Noop. 00899 00900 Value *VarX = Shr->getOperand(0); 00901 Type *Ty = VarX->getType(); 00902 unsigned BitWidth = Ty->getIntegerBitWidth(); 00903 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 00904 return nullptr; // Undef. 00905 00906 unsigned ShlAmt = ShlOp1.getZExtValue(); 00907 unsigned ShrAmt = ShrOp1.getZExtValue(); 00908 00909 KnownOne.clearAllBits(); 00910 KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1); 00911 KnownZero &= DemandedMask; 00912 00913 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 00914 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 00915 00916 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 00917 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 00918 (BitMask1.ashr(ShrAmt) << ShlAmt); 00919 00920 if (ShrAmt <= ShlAmt) { 00921 BitMask2 <<= (ShlAmt - ShrAmt); 00922 } else { 00923 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 00924 BitMask2.ashr(ShrAmt - ShlAmt); 00925 } 00926 00927 // Check if condition-2 (see the comment to this function) is satified. 00928 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 00929 if (ShrAmt == ShlAmt) 00930 return VarX; 00931 00932 if (!Shr->hasOneUse()) 00933 return nullptr; 00934 00935 BinaryOperator *New; 00936 if (ShrAmt < ShlAmt) { 00937 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 00938 New = BinaryOperator::CreateShl(VarX, Amt); 00939 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 00940 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 00941 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 00942 } else { 00943 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 00944 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 00945 BinaryOperator::CreateAShr(VarX, Amt); 00946 if (cast<BinaryOperator>(Shr)->isExact()) 00947 New->setIsExact(true); 00948 } 00949 00950 return InsertNewInstWith(New, *Shl); 00951 } 00952 00953 return nullptr; 00954 } 00955 00956 /// SimplifyDemandedVectorElts - The specified value produces a vector with 00957 /// any number of elements. DemandedElts contains the set of elements that are 00958 /// actually used by the caller. This method analyzes which elements of the 00959 /// operand are undef and returns that information in UndefElts. 00960 /// 00961 /// If the information about demanded elements can be used to simplify the 00962 /// operation, the operation is simplified, then the resultant value is 00963 /// returned. This returns null if no change was made. 00964 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 00965 APInt &UndefElts, 00966 unsigned Depth) { 00967 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 00968 APInt EltMask(APInt::getAllOnesValue(VWidth)); 00969 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 00970 00971 if (isa<UndefValue>(V)) { 00972 // If the entire vector is undefined, just return this info. 00973 UndefElts = EltMask; 00974 return nullptr; 00975 } 00976 00977 if (DemandedElts == 0) { // If nothing is demanded, provide undef. 00978 UndefElts = EltMask; 00979 return UndefValue::get(V->getType()); 00980 } 00981 00982 UndefElts = 0; 00983 00984 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential. 00985 if (Constant *C = dyn_cast<Constant>(V)) { 00986 // Check if this is identity. If so, return 0 since we are not simplifying 00987 // anything. 00988 if (DemandedElts.isAllOnesValue()) 00989 return nullptr; 00990 00991 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 00992 Constant *Undef = UndefValue::get(EltTy); 00993 00994 SmallVector<Constant*, 16> Elts; 00995 for (unsigned i = 0; i != VWidth; ++i) { 00996 if (!DemandedElts[i]) { // If not demanded, set to undef. 00997 Elts.push_back(Undef); 00998 UndefElts.setBit(i); 00999 continue; 01000 } 01001 01002 Constant *Elt = C->getAggregateElement(i); 01003 if (!Elt) return nullptr; 01004 01005 if (isa<UndefValue>(Elt)) { // Already undef. 01006 Elts.push_back(Undef); 01007 UndefElts.setBit(i); 01008 } else { // Otherwise, defined. 01009 Elts.push_back(Elt); 01010 } 01011 } 01012 01013 // If we changed the constant, return it. 01014 Constant *NewCV = ConstantVector::get(Elts); 01015 return NewCV != C ? NewCV : nullptr; 01016 } 01017 01018 // Limit search depth. 01019 if (Depth == 10) 01020 return nullptr; 01021 01022 // If multiple users are using the root value, proceed with 01023 // simplification conservatively assuming that all elements 01024 // are needed. 01025 if (!V->hasOneUse()) { 01026 // Quit if we find multiple users of a non-root value though. 01027 // They'll be handled when it's their turn to be visited by 01028 // the main instcombine process. 01029 if (Depth != 0) 01030 // TODO: Just compute the UndefElts information recursively. 01031 return nullptr; 01032 01033 // Conservatively assume that all elements are needed. 01034 DemandedElts = EltMask; 01035 } 01036 01037 Instruction *I = dyn_cast<Instruction>(V); 01038 if (!I) return nullptr; // Only analyze instructions. 01039 01040 bool MadeChange = false; 01041 APInt UndefElts2(VWidth, 0); 01042 Value *TmpV; 01043 switch (I->getOpcode()) { 01044 default: break; 01045 01046 case Instruction::InsertElement: { 01047 // If this is a variable index, we don't know which element it overwrites. 