LLVM API Documentation
00001 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file defines the LoopInfo class that is used to identify natural loops 00011 // and determine the loop depth of various nodes of the CFG. A natural loop 00012 // has exactly one entry-point, which is called the header. Note that natural 00013 // loops may actually be several loops that share the same header node. 00014 // 00015 // This analysis calculates the nesting structure of loops in a function. For 00016 // each natural loop identified, this analysis identifies natural loops 00017 // contained entirely within the loop and the basic blocks the make up the loop. 00018 // 00019 // It can calculate on the fly various bits of information, for example: 00020 // 00021 // * whether there is a preheader for the loop 00022 // * the number of back edges to the header 00023 // * whether or not a particular block branches out of the loop 00024 // * the successor blocks of the loop 00025 // * the loop depth 00026 // * etc... 00027 // 00028 //===----------------------------------------------------------------------===// 00029 00030 #ifndef LLVM_ANALYSIS_LOOPINFO_H 00031 #define LLVM_ANALYSIS_LOOPINFO_H 00032 00033 #include "llvm/ADT/DenseMap.h" 00034 #include "llvm/ADT/DenseSet.h" 00035 #include "llvm/ADT/GraphTraits.h" 00036 #include "llvm/ADT/SmallPtrSet.h" 00037 #include "llvm/ADT/SmallVector.h" 00038 #include "llvm/IR/CFG.h" 00039 #include "llvm/IR/Instruction.h" 00040 #include "llvm/Pass.h" 00041 #include <algorithm> 00042 00043 namespace llvm { 00044 00045 template<typename T> 00046 inline void RemoveFromVector(std::vector<T*> &V, T *N) { 00047 typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N); 00048 assert(I != V.end() && "N is not in this list!"); 00049 V.erase(I); 00050 } 00051 00052 class DominatorTree; 00053 class LoopInfo; 00054 class Loop; 00055 class MDNode; 00056 class PHINode; 00057 class raw_ostream; 00058 template<class N> class DominatorTreeBase; 00059 template<class N, class M> class LoopInfoBase; 00060 template<class N, class M> class LoopBase; 00061 00062 //===----------------------------------------------------------------------===// 00063 /// LoopBase class - Instances of this class are used to represent loops that 00064 /// are detected in the flow graph 00065 /// 00066 template<class BlockT, class LoopT> 00067 class LoopBase { 00068 LoopT *ParentLoop; 00069 // SubLoops - Loops contained entirely within this one. 00070 std::vector<LoopT *> SubLoops; 00071 00072 // Blocks - The list of blocks in this loop. First entry is the header node. 00073 std::vector<BlockT*> Blocks; 00074 00075 SmallPtrSet<const BlockT*, 8> DenseBlockSet; 00076 00077 LoopBase(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION; 00078 const LoopBase<BlockT, LoopT>& 00079 operator=(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION; 00080 public: 00081 /// Loop ctor - This creates an empty loop. 00082 LoopBase() : ParentLoop(nullptr) {} 00083 ~LoopBase() { 00084 for (size_t i = 0, e = SubLoops.size(); i != e; ++i) 00085 delete SubLoops[i]; 00086 } 00087 00088 /// getLoopDepth - Return the nesting level of this loop. An outer-most 00089 /// loop has depth 1, for consistency with loop depth values used for basic 00090 /// blocks, where depth 0 is used for blocks not inside any loops. 00091 unsigned getLoopDepth() const { 00092 unsigned D = 1; 00093 for (const LoopT *CurLoop = ParentLoop; CurLoop; 00094 CurLoop = CurLoop->ParentLoop) 00095 ++D; 00096 return D; 00097 } 00098 BlockT *getHeader() const { return Blocks.front(); } 00099 LoopT *getParentLoop() const { return ParentLoop; } 00100 00101 /// setParentLoop is a raw interface for bypassing addChildLoop. 