LLVM API Documentation

LiveInterval.h
Go to the documentation of this file.
00001 //===-- llvm/CodeGen/LiveInterval.h - Interval representation ---*- C++ -*-===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file implements the LiveRange and LiveInterval classes.  Given some
00011 // numbering of each the machine instructions an interval [i, j) is said to be a
00012 // live range for register v if there is no instruction with number j' >= j
00013 // such that v is live at j' and there is no instruction with number i' < i such
00014 // that v is live at i'. In this implementation ranges can have holes,
00015 // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
00016 // individual segment is represented as an instance of LiveRange::Segment,
00017 // and the whole range is represented as an instance of LiveRange.
00018 //
00019 //===----------------------------------------------------------------------===//
00020 
00021 #ifndef LLVM_CODEGEN_LIVEINTERVAL_H
00022 #define LLVM_CODEGEN_LIVEINTERVAL_H
00023 
00024 #include "llvm/ADT/IntEqClasses.h"
00025 #include "llvm/CodeGen/SlotIndexes.h"
00026 #include "llvm/Support/AlignOf.h"
00027 #include "llvm/Support/Allocator.h"
00028 #include <cassert>
00029 #include <climits>
00030 
00031 namespace llvm {
00032   class CoalescerPair;
00033   class LiveIntervals;
00034   class MachineInstr;
00035   class MachineRegisterInfo;
00036   class TargetRegisterInfo;
00037   class raw_ostream;
00038   template <typename T, unsigned Small> class SmallPtrSet;
00039 
00040   /// VNInfo - Value Number Information.
00041   /// This class holds information about a machine level values, including
00042   /// definition and use points.
00043   ///
00044   class VNInfo {
00045   public:
00046     typedef BumpPtrAllocator Allocator;
00047 
00048     /// The ID number of this value.
00049     unsigned id;
00050 
00051     /// The index of the defining instruction.
00052     SlotIndex def;
00053 
00054     /// VNInfo constructor.
00055     VNInfo(unsigned i, SlotIndex d)
00056       : id(i), def(d)
00057     { }
00058 
00059     /// VNInfo construtor, copies values from orig, except for the value number.
00060     VNInfo(unsigned i, const VNInfo &orig)
00061       : id(i), def(orig.def)
00062     { }
00063 
00064     /// Copy from the parameter into this VNInfo.
00065     void copyFrom(VNInfo &src) {
00066       def = src.def;
00067     }
00068 
00069     /// Returns true if this value is defined by a PHI instruction (or was,
00070     /// PHI instructions may have been eliminated).
00071     /// PHI-defs begin at a block boundary, all other defs begin at register or
00072     /// EC slots.
00073     bool isPHIDef() const { return def.isBlock(); }
00074 
00075     /// Returns true if this value is unused.
00076     bool isUnused() const { return !def.isValid(); }
00077 
00078     /// Mark this value as unused.
00079     void markUnused() { def = SlotIndex(); }
00080   };
00081 
00082   /// Result of a LiveRange query. This class hides the implementation details
00083   /// of live ranges, and it should be used as the primary interface for
00084   /// examining live ranges around instructions.
00085   class LiveQueryResult {
00086     VNInfo *const EarlyVal;
00087     VNInfo *const LateVal;
00088     const SlotIndex EndPoint;
00089     const bool Kill;
00090 
00091   public:
00092     LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint,
00093                     bool Kill)
00094       : EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill)
00095     {}
00096 
00097     /// Return the value that is live-in to the instruction. This is the value
00098     /// that will be read by the instruction's use operands. Return NULL if no
00099     /// value is live-in.
00100     VNInfo *valueIn() const {
00101       return EarlyVal;
00102     }
00103 
00104     /// Return true if the live-in value is killed by this instruction. This
00105     /// means that either the live range ends at the instruction, or it changes
00106     /// value.
00107     bool isKill() const {
00108       return Kill;
00109     }
00110 
00111     /// Return true if this instruction has a dead def.
00112     bool isDeadDef() const {
00113       return EndPoint.isDead();
00114     }
00115 
00116     /// Return the value leaving the instruction, if any. This can be a
00117     /// live-through value, or a live def. A dead def returns NULL.
00118     VNInfo *valueOut() const {
00119       return isDeadDef() ? nullptr : LateVal;
00120     }
00121 
00122     /// Return the value defined by this instruction, if any. This includes
00123     /// dead defs, it is the value created by the instruction's def operands.
