LLVM API Documentation

InstrProfReader.cpp
Go to the documentation of this file.
00001 //=-- InstrProfReader.cpp - Instrumented profiling reader -------------------=//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file contains support for reading profiling data for clang's
00011 // instrumentation based PGO and coverage.
00012 //
00013 //===----------------------------------------------------------------------===//
00014 
00015 #include "llvm/ProfileData/InstrProfReader.h"
00016 #include "llvm/ProfileData/InstrProf.h"
00017 
00018 #include "InstrProfIndexed.h"
00019 
00020 #include <cassert>
00021 
00022 using namespace llvm;
00023 
00024 static std::error_code
00025 setupMemoryBuffer(std::string Path, std::unique_ptr<MemoryBuffer> &Buffer) {
00026   ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
00027       MemoryBuffer::getFileOrSTDIN(Path);
00028   if (std::error_code EC = BufferOrErr.getError())
00029     return EC;
00030   Buffer = std::move(BufferOrErr.get());
00031 
00032   // Sanity check the file.
00033   if (Buffer->getBufferSize() > std::numeric_limits<unsigned>::max())
00034     return instrprof_error::too_large;
00035   return instrprof_error::success;
00036 }
00037 
00038 static std::error_code initializeReader(InstrProfReader &Reader) {
00039   return Reader.readHeader();
00040 }
00041 
00042 std::error_code
00043 InstrProfReader::create(std::string Path,
00044                         std::unique_ptr<InstrProfReader> &Result) {
00045   // Set up the buffer to read.
00046   std::unique_ptr<MemoryBuffer> Buffer;
00047   if (std::error_code EC = setupMemoryBuffer(Path, Buffer))
00048     return EC;
00049 
00050   // Create the reader.
00051   if (IndexedInstrProfReader::hasFormat(*Buffer))
00052     Result.reset(new IndexedInstrProfReader(std::move(Buffer)));
00053   else if (RawInstrProfReader64::hasFormat(*Buffer))
00054     Result.reset(new RawInstrProfReader64(std::move(Buffer)));
00055   else if (RawInstrProfReader32::hasFormat(*Buffer))
00056     Result.reset(new RawInstrProfReader32(std::move(Buffer)));
00057   else
00058     Result.reset(new TextInstrProfReader(std::move(Buffer)));
00059 
00060   // Initialize the reader and return the result.
00061   return initializeReader(*Result);
00062 }
00063 
00064 std::error_code IndexedInstrProfReader::create(
00065     std::string Path, std::unique_ptr<IndexedInstrProfReader> &Result) {
00066   // Set up the buffer to read.
00067   std::unique_ptr<MemoryBuffer> Buffer;
00068   if (std::error_code EC = setupMemoryBuffer(Path, Buffer))
00069     return EC;
00070 
00071   // Create the reader.
00072   if (!IndexedInstrProfReader::hasFormat(*Buffer))
00073     return instrprof_error::bad_magic;
00074   Result.reset(new IndexedInstrProfReader(std::move(Buffer)));
00075 
00076   // Initialize the reader and return the result.
00077   return initializeReader(*Result);
00078 }
00079 
00080 void InstrProfIterator::Increment() {
00081   if (Reader->readNextRecord(Record))
00082     *this = InstrProfIterator();
00083 }
00084 
00085 std::error_code TextInstrProfReader::readNextRecord(InstrProfRecord &Record) {
00086   // Skip empty lines and comments.
00087   while (!Line.is_at_end() && (Line->empty() || Line->startswith("#")))
00088     ++Line;
00089   // If we hit EOF while looking for a name, we're done.
00090   if (Line.is_at_end())
00091     return error(instrprof_error::eof);
00092 
00093   // Read the function name.
00094   Record.Name = *Line++;
00095 
00096   // Read the function hash.
00097   if (Line.is_at_end())
00098     return error(instrprof_error::truncated);
00099   if ((Line++)->getAsInteger(10, Record.Hash))
00100     return error(instrprof_error::malformed);
00101 
00102   // Read the number of counters.
00103   uint64_t NumCounters;
00104   if (Line.is_at_end())
00105     return error(instrprof_error::truncated);
00106   if ((Line++)->getAsInteger(10, NumCounters))
00107     return error(instrprof_error::malformed);
00108   if (NumCounters == 0)
00109     return error(instrprof_error::malformed);
00110 
00111   // Read each counter and fill our internal storage with the values.