00102 void setParentLoop(LoopT *L) { ParentLoop = L; } 00103 00104 /// contains - Return true if the specified loop is contained within in 00105 /// this loop. 00106 /// 00107 bool contains(const LoopT *L) const { 00108 if (L == this) return true; 00109 if (!L) return false; 00110 return contains(L->getParentLoop()); 00111 } 00112 00113 /// contains - Return true if the specified basic block is in this loop. 00114 /// 00115 bool contains(const BlockT *BB) const { 00116 return DenseBlockSet.count(BB); 00117 } 00118 00119 /// contains - Return true if the specified instruction is in this loop. 00120 /// 00121 template<class InstT> 00122 bool contains(const InstT *Inst) const { 00123 return contains(Inst->getParent()); 00124 } 00125 00126 /// iterator/begin/end - Return the loops contained entirely within this loop. 00127 /// 00128 const std::vector<LoopT *> &getSubLoops() const { return SubLoops; } 00129 std::vector<LoopT *> &getSubLoopsVector() { return SubLoops; } 00130 typedef typename std::vector<LoopT *>::const_iterator iterator; 00131 typedef typename std::vector<LoopT *>::const_reverse_iterator 00132 reverse_iterator; 00133 iterator begin() const { return SubLoops.begin(); } 00134 iterator end() const { return SubLoops.end(); } 00135 reverse_iterator rbegin() const { return SubLoops.rbegin(); } 00136 reverse_iterator rend() const { return SubLoops.rend(); } 00137 bool empty() const { return SubLoops.empty(); } 00138 00139 /// getBlocks - Get a list of the basic blocks which make up this loop. 00140 /// 00141 const std::vector<BlockT*> &getBlocks() const { return Blocks; } 00142 typedef typename std::vector<BlockT*>::const_iterator block_iterator; 00143 block_iterator block_begin() const { return Blocks.begin(); } 00144 block_iterator block_end() const { return Blocks.end(); } 00145 00146 /// getNumBlocks - Get the number of blocks in this loop in constant time. 00147 unsigned getNumBlocks() const { 00148 return Blocks.size(); 00149 } 00150 00151 /// isLoopExiting - True if terminator in the block can branch to another 00152 /// block that is outside of the current loop. 00153 /// 00154 bool isLoopExiting(const BlockT *BB) const { 00155 typedef GraphTraits<const BlockT*> BlockTraits; 00156 for (typename BlockTraits::ChildIteratorType SI = 00157 BlockTraits::child_begin(BB), 00158 SE = BlockTraits::child_end(BB); SI != SE; ++SI) { 00159 if (!contains(*SI)) 00160 return true; 00161 } 00162 return false; 00163 } 00164 00165 /// getNumBackEdges - Calculate the number of back edges to the loop header 00166 /// 00167 unsigned getNumBackEdges() const { 00168 unsigned NumBackEdges = 0; 00169 BlockT *H = getHeader(); 00170 00171 typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits; 00172 for (typename InvBlockTraits::ChildIteratorType I = 00173 InvBlockTraits::child_begin(H), 00174 E = InvBlockTraits::child_end(H); I != E; ++I) 00175 if (contains(*I)) 00176 ++NumBackEdges; 00177 00178 return NumBackEdges; 00179 } 00180 00181 //===--------------------------------------------------------------------===// 00182 // APIs for simple analysis of the loop. 00183 // 00184 // Note that all of these methods can fail on general loops (ie, there may not 00185 // be a preheader, etc). For best success, the loop simplification and 00186 // induction variable canonicalization pass should be used to normalize loops 00187 // for easy analysis. These methods assume canonical loops. 00188 00189 /// getExitingBlocks - Return all blocks inside the loop that have successors 00190 /// outside of the loop. These are the blocks _inside of the current loop_ 00191 /// which branch out. The returned list is always unique. 