LLVM API Documentation
00001 //===-- Local.h - Functions to perform local transformations ----*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This family of functions perform various local transformations to the 00011 // program. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H 00016 #define LLVM_TRANSFORMS_UTILS_LOCAL_H 00017 00018 #include "llvm/IR/DataLayout.h" 00019 #include "llvm/IR/GetElementPtrTypeIterator.h" 00020 #include "llvm/IR/IRBuilder.h" 00021 #include "llvm/IR/Operator.h" 00022 00023 namespace llvm { 00024 00025 class User; 00026 class BasicBlock; 00027 class Function; 00028 class BranchInst; 00029 class Instruction; 00030 class DbgDeclareInst; 00031 class StoreInst; 00032 class LoadInst; 00033 class Value; 00034 class Pass; 00035 class PHINode; 00036 class AllocaInst; 00037 class AssumptionTracker; 00038 class ConstantExpr; 00039 class DataLayout; 00040 class TargetLibraryInfo; 00041 class TargetTransformInfo; 00042 class DIBuilder; 00043 class AliasAnalysis; 00044 class DominatorTree; 00045 00046 template<typename T> class SmallVectorImpl; 00047 00048 //===----------------------------------------------------------------------===// 00049 // Local constant propagation. 00050 // 00051 00052 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 00053 /// constant value, convert it into an unconditional branch to the constant 00054 /// destination. This is a nontrivial operation because the successors of this 00055 /// basic block must have their PHI nodes updated. 00056 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 00057 /// conditions and indirectbr addresses this might make dead if 00058 /// DeleteDeadConditions is true. 00059 bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false, 00060 const TargetLibraryInfo *TLI = nullptr); 00061 00062 //===----------------------------------------------------------------------===// 00063 // Local dead code elimination. 00064 // 00065 00066 /// isInstructionTriviallyDead - Return true if the result produced by the 00067 /// instruction is not used, and the instruction has no side effects. 00068 /// 00069 bool isInstructionTriviallyDead(Instruction *I, 00070 const TargetLibraryInfo *TLI = nullptr); 00071 00072 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 00073 /// trivially dead instruction, delete it. If that makes any of its operands 00074 /// trivially dead, delete them too, recursively. Return true if any 00075 /// instructions were deleted. 00076 bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, 00077 const TargetLibraryInfo *TLI = nullptr); 00078 00079 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 00080 /// dead PHI node, due to being a def-use chain of single-use nodes that 00081 /// either forms a cycle or is terminated by a trivially dead instruction, 00082 /// delete it. If that makes any of its operands trivially dead, delete them 00083 /// too, recursively. Return true if a change was made. 00084 bool RecursivelyDeleteDeadPHINode(PHINode *PN, 00085 const TargetLibraryInfo *TLI = nullptr); 00086 00087 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 00088 /// simplify any instructions in it and recursively delete dead instructions. 00089 /// 00090 /// This returns true if it changed the code, note that it can delete 00091 /// instructions in other blocks as well in this block. 00092 bool SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD = nullptr, 00093 const TargetLibraryInfo *TLI = nullptr); 00094 00095 //===----------------------------------------------------------------------===// 00096 // Control Flow Graph Restructuring. 00097 // 00098 00099 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 00100 /// method is called when we're about to delete Pred as a predecessor of BB. If 00101 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 00102 /// 00103 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 00104 /// nodes that collapse into identity values. For example, if we have: 00105 /// x = phi(1, 0, 0, 0) 00106 /// y = and x, z 00107 /// 00108 /// .. and delete the predecessor corresponding to the '1', this will attempt to 00109 /// recursively fold the 'and' to 0. 