00112   Counts.clear();
00113   Counts.reserve(NumCounters);
00114   for (uint64_t I = 0; I < NumCounters; ++I) {
00115     if (Line.is_at_end())
00116       return error(instrprof_error::truncated);
00117     uint64_t Count;
00118     if ((Line++)->getAsInteger(10, Count))
00119       return error(instrprof_error::malformed);
00120     Counts.push_back(Count);
00121   }
00122   // Give the record a reference to our internal counter storage.
00123   Record.Counts = Counts;
00124 
00125   return success();
00126 }
00127 
00128 template <class IntPtrT>
00129 static uint64_t getRawMagic();
00130 
00131 template <>
00132 uint64_t getRawMagic<uint64_t>() {
00133   return
00134     uint64_t(255) << 56 |
00135     uint64_t('l') << 48 |
00136     uint64_t('p') << 40 |
00137     uint64_t('r') << 32 |
00138     uint64_t('o') << 24 |
00139     uint64_t('f') << 16 |
00140     uint64_t('r') <<  8 |
00141     uint64_t(129);
00142 }
00143 
00144 template <>
00145 uint64_t getRawMagic<uint32_t>() {
00146   return
00147     uint64_t(255) << 56 |
00148     uint64_t('l') << 48 |
00149     uint64_t('p') << 40 |
00150     uint64_t('r') << 32 |
00151     uint64_t('o') << 24 |
00152     uint64_t('f') << 16 |
00153     uint64_t('R') <<  8 |
00154     uint64_t(129);
00155 }
00156 
00157 template <class IntPtrT>
00158 bool RawInstrProfReader<IntPtrT>::hasFormat(const MemoryBuffer &DataBuffer) {
00159   if (DataBuffer.getBufferSize() < sizeof(uint64_t))
00160     return false;
00161   uint64_t Magic =
00162     *reinterpret_cast<const uint64_t *>(DataBuffer.getBufferStart());
00163   return getRawMagic<IntPtrT>() == Magic ||
00164     sys::getSwappedBytes(getRawMagic<IntPtrT>()) == Magic;
00165 }
00166 
00167 template <class IntPtrT>
00168 std::error_code RawInstrProfReader<IntPtrT>::readHeader() {
00169   if (!hasFormat(*DataBuffer))
00170     return error(instrprof_error::bad_magic);
00171   if (DataBuffer->getBufferSize() < sizeof(RawHeader))
00172     return error(instrprof_error::bad_header);
00173   auto *Header =
00174     reinterpret_cast<const RawHeader *>(DataBuffer->getBufferStart());
00175   ShouldSwapBytes = Header->Magic != getRawMagic<IntPtrT>();
00176   return readHeader(*Header);
00177 }
00178 
00179 template <class IntPtrT>
00180 std::error_code
00181 RawInstrProfReader<IntPtrT>::readNextHeader(const char *CurrentPos) {
00182   const char *End = DataBuffer->getBufferEnd();
00183   // Skip zero padding between profiles.
00184   while (CurrentPos != End && *CurrentPos == 0)
00185     ++CurrentPos;
00186   // If there's nothing left, we're done.
00187   if (CurrentPos == End)
00188     return instrprof_error::eof;
00189   // If there isn't enough space for another header, this is probably just
00190   // garbage at the end of the file.
00191   if (CurrentPos + sizeof(RawHeader) > End)
00192     return instrprof_error::malformed;
00193   // The writer ensures each profile is padded to start at an aligned address.
00194   if (reinterpret_cast<size_t>(CurrentPos) % alignOf<uint64_t>())
00195     return instrprof_error::malformed;
00196   // The magic should have the same byte order as in the previous header.
00197   uint64_t Magic = *reinterpret_cast<const uint64_t *>(CurrentPos);
00198   if (Magic != swap(getRawMagic<IntPtrT>()))
00199     return instrprof_error::bad_magic;
00200 
00201   // There's another profile to read, so we need to process the header.