00192 /// 00193 void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const; 00194 00195 /// getExitingBlock - If getExitingBlocks would return exactly one block, 00196 /// return that block. Otherwise return null. 00197 BlockT *getExitingBlock() const; 00198 00199 /// getExitBlocks - Return all of the successor blocks of this loop. These 00200 /// are the blocks _outside of the current loop_ which are branched to. 00201 /// 00202 void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const; 00203 00204 /// getExitBlock - If getExitBlocks would return exactly one block, 00205 /// return that block. Otherwise return null. 00206 BlockT *getExitBlock() const; 00207 00208 /// Edge type. 00209 typedef std::pair<const BlockT*, const BlockT*> Edge; 00210 00211 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_). 00212 void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const; 00213 00214 /// getLoopPreheader - If there is a preheader for this loop, return it. A 00215 /// loop has a preheader if there is only one edge to the header of the loop 00216 /// from outside of the loop. If this is the case, the block branching to the 00217 /// header of the loop is the preheader node. 00218 /// 00219 /// This method returns null if there is no preheader for the loop. 00220 /// 00221 BlockT *getLoopPreheader() const; 00222 00223 /// getLoopPredecessor - If the given loop's header has exactly one unique 00224 /// predecessor outside the loop, return it. Otherwise return null. 00225 /// This is less strict that the loop "preheader" concept, which requires 00226 /// the predecessor to have exactly one successor. 00227 /// 00228 BlockT *getLoopPredecessor() const; 00229 00230 /// getLoopLatch - If there is a single latch block for this loop, return it. 00231 /// A latch block is a block that contains a branch back to the header. 00232 BlockT *getLoopLatch() const; 00233 00234 /// getLoopLatches - Return all loop latch blocks of this loop. A latch block 00235 /// is a block that contains a branch back to the header. 00236 void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const { 00237 BlockT *H = getHeader(); 00238 typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits; 00239 for (typename InvBlockTraits::ChildIteratorType I = 00240 InvBlockTraits::child_begin(H), 00241 E = InvBlockTraits::child_end(H); I != E; ++I) 00242 if (contains(*I)) 00243 LoopLatches.push_back(*I); 00244 } 00245 00246 //===--------------------------------------------------------------------===// 00247 // APIs for updating loop information after changing the CFG 00248 // 00249 00250 /// addBasicBlockToLoop - This method is used by other analyses to update loop 00251 /// information. NewBB is set to be a new member of the current loop. 00252 /// Because of this, it is added as a member of all parent loops, and is added 00253 /// to the specified LoopInfo object as being in the current basic block. It 00254 /// is not valid to replace the loop header with this method. 00255 /// 00256 void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI); 00257 00258 /// replaceChildLoopWith - This is used when splitting loops up. It replaces 00259 /// the OldChild entry in our children list with NewChild, and updates the 00260 /// parent pointer of OldChild to be null and the NewChild to be this loop. 00261 /// This updates the loop depth of the new child. 00262 void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild); 00263 00264 /// addChildLoop - Add the specified loop to be a child of this loop. This 00265 /// updates the loop depth of the new child. 