01048 // demand exactly the same input as we produce. 01049 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 01050 if (!Idx) { 01051 // Note that we can't propagate undef elt info, because we don't know 01052 // which elt is getting updated. 01053 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 01054 UndefElts2, Depth+1); 01055 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 01056 break; 01057 } 01058 01059 // If this is inserting an element that isn't demanded, remove this 01060 // insertelement. 01061 unsigned IdxNo = Idx->getZExtValue(); 01062 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 01063 Worklist.Add(I); 01064 return I->getOperand(0); 01065 } 01066 01067 // Otherwise, the element inserted overwrites whatever was there, so the 01068 // input demanded set is simpler than the output set. 01069 APInt DemandedElts2 = DemandedElts; 01070 DemandedElts2.clearBit(IdxNo); 01071 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2, 01072 UndefElts, Depth+1); 01073 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 01074 01075 // The inserted element is defined. 01076 UndefElts.clearBit(IdxNo); 01077 break; 01078 } 01079 case Instruction::ShuffleVector: { 01080 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 01081 uint64_t LHSVWidth = 01082 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements(); 01083 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); 01084 for (unsigned i = 0; i < VWidth; i++) { 01085 if (DemandedElts[i]) { 01086 unsigned MaskVal = Shuffle->getMaskValue(i); 01087 if (MaskVal != -1u) { 01088 assert(MaskVal < LHSVWidth * 2 && 01089 "shufflevector mask index out of range!"); 01090 if (MaskVal < LHSVWidth) 01091 LeftDemanded.setBit(MaskVal); 01092 else 01093 RightDemanded.setBit(MaskVal - LHSVWidth); 01094 } 01095 } 01096 } 01097 01098 APInt UndefElts4(LHSVWidth, 0); 01099 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, 01100 UndefElts4, Depth+1); 01101 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 01102 01103 APInt UndefElts3(LHSVWidth, 0); 01104 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, 01105 UndefElts3, Depth+1); 01106 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 01107 01108 bool NewUndefElts = false; 01109 for (unsigned i = 0; i < VWidth; i++) { 01110 unsigned MaskVal = Shuffle->getMaskValue(i); 01111 if (MaskVal == -1u) { 01112 UndefElts.setBit(i); 01113 } else if (!DemandedElts[i]) { 01114 NewUndefElts = true; 01115 UndefElts.setBit(i); 01116 } else if (MaskVal < LHSVWidth) { 01117 if (UndefElts4[MaskVal]) { 01118 NewUndefElts = true; 01119 UndefElts.setBit(i); 01120 } 01121 } else { 01122 if (UndefElts3[MaskVal - LHSVWidth]) { 01123 NewUndefElts = true; 01124 UndefElts.setBit(i); 01125 } 01126 } 01127 } 01128 01129 if (NewUndefElts) { 01130 // Add additional discovered undefs. 01131 SmallVector<Constant*, 16> Elts; 01132 for (unsigned i = 0; i < VWidth; ++i) { 01133 if (UndefElts[i]) 01134 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 01135 else 01136 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 01137 Shuffle->getMaskValue(i))); 01138 } 01139 I->setOperand(2, ConstantVector::get(Elts)); 01140 MadeChange = true; 01141 } 01142 break; 01143 } 01144 case Instruction::Select: { 01145 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts); 01146 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) { 01147 for (unsigned i = 0; i < VWidth; i++) { 01148 if (CV->getAggregateElement(i)->isNullValue()) 01149 LeftDemanded.clearBit(i); 01150 else 01151 RightDemanded.clearBit(i); 01152 } 01153 } 01154 01155 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, 01156 UndefElts, Depth+1); 01157 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 01158 01159 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded, 01160 UndefElts2, Depth+1); 01161 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; } 01162 01163 // Output elements are undefined if both are undefined. 01164 UndefElts &= UndefElts2; 01165 break; 01166 } 01167 case Instruction::BitCast: { 01168 // Vector->vector casts only. 01169 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 01170 if (!VTy) break; 01171 unsigned InVWidth = VTy->getNumElements(); 01172 APInt InputDemandedElts(InVWidth, 0); 01173 unsigned Ratio; 01174 01175 if (VWidth == InVWidth) { 01176 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 01177 // elements as are demanded of us. 01178 Ratio = 1; 01179 InputDemandedElts = DemandedElts; 01180 } else if (VWidth > InVWidth) { 01181 // Untested so far. 01182 break; 01183 01184 // If there are more elements in the result than there are in the source, 01185 // then an input element is live if any of the corresponding output 01186 // elements are live. 01187 Ratio = VWidth/InVWidth; 01188 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 01189 if (DemandedElts[OutIdx]) 01190 InputDemandedElts.setBit(OutIdx/Ratio); 01191 } 01192 } else { 01193 // Untested so far. 01194 break; 01195 01196 // If there are more elements in the source than there