00202   auto *Header = reinterpret_cast<const RawHeader *>(CurrentPos);
00203   return readHeader(*Header);
00204 }
00205 
00206 static uint64_t getRawVersion() {
00207   return 1;
00208 }
00209 
00210 template <class IntPtrT>
00211 std::error_code
00212 RawInstrProfReader<IntPtrT>::readHeader(const RawHeader &Header) {
00213   if (swap(Header.Version) != getRawVersion())
00214     return error(instrprof_error::unsupported_version);
00215 
00216   CountersDelta = swap(Header.CountersDelta);
00217   NamesDelta = swap(Header.NamesDelta);
00218   auto DataSize = swap(Header.DataSize);
00219   auto CountersSize = swap(Header.CountersSize);
00220   auto NamesSize = swap(Header.NamesSize);
00221 
00222   ptrdiff_t DataOffset = sizeof(RawHeader);
00223   ptrdiff_t CountersOffset = DataOffset + sizeof(ProfileData) * DataSize;
00224   ptrdiff_t NamesOffset = CountersOffset + sizeof(uint64_t) * CountersSize;
00225   size_t ProfileSize = NamesOffset + sizeof(char) * NamesSize;
00226 
00227   auto *Start = reinterpret_cast<const char *>(&Header);
00228   if (Start + ProfileSize > DataBuffer->getBufferEnd())
00229     return error(instrprof_error::bad_header);
00230 
00231   Data = reinterpret_cast<const ProfileData *>(Start + DataOffset);
00232   DataEnd = Data + DataSize;
00233   CountersStart = reinterpret_cast<const uint64_t *>(Start + CountersOffset);
00234   NamesStart = Start + NamesOffset;
00235   ProfileEnd = Start + ProfileSize;
00236 
00237   return success();
00238 }
00239 
00240 template <class IntPtrT>
00241 std::error_code
00242 RawInstrProfReader<IntPtrT>::readNextRecord(InstrProfRecord &Record) {
00243   if (Data == DataEnd)
00244     if (std::error_code EC = readNextHeader(ProfileEnd))
00245       return EC;
00246 
00247   // Get the raw data.
00248   StringRef RawName(getName(Data->NamePtr), swap(Data->NameSize));
00249   uint32_t NumCounters = swap(Data->NumCounters);
00250   if (NumCounters == 0)
00251     return error(instrprof_error::malformed);
00252   auto RawCounts = makeArrayRef(getCounter(Data->CounterPtr), NumCounters);
00253 
00254   // Check bounds.
00255   auto *NamesStartAsCounter = reinterpret_cast<const uint64_t *>(NamesStart);
00256   if (RawName.data() < NamesStart ||
00257       RawName.data() + RawName.size() > DataBuffer->getBufferEnd() ||
00258       RawCounts.data() < CountersStart ||
00259       RawCounts.data() + RawCounts.size() > NamesStartAsCounter)
00260     return error(instrprof_error::malformed);
00261 
00262   // Store the data in Record, byte-swapping as necessary.
00263   Record.Hash = swap(Data->FuncHash);
00264   Record.Name = RawName;
00265   if (ShouldSwapBytes) {
00266     Counts.clear();
00267     Counts.reserve(RawCounts.size());
00268     for (uint64_t Count : RawCounts)
00269       Counts.push_back(swap(Count));
00270     Record.Counts = Counts;
00271   } else
00272     Record.Counts = RawCounts;
00273 
00274   // Iterate.
00275   ++Data;
00276   return success();
00277 }
00278 
00279 namespace llvm {
00280 template class RawInstrProfReader<uint32_t>;
00281 template class RawInstrProfReader<uint64_t>;
00282 }
00283 
00284 InstrProfLookupTrait::hash_value_type
00285 InstrProfLookupTrait::ComputeHash(StringRef K) {
00286   return IndexedInstrProf::ComputeHash(HashType, K);
00287 }
00288 
00289 bool IndexedInstrProfReader::hasFormat(const MemoryBuffer &DataBuffer) {
00290   if (DataBuffer.getBufferSize() < 8)
00291     return false;
00292   using namespace support;
00293   uint64_t Magic =
00294       endian::read<uint64_t, little, aligned>(DataBuffer.getBufferStart());
00295   return Magic == IndexedInstrProf::Magic;
00296 }
00297 
00298 std::error_code IndexedInstrProfReader::readHeader() {
00299   const unsigned char *Start =
00300       (const unsigned char *)DataBuffer->getBufferStart();
00301   const unsigned char *Cur = Start;
00302   if ((const unsigned char *)DataBuffer->getBufferEnd() - Cur < 24)
00303     return error(instrprof_error::truncated);
00304 
00305   using namespace support;
00306 
00307   // Check the magic number.