00266 /// 00267 void addChildLoop(LoopT *NewChild) { 00268 assert(!NewChild->ParentLoop && "NewChild already has a parent!"); 00269 NewChild->ParentLoop = static_cast<LoopT *>(this); 00270 SubLoops.push_back(NewChild); 00271 } 00272 00273 /// removeChildLoop - This removes the specified child from being a subloop of 00274 /// this loop. The loop is not deleted, as it will presumably be inserted 00275 /// into another loop. 00276 LoopT *removeChildLoop(iterator I) { 00277 assert(I != SubLoops.end() && "Cannot remove end iterator!"); 00278 LoopT *Child = *I; 00279 assert(Child->ParentLoop == this && "Child is not a child of this loop!"); 00280 SubLoops.erase(SubLoops.begin()+(I-begin())); 00281 Child->ParentLoop = nullptr; 00282 return Child; 00283 } 00284 00285 /// addBlockEntry - This adds a basic block directly to the basic block list. 00286 /// This should only be used by transformations that create new loops. Other 00287 /// transformations should use addBasicBlockToLoop. 00288 void addBlockEntry(BlockT *BB) { 00289 Blocks.push_back(BB); 00290 DenseBlockSet.insert(BB); 00291 } 00292 00293 /// reverseBlocks - interface to reverse Blocks[from, end of loop] in this loop 00294 void reverseBlock(unsigned from) { 00295 std::reverse(Blocks.begin() + from, Blocks.end()); 00296 } 00297 00298 /// reserveBlocks- interface to do reserve() for Blocks 00299 void reserveBlocks(unsigned size) { 00300 Blocks.reserve(size); 00301 } 00302 00303 /// moveToHeader - This method is used to move BB (which must be part of this 00304 /// loop) to be the loop header of the loop (the block that dominates all 00305 /// others). 00306 void moveToHeader(BlockT *BB) { 00307 if (Blocks[0] == BB) return; 00308 for (unsigned i = 0; ; ++i) { 00309 assert(i != Blocks.size() && "Loop does not contain BB!"); 00310 if (Blocks[i] == BB) { 00311 Blocks[i] = Blocks[0]; 00312 Blocks[0] = BB; 00313 return; 00314 } 00315 } 00316 } 00317 00318 /// removeBlockFromLoop - This removes the specified basic block from the 00319 /// current loop, updating the Blocks as appropriate. This does not update 00320 /// the mapping in the LoopInfo class. 00321 void removeBlockFromLoop(BlockT *BB) { 00322 RemoveFromVector(Blocks, BB); 00323 DenseBlockSet.erase(BB); 00324 } 00325 00326 /// verifyLoop - Verify loop structure 00327 void verifyLoop() const; 00328 00329 /// verifyLoop - Verify loop structure of this loop and all nested loops. 00330 void verifyLoopNest(DenseSet<const LoopT*> *Loops) const; 00331 00332 void print(raw_ostream &OS, unsigned Depth = 0) const; 00333 00334 protected: 00335 friend class LoopInfoBase<BlockT, LoopT>; 00336 explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) { 00337 Blocks.push_back(BB); 00338 DenseBlockSet.insert(BB); 00339 } 00340 }; 00341 00342 template<class BlockT, class LoopT> 00343 raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) { 00344 Loop.print(OS); 00345 return OS; 00346 } 00347 00348 // Implementation in LoopInfoImpl.h 00349 #ifdef __GNUC__ 00350 __extension__ extern template class LoopBase<BasicBlock, Loop>; 00351 #endif 00352 00353 class Loop : public LoopBase<BasicBlock, Loop> { 00354 public: 00355 Loop() {} 00356 00357 /// isLoopInvariant - Return true if the specified value is loop invariant 00358 /// 00359 bool isLoopInvariant(Value *V) const; 00360 00361 /// hasLoopInvariantOperands - Return true if all the operands of the 00362 /// specified instruction are loop invariant. 00363 bool hasLoopInvariantOperands(Instruction *I) const; 00364 00365 /// makeLoopInvariant - If the given value is an instruction inside of the 00366 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 00367 /// Return true if the value after any hoisting is loop invariant. This 00368 /// function can be used as a slightly more aggressive replacement for 00369 /// isLoopInvariant. 00370 /// 00371 /// If InsertPt is specified, it is the point to hoist instructions to. 00372 /// If null, the terminator of the loop preheader is used. 00373 /// 00374 bool makeLoopInvariant(Value *V, bool &Changed, 00375 Instruction *InsertPt = nullptr) const; 00376 00377 /// makeLoopInvariant - If the given instruction is inside of the 00378 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 00379 /// Return true if the instruction after any hoisting is loop invariant. This 00380 /// function can be used as a slightly more aggressive replacement for 00381 /// isLoopInvariant. 