LLVM API Documentation

LoopDeletion.cpp
Go to the documentation of this file.
00001 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file implements the Dead Loop Deletion Pass. This pass is responsible
00011 // for eliminating loops with non-infinite computable trip counts that have no
00012 // side effects or volatile instructions, and do not contribute to the
00013 // computation of the function's return value.
00014 //
00015 //===----------------------------------------------------------------------===//
00016 
00017 #include "llvm/Transforms/Scalar.h"
00018 #include "llvm/ADT/SmallVector.h"
00019 #include "llvm/ADT/Statistic.h"
00020 #include "llvm/Analysis/LoopPass.h"
00021 #include "llvm/Analysis/ScalarEvolution.h"
00022 #include "llvm/IR/Dominators.h"
00023 using namespace llvm;
00024 
00025 #define DEBUG_TYPE "loop-delete"
00026 
00027 STATISTIC(NumDeleted, "Number of loops deleted");
00028 
00029 namespace {
00030   class LoopDeletion : public LoopPass {
00031   public:
00032     static char ID; // Pass ID, replacement for typeid
00033     LoopDeletion() : LoopPass(ID) {
00034       initializeLoopDeletionPass(*PassRegistry::getPassRegistry());
00035     }
00036 
00037     // Possibly eliminate loop L if it is dead.
00038     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
00039 
00040     void getAnalysisUsage(AnalysisUsage &AU) const override {
00041       AU.addRequired<DominatorTreeWrapperPass>();
00042       AU.addRequired<LoopInfo>();
00043       AU.addRequired<ScalarEvolution>();
00044       AU.addRequiredID(LoopSimplifyID);
00045       AU.addRequiredID(LCSSAID);
00046 
00047       AU.addPreserved<ScalarEvolution>();
00048       AU.addPreserved<DominatorTreeWrapperPass>();
00049       AU.addPreserved<LoopInfo>();
00050       AU.addPreservedID(LoopSimplifyID);
00051       AU.addPreservedID(LCSSAID);
00052     }
00053 
00054   private:
00055     bool isLoopDead(Loop *L, SmallVectorImpl<BasicBlock *> &exitingBlocks,
00056                     SmallVectorImpl<BasicBlock *> &exitBlocks,
00057                     bool &Changed, BasicBlock *Preheader);
00058 
00059   };
00060 }
00061 
00062 char LoopDeletion::ID = 0;
00063 INITIALIZE_PASS_BEGIN(LoopDeletion, "loop-deletion",
00064                 "Delete dead loops", false, false)
00065 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
00066 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
00067 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
00068 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
00069 INITIALIZE_PASS_DEPENDENCY(LCSSA)
00070 INITIALIZE_PASS_END(LoopDeletion, "loop-deletion",
00071                 "Delete dead loops", false, false)
00072 
00073 Pass *llvm::createLoopDeletionPass() {
00074   return new LoopDeletion();
00075 }
00076 
00077 /// isLoopDead - Determined if a loop is dead.  This assumes that we've already
00078 /// checked for unique exit and exiting blocks, and that the code is in LCSSA
00079 /// form.
00080 bool LoopDeletion::isLoopDead(Loop *L,
00081                               SmallVectorImpl<BasicBlock *> &exitingBlocks,
00082                               SmallVectorImpl<BasicBlock *> &exitBlocks,
00083                               bool &Changed, BasicBlock *Preheader) {
00084   BasicBlock *exitBlock = exitBlocks[0];
00085 
00086   // Make sure that all PHI entries coming from the loop are loop invariant.
00087   // Because the code is in LCSSA form, any values used outside of the loop
00088   // must pass through a PHI in the exit block, meaning that this check is
00089   // sufficient to guarantee that no loop-variant values are used outside
00090   // of the loop.
00091   BasicBlock::iterator BI = exitBlock->begin();
00092   while (PHINode *P = dyn_cast<PHINode>(BI)) {
00093     Value *incoming = P->getIncomingValueForBlock(exitingBlocks[0]);
00094 
00095     // Make sure all exiting blocks produce the same incoming value for the exit
00096     // block.  If there are different incoming values for different exiting
00097     // blocks, then it is impossible to statically determine which value should
00098     // be used.
00099     for (unsigned i = 1, e = exitingBlocks.size(); i < e; ++i) {
00100       if (incoming != P->getIncomingValueForBlock(exitingBlocks[i]))
00101         return false;
00102     }
00103 
00104     if (Instruction *I = dyn_cast<Instruction>(incoming))
00105       if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
00106         return false;
00107 
00108     ++BI;
00109   }
00110 
00111   // Make sure that no instructions in the block have potential side-effects.
00112   // This includes instructions that could write to memory, and loads that are
00113   // marked volatile.  This could be made more aggressive by using aliasing
00114   // information to identify readonly and readnone calls.
00115   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
00116        LI != LE; ++LI) {
00117     for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
00118          BI != BE; ++BI) {
00119       if (BI->mayHaveSideEffects())
00120         return false;
00121     }
00122   }
00123 
00124   return true;
00125 }
00126 
00127 /// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
00128 /// observable behavior of the program other than finite running time.  Note
00129 /// we do ensure that this never remove a loop that might be infinite, as doing
00130 /// so could change the halting/non-halting nature of a program.