00308   uint64_t Magic = endian::readNext<uint64_t, little, unaligned>(Cur);
00309   if (Magic != IndexedInstrProf::Magic)
00310     return error(instrprof_error::bad_magic);
00311 
00312   // Read the version.
00313   FormatVersion = endian::readNext<uint64_t, little, unaligned>(Cur);
00314   if (FormatVersion > IndexedInstrProf::Version)
00315     return error(instrprof_error::unsupported_version);
00316 
00317   // Read the maximal function count.
00318   MaxFunctionCount = endian::readNext<uint64_t, little, unaligned>(Cur);
00319 
00320   // Read the hash type and start offset.
00321   IndexedInstrProf::HashT HashType = static_cast<IndexedInstrProf::HashT>(
00322       endian::readNext<uint64_t, little, unaligned>(Cur));
00323   if (HashType > IndexedInstrProf::HashT::Last)
00324     return error(instrprof_error::unsupported_hash_type);
00325   uint64_t HashOffset = endian::readNext<uint64_t, little, unaligned>(Cur);
00326 
00327   // The rest of the file is an on disk hash table.
00328   Index.reset(InstrProfReaderIndex::Create(Start + HashOffset, Cur, Start,
00329                                            InstrProfLookupTrait(HashType)));
00330   // Set up our iterator for readNextRecord.
00331   RecordIterator = Index->data_begin();
00332 
00333   return success();
00334 }
00335 
00336 std::error_code IndexedInstrProfReader::getFunctionCounts(
00337     StringRef FuncName, uint64_t FuncHash, std::vector<uint64_t> &Counts) {
00338   auto Iter = Index->find(FuncName);
00339   if (Iter == Index->end())
00340     return error(instrprof_error::unknown_function);
00341 
00342   // Found it. Look for counters with the right hash.
00343   ArrayRef<uint64_t> Data = (*Iter).Data;
00344   uint64_t NumCounts;
00345   for (uint64_t I = 0, E = Data.size(); I != E; I += NumCounts) {
00346     // The function hash comes first.
00347     uint64_t FoundHash = Data[I++];
00348     // In v1, we have at least one count. Later, we have the number of counts.
00349     if (I == E)
00350       return error(instrprof_error::malformed);
00351     NumCounts = FormatVersion == 1 ? E - I : Data[I++];
00352     // If we have more counts than data, this is bogus.
00353     if (I + NumCounts > E)
00354       return error(instrprof_error::malformed);
00355     // Check for a match and fill the vector if there is one.
00356     if (FoundHash == FuncHash) {
00357       Counts = Data.slice(I, NumCounts);
00358       return success();
00359     }
00360   }
00361   return error(instrprof_error::hash_mismatch);
00362 }
00363 
00364 std::error_code
00365 IndexedInstrProfReader::readNextRecord(InstrProfRecord &Record) {
00366   // Are we out of records?
00367   if (RecordIterator == Index->data_end())
00368     return error(instrprof_error::eof);
00369 
00370   // Record the current function name.
00371   Record.Name = (*RecordIterator).Name;
00372 
00373   ArrayRef<uint64_t> Data = (*RecordIterator).Data;
00374   // Valid data starts with a hash and either a count or the number of counts.
00375   if (CurrentOffset + 1 > Data.size())
00376     return error(instrprof_error::malformed);
00377   // First we have a function hash.
00378   Record.Hash = Data[CurrentOffset++];
00379   // In version 1 we knew the number of counters implicitly, but in newer
00380   // versions we store the number of counters next.
00381   uint64_t NumCounts =
00382       FormatVersion == 1 ? Data.size() - CurrentOffset : Data[CurrentOffset++];
00383   if (CurrentOffset + NumCounts > Data.size())
00384     return error(instrprof_error::malformed);
00385   // And finally the counts themselves.
00386   Record.Counts = Data.slice(CurrentOffset, NumCounts);
00387 
00388   // If we've exhausted this function's data, increment the record.
00389   CurrentOffset += NumCounts;
00390   if (CurrentOffset == Data.size()) {
00391     ++RecordIterator;
00392     CurrentOffset = 0;
00393   }
00394 
00395   return success();
00396 }