00124     VNInfo *valueDefined() const {
00125       return EarlyVal == LateVal ? nullptr : LateVal;
00126     }
00127 
00128     /// Return the end point of the last live range segment to interact with
00129     /// the instruction, if any.
00130     ///
00131     /// The end point is an invalid SlotIndex only if the live range doesn't
00132     /// intersect the instruction at all.
00133     ///
00134     /// The end point may be at or past the end of the instruction's basic
00135     /// block. That means the value was live out of the block.
00136     SlotIndex endPoint() const {
00137       return EndPoint;
00138     }
00139   };
00140 
00141   /// This class represents the liveness of a register, stack slot, etc.
00142   /// It manages an ordered list of Segment objects.
00143   /// The Segments are organized in a static single assignment form: At places
00144   /// where a new value is defined or different values reach a CFG join a new
00145   /// segment with a new value number is used.
00146   class LiveRange {
00147   public:
00148 
00149     /// This represents a simple continuous liveness interval for a value.
00150     /// The start point is inclusive, the end point exclusive. These intervals
00151     /// are rendered as [start,end).
00152     struct Segment {
00153       SlotIndex start;  // Start point of the interval (inclusive)
00154       SlotIndex end;    // End point of the interval (exclusive)
00155       VNInfo *valno;    // identifier for the value contained in this segment.
00156 
00157       Segment() : valno(nullptr) {}
00158 
00159       Segment(SlotIndex S, SlotIndex E, VNInfo *V)
00160         : start(S), end(E), valno(V) {
00161         assert(S < E && "Cannot create empty or backwards segment");
00162       }
00163 
00164       /// Return true if the index is covered by this segment.
00165       bool contains(SlotIndex I) const {
00166         return start <= I && I < end;
00167       }
00168 
00169       /// Return true if the given interval, [S, E), is covered by this segment.
00170       bool containsInterval(SlotIndex S, SlotIndex E) const {
00171         assert((S < E) && "Backwards interval?");
00172         return (start <= S && S < end) && (start < E && E <= end);
00173       }
00174 
00175       bool operator<(const Segment &Other) const {
00176         return std::tie(start, end) < std::tie(Other.start, Other.end);
00177       }
00178       bool operator==(const Segment &Other) const {
00179         return start == Other.start && end == Other.end;
00180       }
00181 
00182       void dump() const;
00183     };
00184 
00185     typedef SmallVector<Segment,4> Segments;
00186     typedef SmallVector<VNInfo*,4> VNInfoList;
00187 
00188     Segments segments;   // the liveness segments
00189     VNInfoList valnos;   // value#'s
00190 
00191     typedef Segments::iterator iterator;
00192     iterator begin() { return segments.begin(); }
00193     iterator end()   { return segments.end(); }
00194 
00195     typedef Segments::const_iterator const_iterator;
00196     const_iterator begin() const { return segments.begin(); }
00197     const_iterator end() const  { return segments.end(); }
00198 
00199     typedef VNInfoList::iterator vni_iterator;
00200     vni_iterator vni_begin() { return valnos.begin(); }
00201     vni_iterator vni_end()   { return valnos.end(); }
00202 
00203     typedef VNInfoList::const_iterator const_vni_iterator;
00204     const_vni_iterator vni_begin() const { return valnos.begin(); }
00205     const_vni_iterator vni_end() const   { return valnos.end(); }
00206 
00207     /// advanceTo - Advance the specified iterator to point to the Segment
00208     /// containing the specified position, or end() if the position is past the
00209     /// end of the range.  If no Segment contains this position, but the
00210     /// position is in a hole, this method returns an iterator pointing to the
00211     /// Segment immediately after the hole.
00212     iterator advanceTo(iterator I, SlotIndex Pos) {
00213       assert(I != end());
00214       if (Pos >= endIndex())
00215         return end();
00216       while (I->end <= Pos) ++I;
00217       return I;
00218     }
00219 
00220     /// find - Return an iterator pointing to the first segment that ends after
00221     /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster
00222     /// when searching large ranges.
00223     ///
00224     /// If Pos is contained in a Segment, that segment is returned.
00225     /// If Pos is in a hole, the following Segment is returned.
00226     /// If Pos is beyond endIndex, end() is returned.