00382 /// 00383 /// If InsertPt is specified, it is the point to hoist instructions to. 00384 /// If null, the terminator of the loop preheader is used. 00385 /// 00386 bool makeLoopInvariant(Instruction *I, bool &Changed, 00387 Instruction *InsertPt = nullptr) const; 00388 00389 /// getCanonicalInductionVariable - Check to see if the loop has a canonical 00390 /// induction variable: an integer recurrence that starts at 0 and increments 00391 /// by one each time through the loop. If so, return the phi node that 00392 /// corresponds to it. 00393 /// 00394 /// The IndVarSimplify pass transforms loops to have a canonical induction 00395 /// variable. 00396 /// 00397 PHINode *getCanonicalInductionVariable() const; 00398 00399 /// isLCSSAForm - Return true if the Loop is in LCSSA form 00400 bool isLCSSAForm(DominatorTree &DT) const; 00401 00402 /// isLoopSimplifyForm - Return true if the Loop is in the form that 00403 /// the LoopSimplify form transforms loops to, which is sometimes called 00404 /// normal form. 00405 bool isLoopSimplifyForm() const; 00406 00407 /// isSafeToClone - Return true if the loop body is safe to clone in practice. 00408 bool isSafeToClone() const; 00409 00410 /// Returns true if the loop is annotated parallel. 00411 /// 00412 /// A parallel loop can be assumed to not contain any dependencies between 00413 /// iterations by the compiler. That is, any loop-carried dependency checking 00414 /// can be skipped completely when parallelizing the loop on the target 00415 /// machine. Thus, if the parallel loop information originates from the 00416 /// programmer, e.g. via the OpenMP parallel for pragma, it is the 00417 /// programmer's responsibility to ensure there are no loop-carried 00418 /// dependencies. The final execution order of the instructions across 00419 /// iterations is not guaranteed, thus, the end result might or might not 00420 /// implement actual concurrent execution of instructions across multiple 00421 /// iterations. 00422 bool isAnnotatedParallel() const; 00423 00424 /// Return the llvm.loop loop id metadata node for this loop if it is present. 00425 /// 00426 /// If this loop contains the same llvm.loop metadata on each branch to the 00427 /// header then the node is returned. If any latch instruction does not 00428 /// contain llvm.loop or or if multiple latches contain different nodes then 00429 /// 0 is returned. 00430 MDNode *getLoopID() const; 00431 /// Set the llvm.loop loop id metadata for this loop. 00432 /// 00433 /// The LoopID metadata node will be added to each terminator instruction in 00434 /// the loop that branches to the loop header. 00435 /// 00436 /// The LoopID metadata node should have one or more operands and the first 00437 /// operand should should be the node itself. 00438 void setLoopID(MDNode *LoopID) const; 00439 00440 /// hasDedicatedExits - Return true if no exit block for the loop 00441 /// has a predecessor that is outside the loop. 00442 bool hasDedicatedExits() const; 00443 00444 /// getUniqueExitBlocks - Return all unique successor blocks of this loop. 00445 /// These are the blocks _outside of the current loop_ which are branched to. 00446 /// This assumes that loop exits are in canonical form. 00447 /// 00448 void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const; 00449 00450 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one 00451 /// block, return that block. Otherwise return null. 00452 BasicBlock *getUniqueExitBlock() const; 00453 00454 void dump() const; 00455 00456 /// \brief Return the debug location of the start of this loop. 00457 /// This looks for a BB terminating instruction with a known debug 00458 /// location by looking at the preheader and header blocks. If it 00459 /// cannot find a terminating instruction with location information, 00460 /// it returns an unknown location. 