are in the result, 01197 // then an input element is live if the corresponding output element is 01198 // live. 01199 Ratio = InVWidth/VWidth; 01200 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 01201 if (DemandedElts[InIdx/Ratio]) 01202 InputDemandedElts.setBit(InIdx); 01203 } 01204 01205 // div/rem demand all inputs, because they don't want divide by zero. 01206 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, 01207 UndefElts2, Depth+1); 01208 if (TmpV) { 01209 I->setOperand(0, TmpV); 01210 MadeChange = true; 01211 } 01212 01213 UndefElts = UndefElts2; 01214 if (VWidth > InVWidth) { 01215 llvm_unreachable("Unimp"); 01216 // If there are more elements in the result than there are in the source, 01217 // then an output element is undef if the corresponding input element is 01218 // undef. 01219 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 01220 if (UndefElts2[OutIdx/Ratio]) 01221 UndefElts.setBit(OutIdx); 01222 } else if (VWidth < InVWidth) { 01223 llvm_unreachable("Unimp"); 01224 // If there are more elements in the source than there are in the result, 01225 // then a result element is undef if all of the corresponding input 01226 // elements are undef. 01227 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef. 01228 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 01229 if (!UndefElts2[InIdx]) // Not undef? 01230 UndefElts.clearBit(InIdx/Ratio); // Clear undef bit. 01231 } 01232 break; 01233 } 01234 case Instruction::And: 01235 case Instruction::Or: 01236 case Instruction::Xor: 01237 case Instruction::Add: 01238 case Instruction::Sub: 01239 case Instruction::Mul: 01240 // div/rem demand all inputs, because they don't want divide by zero. 01241 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 01242 UndefElts, Depth+1); 01243 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 01244 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, 01245 UndefElts2, Depth+1); 01246 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 01247 01248 // Output elements are undefined if both are undefined. Consider things 01249 // like undef&0. The result is known zero, not undef. 01250 UndefElts &= UndefElts2; 01251 break; 01252 case Instruction::FPTrunc: 01253 case Instruction::FPExt: 01254 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 01255 UndefElts, Depth+1); 01256 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 01257 break; 01258 01259 case Instruction::Call: { 01260 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 01261 if (!II) break; 01262 switch (II->getIntrinsicID()) { 01263 default: break; 01264 01265 // Binary vector operations that work column-wise. A dest element is a 01266 // function of the corresponding input elements from the two inputs. 01267 case Intrinsic::x86_sse_sub_ss: 01268 case Intrinsic::x86_sse_mul_ss: 01269 case Intrinsic::x86_sse_min_ss: 01270 case Intrinsic::x86_sse_max_ss: 01271 case Intrinsic::x86_sse2_sub_sd: 01272 case Intrinsic::x86_sse2_mul_sd: 01273 case Intrinsic::x86_sse2_min_sd: 01274 case Intrinsic::x86_sse2_max_sd: 01275 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 01276 UndefElts, Depth+1); 01277 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 01278 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 01279 UndefElts2, Depth+1); 01280 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 01281 01282 // If only the low elt is demanded and this is a scalarizable intrinsic, 01283 // scalarize it now. 01284 if (DemandedElts == 1) { 01285 switch (II->getIntrinsicID()) { 01286 default: break; 01287 case Intrinsic::x86_sse_sub_ss: 01288 case Intrinsic::x86_sse_mul_ss: 01289 case Intrinsic::x86_sse2_sub_sd: 01290 case Intrinsic::x86_sse2_mul_sd: 01291 // TODO: Lower MIN/MAX/ABS/etc 01292 Value *LHS = II->getArgOperand(0); 01293 Value *RHS = II->getArgOperand(1); 01294 // Extract the element as scalars. 01295 LHS = InsertNewInstWith(ExtractElementInst::Create(LHS, 01296 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); 01297 RHS = InsertNewInstWith(ExtractElementInst::Create(RHS, 01298 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); 01299 01300 switch (II->getIntrinsicID()) { 01301 default: llvm_unreachable("Case stmts out of sync!"); 01302 case Intrinsic::x86_sse_sub_ss: 01303 case Intrinsic::x86_sse2_sub_sd: 01304 TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS, 01305 II->getName()), *II); 01306 break; 01307 case Intrinsic::x86_sse_mul_ss: 01308 case Intrinsic::x86_sse2_mul_sd: 01309 TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS, 01310 II->getName()), *II); 01311 break; 01312 } 01313 01314 Instruction *New = 01315 InsertElementInst::Create( 01316 UndefValue::get(II->getType()), TmpV, 01317 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false), 01318 II->getName()); 01319 InsertNewInstWith(New, *II); 01320 return New; 01321 } 01322 } 01323 01324 // Output elements are undefined if both are undefined. Consider things 01325 // like undef&0. The result is known zero, not undef. 01326 UndefElts &= UndefElts2; 01327 break; 01328 } 01329 break; 01330 } 01331 } 01332 return MadeChange ? I : nullptr; 01333 }