00227     iterator find(SlotIndex Pos);
00228 
00229     const_iterator find(SlotIndex Pos) const {
00230       return const_cast<LiveRange*>(this)->find(Pos);
00231     }
00232 
00233     void clear() {
00234       valnos.clear();
00235       segments.clear();
00236     }
00237 
00238     size_t size() const {
00239       return segments.size();
00240     }
00241 
00242     bool hasAtLeastOneValue() const { return !valnos.empty(); }
00243 
00244     bool containsOneValue() const { return valnos.size() == 1; }
00245 
00246     unsigned getNumValNums() const { return (unsigned)valnos.size(); }
00247 
00248     /// getValNumInfo - Returns pointer to the specified val#.
00249     ///
00250     inline VNInfo *getValNumInfo(unsigned ValNo) {
00251       return valnos[ValNo];
00252     }
00253     inline const VNInfo *getValNumInfo(unsigned ValNo) const {
00254       return valnos[ValNo];
00255     }
00256 
00257     /// containsValue - Returns true if VNI belongs to this range.
00258     bool containsValue(const VNInfo *VNI) const {
00259       return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id);
00260     }
00261 
00262     /// getNextValue - Create a new value number and return it.  MIIdx specifies
00263     /// the instruction that defines the value number.
00264     VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) {
00265       VNInfo *VNI =
00266         new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def);
00267       valnos.push_back(VNI);
00268       return VNI;
00269     }
00270 
00271     /// createDeadDef - Make sure the range has a value defined at Def.
00272     /// If one already exists, return it. Otherwise allocate a new value and
00273     /// add liveness for a dead def.
00274     VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator);
00275 
00276     /// Create a copy of the given value. The new value will be identical except
00277     /// for the Value number.
00278     VNInfo *createValueCopy(const VNInfo *orig,
00279                             VNInfo::Allocator &VNInfoAllocator) {
00280       VNInfo *VNI =
00281         new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig);
00282       valnos.push_back(VNI);
00283       return VNI;
00284     }
00285 
00286     /// RenumberValues - Renumber all values in order of appearance and remove
00287     /// unused values.
00288     void RenumberValues();
00289 
00290     /// MergeValueNumberInto - This method is called when two value numbers
00291     /// are found to be equivalent.  This eliminates V1, replacing all
00292     /// segments with the V1 value number with the V2 value number.  This can
00293     /// cause merging of V1/V2 values numbers and compaction of the value space.
00294     VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
00295 
00296     /// Merge all of the live segments of a specific val# in RHS into this live
00297     /// range as the specified value number. The segments in RHS are allowed
00298     /// to overlap with segments in the current range, it will replace the
00299     /// value numbers of the overlaped live segments with the specified value
00300     /// number.
00301     void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo);
00302 
00303     /// MergeValueInAsValue - Merge all of the segments of a specific val#
00304     /// in RHS into this live range as the specified value number.
00305     /// The segments in RHS are allowed to overlap with segments in the
00306     /// current range, but only if the overlapping segments have the
00307     /// specified value number.
00308     void MergeValueInAsValue(const LiveRange &RHS,
00309                              const VNInfo *RHSValNo, VNInfo *LHSValNo);
00310 
00311     bool empty() const { return segments.empty(); }
00312 
00313     /// beginIndex - Return the lowest numbered slot covered.
00314     SlotIndex beginIndex() const {
00315       assert(!empty() && "Call to beginIndex() on empty range.");
00316       return segments.front().start;
00317     }
00318 
00319     /// endNumber - return the maximum point of the range of the whole,
00320     /// exclusive.
00321     SlotIndex endIndex() const {
00322       assert(!empty() && "Call to endIndex() on empty range.");
00323       return segments.back().end;
00324     }
00325 
00326     bool expiredAt(SlotIndex index) const {
00327       return index >= endIndex();
00328     }
00329 
00330     bool liveAt(SlotIndex index) const {
00331       const_iterator r = find(index);
00332       return r != end() && r->start <= index;
00333     }
00334 
00335     /// Return the segment that contains the specified index, or null if there
00336     /// is none.
00337     const Segment *getSegmentContaining(SlotIndex Idx) const {
00338       const_iterator I = FindSegmentContaining(Idx);
00339       return I == end() ? nullptr : &*I;
00340     }
00341 
00342     /// Return the live segment that contains the specified index, or null if
00343     /// there is none.