00461 DebugLoc getStartLoc() const { 00462 DebugLoc StartLoc; 00463 BasicBlock *HeadBB; 00464 00465 // Try the pre-header first. 00466 if ((HeadBB = getLoopPreheader()) != nullptr) { 00467 StartLoc = HeadBB->getTerminator()->getDebugLoc(); 00468 if (!StartLoc.isUnknown()) 00469 return StartLoc; 00470 } 00471 00472 // If we have no pre-header or there are no instructions with debug 00473 // info in it, try the header. 00474 HeadBB = getHeader(); 00475 if (HeadBB) 00476 StartLoc = HeadBB->getTerminator()->getDebugLoc(); 00477 00478 return StartLoc; 00479 } 00480 00481 private: 00482 friend class LoopInfoBase<BasicBlock, Loop>; 00483 explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {} 00484 }; 00485 00486 //===----------------------------------------------------------------------===// 00487 /// LoopInfo - This class builds and contains all of the top level loop 00488 /// structures in the specified function. 00489 /// 00490 00491 template<class BlockT, class LoopT> 00492 class LoopInfoBase { 00493 // BBMap - Mapping of basic blocks to the inner most loop they occur in 00494 DenseMap<BlockT *, LoopT *> BBMap; 00495 std::vector<LoopT *> TopLevelLoops; 00496 friend class LoopBase<BlockT, LoopT>; 00497 friend class LoopInfo; 00498 00499 void operator=(const LoopInfoBase &) LLVM_DELETED_FUNCTION; 00500 LoopInfoBase(const LoopInfo &) LLVM_DELETED_FUNCTION; 00501 public: 00502 LoopInfoBase() { } 00503 ~LoopInfoBase() { releaseMemory(); } 00504 00505 void releaseMemory() { 00506 for (typename std::vector<LoopT *>::iterator I = 00507 TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I) 00508 delete *I; // Delete all of the loops... 00509 00510 BBMap.clear(); // Reset internal state of analysis 00511 TopLevelLoops.clear(); 00512 } 00513 00514 /// iterator/begin/end - The interface to the top-level loops in the current 00515 /// function. 00516 /// 00517 typedef typename std::vector<LoopT *>::const_iterator iterator; 00518 typedef typename std::vector<LoopT *>::const_reverse_iterator 00519 reverse_iterator; 00520 iterator begin() const { return TopLevelLoops.begin(); } 00521 iterator end() const { return TopLevelLoops.end(); } 00522 reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); } 00523 reverse_iterator rend() const { return TopLevelLoops.rend(); } 00524 bool empty() const { return TopLevelLoops.empty(); } 00525 00526 /// getLoopFor - Return the inner most loop that BB lives in. If a basic 00527 /// block is in no loop (for example the entry node), null is returned. 00528 /// 00529 LoopT *getLoopFor(const BlockT *BB) const { 00530 return BBMap.lookup(const_cast<BlockT*>(BB)); 00531 } 00532 00533 /// operator[] - same as getLoopFor... 00534 /// 00535 const LoopT *operator[](const BlockT *BB) const { 00536 return getLoopFor(BB); 00537 } 00538 00539 /// getLoopDepth - Return the loop nesting level of the specified block. A 00540 /// depth of 0 means the block is not inside any loop. 00541 /// 00542 unsigned getLoopDepth(const BlockT *BB) const { 00543 const LoopT *L = getLoopFor(BB); 00544 return L ? L->getLoopDepth() : 0; 00545 } 00546 00547 // isLoopHeader - True if the block is a loop header node 00548 bool isLoopHeader(BlockT *BB) const { 00549 const LoopT *L = getLoopFor(BB); 00550 return L && L->getHeader() == BB; 00551 } 00552 00553 /// removeLoop - This removes the specified top-level loop from this loop info 00554 /// object. The loop is not deleted, as it will presumably be inserted into 00555 /// another loop. 00556 LoopT *removeLoop(iterator I) { 00557 assert(I != end() && "Cannot remove end iterator!"); 00558 LoopT *L = *I; 00559 