00131 /// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
00132 /// in order to make various safety checks work.
00133 bool LoopDeletion::runOnLoop(Loop *L, LPPassManager &LPM) {
00134   if (skipOptnoneFunction(L))
00135     return false;
00136 
00137   // We can only remove the loop if there is a preheader that we can
00138   // branch from after removing it.
00139   BasicBlock *preheader = L->getLoopPreheader();
00140   if (!preheader)
00141     return false;
00142 
00143   // If LoopSimplify form is not available, stay out of trouble.
00144   if (!L->hasDedicatedExits())
00145     return false;
00146 
00147   // We can't remove loops that contain subloops.  If the subloops were dead,
00148   // they would already have been removed in earlier executions of this pass.
00149   if (L->begin() != L->end())
00150     return false;
00151 
00152   SmallVector<BasicBlock*, 4> exitingBlocks;
00153   L->getExitingBlocks(exitingBlocks);
00154 
00155   SmallVector<BasicBlock*, 4> exitBlocks;
00156   L->getUniqueExitBlocks(exitBlocks);
00157 
00158   // We require that the loop only have a single exit block.  Otherwise, we'd
00159   // be in the situation of needing to be able to solve statically which exit
00160   // block will be branched to, or trying to preserve the branching logic in
00161   // a loop invariant manner.
00162   if (exitBlocks.size() != 1)
00163     return false;
00164 
00165   // Finally, we have to check that the loop really is dead.
00166   bool Changed = false;
00167   if (!isLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
00168     return Changed;
00169 
00170   // Don't remove loops for which we can't solve the trip count.
00171   // They could be infinite, in which case we'd be changing program behavior.
00172   ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
00173   const SCEV *S = SE.getMaxBackedgeTakenCount(L);
00174   if (isa<SCEVCouldNotCompute>(S))
00175     return Changed;
00176 
00177   // Now that we know the removal is safe, remove the loop by changing the
00178   // branch from the preheader to go to the single exit block.
00179   BasicBlock *exitBlock = exitBlocks[0];
00180 
00181   // Because we're deleting a large chunk of code at once, the sequence in which
00182   // we remove things is very important to avoid invalidation issues.  Don't
00183   // mess with this unless you have good reason and know what you're doing.
00184 
00185   // Tell ScalarEvolution that the loop is deleted. Do this before
00186   // deleting the loop so that ScalarEvolution can look at the loop
00187   // to determine what it needs to clean up.
00188   SE.forgetLoop(L);
00189 
00190   // Connect the preheader directly to the exit block.
00191   TerminatorInst *TI = preheader->getTerminator();
00192   TI->replaceUsesOfWith(L->getHeader(), exitBlock);
00193 
00194   // Rewrite phis in the exit block to get their inputs from
00195   // the preheader instead of the exiting block.
00196   BasicBlock *exitingBlock = exitingBlocks[0];
00197   BasicBlock::iterator BI = exitBlock->begin();
00198   while (PHINode *P = dyn_cast<PHINode>(BI)) {
00199     int j = P->getBasicBlockIndex(exitingBlock);
00200     assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
00201     P->setIncomingBlock(j, preheader);
00202     for (unsigned i = 1; i < exitingBlocks.size(); ++i)
00203       P->removeIncomingValue(exitingBlocks[i]);
00204     ++BI;
00205   }
00206 
00207   // Update the dominator tree and remove the instructions and blocks that will
00208   // be deleted from the reference counting scheme.
00209   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
00210   SmallVector<DomTreeNode*, 8> ChildNodes;
00211   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
00212        LI != LE; ++LI) {
00213     // Move all of the block's children to be children of the preheader, which
00214     // allows us to remove the domtree entry for the block.
00215     ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
00216     for (SmallVectorImpl<DomTreeNode *>::iterator DI = ChildNodes.begin(),
00217          DE = ChildNodes.end(); DI != DE; ++DI) {
00218       DT.changeImmediateDominator(*DI, DT[preheader]);
00219     }
00220 
00221     ChildNodes.clear();
00222     DT.eraseNode(*LI);
00223 
00224     // Remove the block from the reference counting scheme, so that we can
00225     // delete it freely later.
00226     (*LI)->dropAllReferences();
00227   }
00228 
00229   // Erase the instructions and the blocks without having to worry
00230   // about ordering because we already dropped the references.
00231   // NOTE: This iteration is safe because erasing the block does not remove its
00232   // entry from the loop's block list.  We do that in the next section.
00233   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
00234        LI != LE; ++LI)
00235     (*LI)->eraseFromParent();
00236 
00237   // Finally, the blocks from loopinfo.  This has to happen late because
00238   // otherwise our loop iterators won't work.
00239   LoopInfo &loopInfo = getAnalysis<LoopInfo>();
00240   SmallPtrSet<BasicBlock*, 8> blocks;
00241   blocks.insert(L->block_begin(), L->block_end());
00242   for (BasicBlock *BB : blocks)
00243     loopInfo.removeBlock(BB);
00244 
00245   // The last step is to inform the loop pass manager that we've
00246   // eliminated this loop.
00247   LPM.deleteLoopFromQueue(L);
00248   Changed = true;
00249 
00250   ++NumDeleted;
00251 
00252   return Changed;
00253 }