00344     Segment *getSegmentContaining(SlotIndex Idx) {
00345       iterator I = FindSegmentContaining(Idx);
00346       return I == end() ? nullptr : &*I;
00347     }
00348 
00349     /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
00350     VNInfo *getVNInfoAt(SlotIndex Idx) const {
00351       const_iterator I = FindSegmentContaining(Idx);
00352       return I == end() ? nullptr : I->valno;
00353     }
00354 
00355     /// getVNInfoBefore - Return the VNInfo that is live up to but not
00356     /// necessarilly including Idx, or NULL. Use this to find the reaching def
00357     /// used by an instruction at this SlotIndex position.
00358     VNInfo *getVNInfoBefore(SlotIndex Idx) const {
00359       const_iterator I = FindSegmentContaining(Idx.getPrevSlot());
00360       return I == end() ? nullptr : I->valno;
00361     }
00362 
00363     /// Return an iterator to the segment that contains the specified index, or
00364     /// end() if there is none.
00365     iterator FindSegmentContaining(SlotIndex Idx) {
00366       iterator I = find(Idx);
00367       return I != end() && I->start <= Idx ? I : end();
00368     }
00369 
00370     const_iterator FindSegmentContaining(SlotIndex Idx) const {
00371       const_iterator I = find(Idx);
00372       return I != end() && I->start <= Idx ? I : end();
00373     }
00374 
00375     /// overlaps - Return true if the intersection of the two live ranges is
00376     /// not empty.
00377     bool overlaps(const LiveRange &other) const {
00378       if (other.empty())
00379         return false;
00380       return overlapsFrom(other, other.begin());
00381     }
00382 
00383     /// overlaps - Return true if the two ranges have overlapping segments
00384     /// that are not coalescable according to CP.
00385     ///
00386     /// Overlapping segments where one range is defined by a coalescable
00387     /// copy are allowed.
00388     bool overlaps(const LiveRange &Other, const CoalescerPair &CP,
00389                   const SlotIndexes&) const;
00390 
00391     /// overlaps - Return true if the live range overlaps an interval specified
00392     /// by [Start, End).
00393     bool overlaps(SlotIndex Start, SlotIndex End) const;
00394 
00395     /// overlapsFrom - Return true if the intersection of the two live ranges
00396     /// is not empty.  The specified iterator is a hint that we can begin
00397     /// scanning the Other range starting at I.
00398     bool overlapsFrom(const LiveRange &Other, const_iterator I) const;
00399 
00400     /// Add the specified Segment to this range, merging segments as
00401     /// appropriate.  This returns an iterator to the inserted segment (which
00402     /// may have grown since it was inserted).
00403     iterator addSegment(Segment S) {
00404       return addSegmentFrom(S, segments.begin());
00405     }
00406 
00407     /// extendInBlock - If this range is live before Kill in the basic block
00408     /// that starts at StartIdx, extend it to be live up to Kill, and return
00409     /// the value. If there is no segment before Kill, return NULL.
00410     VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill);
00411 
00412     /// join - Join two live ranges (this, and other) together.  This applies
00413     /// mappings to the value numbers in the LHS/RHS ranges as specified.  If
00414     /// the ranges are not joinable, this aborts.
00415     void join(LiveRange &Other,
00416               const int *ValNoAssignments,
00417               const int *RHSValNoAssignments,
00418               SmallVectorImpl<VNInfo *> &NewVNInfo);
00419 
00420     /// True iff this segment is a single segment that lies between the
00421     /// specified boundaries, exclusively. Vregs live across a backedge are not
00422     /// considered local. The boundaries are expected to lie within an extended
00423     /// basic block, so vregs that are not live out should contain no holes.
00424     bool isLocal(SlotIndex Start, SlotIndex End) const {
00425       return beginIndex() > Start.getBaseIndex() &&
00426         endIndex() < End.getBoundaryIndex();
00427     }
00428 
00429     /// Remove the specified segment from this range.  Note that the segment
00430     /// must be a single Segment in its entirety.
00431     void removeSegment(SlotIndex Start, SlotIndex End,
00432                        bool RemoveDeadValNo = false);
00433 
00434     void removeSegment(Segment S, bool RemoveDeadValNo = false) {
00435       removeSegment(S.start, S.end, RemoveDeadValNo);
00436     }
00437 
00438     /// Query Liveness at Idx.
00439     /// The sub-instruction slot of Idx doesn't matter, only the instruction
00440     /// it refers to is considered.
00441     LiveQueryResult Query(SlotIndex Idx) const {
00442       // Find the segment that enters the instruction.