00110 void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 00111 DataLayout *TD = nullptr); 00112 00113 /// MergeBasicBlockIntoOnlyPred - BB is a block with one predecessor and its 00114 /// predecessor is known to have one successor (BB!). Eliminate the edge 00115 /// between them, moving the instructions in the predecessor into BB. This 00116 /// deletes the predecessor block. 00117 /// 00118 void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, Pass *P = nullptr); 00119 00120 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 00121 /// unconditional branch, and contains no instructions other than PHI nodes, 00122 /// potential debug intrinsics and the branch. If possible, eliminate BB by 00123 /// rewriting all the predecessors to branch to the successor block and return 00124 /// true. If we can't transform, return false. 00125 bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB); 00126 00127 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 00128 /// nodes in this block. This doesn't try to be clever about PHI nodes 00129 /// which differ only in the order of the incoming values, but instcombine 00130 /// orders them so it usually won't matter. 00131 /// 00132 bool EliminateDuplicatePHINodes(BasicBlock *BB); 00133 00134 /// SimplifyCFG - This function is used to do simplification of a CFG. For 00135 /// example, it adjusts branches to branches to eliminate the extra hop, it 00136 /// eliminates unreachable basic blocks, and does other "peephole" optimization 00137 /// of the CFG. It returns true if a modification was made, possibly deleting 00138 /// the basic block that was pointed to. 00139 /// 00140 bool SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 00141 const DataLayout *TD = nullptr, 00142 AssumptionTracker *AT = nullptr); 00143 00144 /// FlatternCFG - This function is used to flatten a CFG. For 00145 /// example, it uses parallel-and and parallel-or mode to collapse 00146 // if-conditions and merge if-regions with identical statements. 00147 /// 00148 bool FlattenCFG(BasicBlock *BB, AliasAnalysis *AA = nullptr); 00149 00150 /// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch, 00151 /// and if a predecessor branches to us and one of our successors, fold the 00152 /// setcc into the predecessor and use logical operations to pick the right 00153 /// destination. 00154 bool FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL = nullptr); 00155 00156 /// DemoteRegToStack - This function takes a virtual register computed by an 00157 /// Instruction and replaces it with a slot in the stack frame, allocated via 00158 /// alloca. This allows the CFG to be changed around without fear of 00159 /// invalidating the SSA information for the value. It returns the pointer to 00160 /// the alloca inserted to create a stack slot for X. 00161 /// 00162 AllocaInst *DemoteRegToStack(Instruction &X, 00163 bool VolatileLoads = false, 00164 Instruction *AllocaPoint = nullptr); 00165 00166 /// DemotePHIToStack - This function takes a virtual register computed by a phi 00167 /// node and replaces it with a slot in the stack frame, allocated via alloca. 00168 /// The phi node is deleted and it returns the pointer to the alloca inserted. 00169 AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr); 00170 00171 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that 00172 /// we can determine, return it, otherwise return 0. If PrefAlign is specified, 00173 /// and it is more than the alignment of the ultimate object, see if we can 00174 /// increase the alignment of the ultimate object, making this check succeed. 00175 unsigned getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 00176 const DataLayout *TD = nullptr, 00177 AssumptionTracker *AT = nullptr, 00178 const Instruction *CxtI = nullptr, 00179 const DominatorTree *DT = nullptr); 00180 00181 /// getKnownAlignment - Try to infer an alignment for the specified pointer. 