00443       const_iterator I = find(Idx.getBaseIndex());
00444       const_iterator E = end();
00445       if (I == E)
00446         return LiveQueryResult(nullptr, nullptr, SlotIndex(), false);
00447 
00448       // Is this an instruction live-in segment?
00449       // If Idx is the start index of a basic block, include live-in segments
00450       // that start at Idx.getBaseIndex().
00451       VNInfo *EarlyVal = nullptr;
00452       VNInfo *LateVal  = nullptr;
00453       SlotIndex EndPoint;
00454       bool Kill = false;
00455       if (I->start <= Idx.getBaseIndex()) {
00456         EarlyVal = I->valno;
00457         EndPoint = I->end;
00458         // Move to the potentially live-out segment.
00459         if (SlotIndex::isSameInstr(Idx, I->end)) {
00460           Kill = true;
00461           if (++I == E)
00462             return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
00463         }
00464         // Special case: A PHIDef value can have its def in the middle of a
00465         // segment if the value happens to be live out of the layout
00466         // predecessor.
00467         // Such a value is not live-in.
00468         if (EarlyVal->def == Idx.getBaseIndex())
00469           EarlyVal = nullptr;
00470       }
00471       // I now points to the segment that may be live-through, or defined by
00472       // this instr. Ignore segments starting after the current instr.
00473       if (!SlotIndex::isEarlierInstr(Idx, I->start)) {
00474         LateVal = I->valno;
00475         EndPoint = I->end;
00476       }
00477       return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
00478     }
00479 
00480     /// removeValNo - Remove all the segments defined by the specified value#.
00481     /// Also remove the value# from value# list.
00482     void removeValNo(VNInfo *ValNo);
00483 
00484     /// Returns true if the live range is zero length, i.e. no live segments
00485     /// span instructions. It doesn't pay to spill such a range.
00486     bool isZeroLength(SlotIndexes *Indexes) const {
00487       for (const_iterator i = begin(), e = end(); i != e; ++i)
00488         if (Indexes->getNextNonNullIndex(i->start).getBaseIndex() <
00489             i->end.getBaseIndex())
00490           return false;
00491       return true;
00492     }
00493 
00494     bool operator<(const LiveRange& other) const {
00495       const SlotIndex &thisIndex = beginIndex();
00496       const SlotIndex &otherIndex = other.beginIndex();
00497       return thisIndex < otherIndex;
00498     }
00499 
00500     void print(raw_ostream &OS) const;
00501     void dump() const;
00502 
00503     /// \brief Walk the range and assert if any invariants fail to hold.
00504     ///
00505     /// Note that this is a no-op when asserts are disabled.
00506 #ifdef NDEBUG
00507     void verify() const {}
00508 #else
00509     void verify() const;
00510 #endif
00511 
00512   private:
00513 
00514     iterator addSegmentFrom(Segment S, iterator From);
00515     void extendSegmentEndTo(iterator I, SlotIndex NewEnd);
00516     iterator extendSegmentStartTo(iterator I, SlotIndex NewStr);
00517     void markValNoForDeletion(VNInfo *V);
00518 
00519   };
00520 
00521   inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) {
00522     LR.print(OS);
00523     return OS;
00524   }
00525 
00526   /// LiveInterval - This class represents the liveness of a register,
00527   /// or stack slot.
00528   class LiveInterval : public LiveRange {
00529   public:
00530     typedef LiveRange super;
00531 
00532     const unsigned reg;  // the register or stack slot of this interval.
00533     float weight;        // weight of this interval
00534 
00535     LiveInterval(unsigned Reg, float Weight)
00536       : reg(Reg), weight(Weight) {}
00537 
00538     /// getSize - Returns the sum of sizes of all the LiveRange's.
00539     ///
00540     unsigned getSize() const;
00541 
00542     /// isSpillable - Can this interval be spilled?