00182 static inline unsigned getKnownAlignment(Value *V, 00183 const DataLayout *TD = nullptr, 00184 AssumptionTracker *AT = nullptr, 00185 const Instruction *CxtI = nullptr, 00186 const DominatorTree *DT = nullptr) { 00187 return getOrEnforceKnownAlignment(V, 0, TD, AT, CxtI, DT); 00188 } 00189 00190 /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the 00191 /// code necessary to compute the offset from the base pointer (without adding 00192 /// in the base pointer). Return the result as a signed integer of intptr size. 00193 /// When NoAssumptions is true, no assumptions about index computation not 00194 /// overflowing is made. 00195 template<typename IRBuilderTy> 00196 Value *EmitGEPOffset(IRBuilderTy *Builder, const DataLayout &TD, User *GEP, 00197 bool NoAssumptions = false) { 00198 GEPOperator *GEPOp = cast<GEPOperator>(GEP); 00199 Type *IntPtrTy = TD.getIntPtrType(GEP->getType()); 00200 Value *Result = Constant::getNullValue(IntPtrTy); 00201 00202 // If the GEP is inbounds, we know that none of the addressing operations will 00203 // overflow in an unsigned sense. 00204 bool isInBounds = GEPOp->isInBounds() && !NoAssumptions; 00205 00206 // Build a mask for high order bits. 00207 unsigned IntPtrWidth = IntPtrTy->getScalarType()->getIntegerBitWidth(); 00208 uint64_t PtrSizeMask = ~0ULL >> (64 - IntPtrWidth); 00209 00210 gep_type_iterator GTI = gep_type_begin(GEP); 00211 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e; 00212 ++i, ++GTI) { 00213 Value *Op = *i; 00214 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask; 00215 if (Constant *OpC = dyn_cast<Constant>(Op)) { 00216 if (OpC->isZeroValue()) 00217 continue; 00218 00219 // Handle a struct index, which adds its field offset to the pointer. 00220 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 00221 if (OpC->getType()->isVectorTy()) 00222 OpC = OpC->getSplatValue(); 00223 00224 uint64_t OpValue = cast<ConstantInt>(OpC)->getZExtValue(); 00225 Size = TD.getStructLayout(STy)->getElementOffset(OpValue); 00226 00227 if (Size) 00228 Result = Builder->CreateAdd(Result, ConstantInt::get(IntPtrTy, Size), 00229 GEP->getName()+".offs"); 00230 continue; 00231 } 00232 00233 Constant *Scale = ConstantInt::get(IntPtrTy, Size); 00234 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/); 00235 Scale = ConstantExpr::getMul(OC, Scale, isInBounds/*NUW*/); 00236 // Emit an add instruction. 00237 Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs"); 00238 continue; 00239 } 00240 // Convert to correct type. 00241 if (Op->getType() != IntPtrTy) 00242 Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c"); 00243 if (Size != 1) { 00244 // We'll let instcombine(mul) convert this to a shl if possible. 00245 Op = Builder->CreateMul(Op, ConstantInt::get(IntPtrTy, Size), 00246 GEP->getName()+".idx", isInBounds /*NUW*/); 00247 } 00248 00249 // Emit an add instruction. 00250 Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs"); 00251 } 00252 return Result; 00253 } 00254 00255 ///===---------------------------------------------------------------------===// 00256 /// Dbg Intrinsic utilities 00257 /// 00258 00259 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 00260 /// that has an associated llvm.dbg.decl intrinsic. 00261 bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 00262 StoreInst *SI, DIBuilder &Builder); 00263 00264 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 00265 /// that has an associated llvm.dbg.decl intrinsic. 00266 bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 00267 LoadInst *LI, DIBuilder &Builder); 00268 00269 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 00270 /// of llvm.dbg.value intrinsics. 00271 bool LowerDbgDeclare(Function &F); 00272 00273 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic corresponding to 00274 /// an alloca, if any. 00275 DbgDeclareInst *FindAllocaDbgDeclare(Value *V); 00276 00277 /// replaceDbgDeclareForAlloca - Replaces llvm.dbg.declare instruction when 00278 /// alloca is replaced with a new value. 00279 bool replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 00280 DIBuilder &Builder); 00281 00282 /// \brief Remove all blocks that can not be reached from the function's entry. 00283 /// 00284 /// Returns true if any basic block was removed. 00285 bool removeUnreachableBlocks(Function &F); 00286 00287 /// \brief Combine the metadata of two instructions so that K can replace J 00288 /// 00289 /// Metadata not listed as known via KnownIDs is removed 00290 void combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs); 00291 00292 } // End llvm namespace 00293 00294 #endif