00543     bool isSpillable() const {
00544       return weight != llvm::huge_valf;
00545     }
00546 
00547     /// markNotSpillable - Mark interval as not spillable
00548     void markNotSpillable() {
00549       weight = llvm::huge_valf;
00550     }
00551 
00552     bool operator<(const LiveInterval& other) const {
00553       const SlotIndex &thisIndex = beginIndex();
00554       const SlotIndex &otherIndex = other.beginIndex();
00555       return std::tie(thisIndex, reg) < std::tie(otherIndex, other.reg);
00556     }
00557 
00558     void print(raw_ostream &OS) const;
00559     void dump() const;
00560 
00561   private:
00562     LiveInterval& operator=(const LiveInterval& rhs) LLVM_DELETED_FUNCTION;
00563 
00564   };
00565 
00566   inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
00567     LI.print(OS);
00568     return OS;
00569   }
00570 
00571   raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S);
00572 
00573   inline bool operator<(SlotIndex V, const LiveRange::Segment &S) {
00574     return V < S.start;
00575   }
00576 
00577   inline bool operator<(const LiveRange::Segment &S, SlotIndex V) {
00578     return S.start < V;
00579   }
00580 
00581   /// Helper class for performant LiveRange bulk updates.
00582   ///
00583   /// Calling LiveRange::addSegment() repeatedly can be expensive on large
00584   /// live ranges because segments after the insertion point may need to be
00585   /// shifted. The LiveRangeUpdater class can defer the shifting when adding
00586   /// many segments in order.
00587   ///
00588   /// The LiveRange will be in an invalid state until flush() is called.
00589   class LiveRangeUpdater {
00590     LiveRange *LR;
00591     SlotIndex LastStart;
00592     LiveRange::iterator WriteI;
00593     LiveRange::iterator ReadI;
00594     SmallVector<LiveRange::Segment, 16> Spills;
00595     void mergeSpills();
00596 
00597   public:
00598     /// Create a LiveRangeUpdater for adding segments to LR.
00599     /// LR will temporarily be in an invalid state until flush() is called.
00600     LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {}
00601 
00602     ~LiveRangeUpdater() { flush(); }
00603 
00604     /// Add a segment to LR and coalesce when possible, just like
00605     /// LR.addSegment(). Segments should be added in increasing start order for
00606     /// best performance.
00607     void add(LiveRange::Segment);
00608 
00609     void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
00610       add(LiveRange::Segment(Start, End, VNI));
00611     }
00612 
00613     /// Return true if the LR is currently in an invalid state, and flush()
00614     /// needs to be called.
00615     bool isDirty() const { return LastStart.isValid(); }
00616 
00617     /// Flush the updater state to LR so it is valid and contains all added
00618     /// segments.
00619     void flush();
00620 
00621     /// Select a different destination live range.
00622     void setDest(LiveRange *lr) {
00623       if (LR != lr && isDirty())
00624         flush();
00625       LR = lr;
00626     }
00627 
00628     /// Get the current destination live range.
00629     LiveRange *getDest() const { return LR; }
00630 
00631     void dump() const;
00632     void print(raw_ostream&) const;
00633   };
00634 
00635   inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) {
00636     X.print(OS);
00637     return OS;
00638   }
00639 
00640   /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
00641   /// LiveInterval into equivalence clases of connected components. A
00642   /// LiveInterval that has multiple connected components can be broken into
00643   /// multiple LiveIntervals.
00644   ///
00645   /// Given a LiveInterval that may have multiple connected components, run:
00646   ///
00647   ///   unsigned numComps = ConEQ.Classify(LI);
00648   ///   if (numComps > 1) {
00649   ///     // allocate numComps-1 new LiveIntervals into LIS[1..]
00650   ///     ConEQ.Distribute(LIS);
00651   /// }
00652 
00653   class ConnectedVNInfoEqClasses {
00654     LiveIntervals &LIS;
00655     IntEqClasses EqClass;
00656 
00657     // Note that values a and b are connected.
00658     void Connect(unsigned a, unsigned b);
00659 
00660     unsigned Renumber();
00661 
00662   public:
00663     explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}
00664 
00665     /// Classify - Classify the values in LI into connected components.
00666     /// Return the number of connected components.
00667     unsigned Classify(const LiveInterval *LI);
00668 
00669     /// getEqClass - Classify creates equivalence classes numbered 0..N. Return
00670     /// the equivalence class assigned the VNI.
00671     unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }
00672 
00673     /// Distribute - Distribute values in LIV[0] into a separate LiveInterval
00674     /// for each connected component. LIV must have a LiveInterval for each
00675     /// connected component. The LiveIntervals in Liv[1..] must be empty.
00676     /// Instructions using LIV[0] are rewritten.
00677     void Distribute(LiveInterval *LIV[], MachineRegisterInfo &MRI);
00678 
00679   };
00680 
00681 }
00682 #endif