assert(!L->getParentLoop() && "Not a top-level loop!"); 00560 TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin())); 00561 return L; 00562 } 00563 00564 /// changeLoopFor - Change the top-level loop that contains BB to the 00565 /// specified loop. This should be used by transformations that restructure 00566 /// the loop hierarchy tree. 00567 void changeLoopFor(BlockT *BB, LoopT *L) { 00568 if (!L) { 00569 BBMap.erase(BB); 00570 return; 00571 } 00572 BBMap[BB] = L; 00573 } 00574 00575 /// changeTopLevelLoop - Replace the specified loop in the top-level loops 00576 /// list with the indicated loop. 00577 void changeTopLevelLoop(LoopT *OldLoop, 00578 LoopT *NewLoop) { 00579 typename std::vector<LoopT *>::iterator I = 00580 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop); 00581 assert(I != TopLevelLoops.end() && "Old loop not at top level!"); 00582 *I = NewLoop; 00583 assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop && 00584 "Loops already embedded into a subloop!"); 00585 } 00586 00587 /// addTopLevelLoop - This adds the specified loop to the collection of 00588 /// top-level loops. 00589 void addTopLevelLoop(LoopT *New) { 00590 assert(!New->getParentLoop() && "Loop already in subloop!"); 00591 TopLevelLoops.push_back(New); 00592 } 00593 00594 /// removeBlock - This method completely removes BB from all data structures, 00595 /// including all of the Loop objects it is nested in and our mapping from 00596 /// BasicBlocks to loops. 00597 void removeBlock(BlockT *BB) { 00598 typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB); 00599 if (I != BBMap.end()) { 00600 for (LoopT *L = I->second; L; L = L->getParentLoop()) 00601 L->removeBlockFromLoop(BB); 00602 00603 BBMap.erase(I); 00604 } 00605 } 00606 00607 // Internals 00608 00609 static bool isNotAlreadyContainedIn(const LoopT *SubLoop, 00610 const LoopT *ParentLoop) { 00611 if (!SubLoop) return true; 00612 if (SubLoop == ParentLoop) return false; 00613 return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); 00614 } 00615 00616 /// Create the loop forest using a stable algorithm. 00617 void Analyze(DominatorTreeBase<BlockT> &DomTree); 00618 00619 // Debugging 00620 00621 void print(raw_ostream &OS) const; 00622 }; 00623 00624 // Implementation in LoopInfoImpl.h 00625 #ifdef __GNUC__ 00626 __extension__ extern template class LoopInfoBase<BasicBlock, Loop>; 00627 #endif 00628 00629 class LoopInfo : public FunctionPass { 00630 LoopInfoBase<BasicBlock, Loop> LI; 00631 friend class LoopBase<BasicBlock, Loop>; 00632 00633 void operator=(const LoopInfo &) LLVM_DELETED_FUNCTION; 00634 LoopInfo(const LoopInfo &) LLVM_DELETED_FUNCTION; 00635 public: 00636 static char ID; // Pass identification, replacement for typeid 00637 00638 LoopInfo() : FunctionPass(ID) { 00639 initializeLoopInfoPass(*PassRegistry::getPassRegistry()); 00640 } 00641 00642 LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; } 00643 00644 /// iterator/begin/end - The interface to the top-level loops in the current 00645 /// function. 00646 /// 00647 typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator; 00648 typedef LoopInfoBase<BasicBlock, Loop>::reverse_iterator reverse_iterator; 00649 inline iterator begin() const { return LI.begin(); } 00650 inline iterator end() const { return LI.end(); } 00651 inline reverse_iterator rbegin() const { return LI.rbegin(); } 00652 inline reverse_iterator rend() const { return LI.rend(); } 00653 bool empty() const { return LI.empty(); } 00654 00655 /// getLoopFor - Return the inner most loop that BB lives in. If a basic 00656 /// block is in no loop (for example the entry node), null is returned. 00657 /// 00658 inline Loop *getLoopFor(const BasicBlock *BB) const { 00659 return LI.getLoopFor(BB); 00660 } 00661 00662 /// operator[] - same as getLoopFor... 00663 /// 00664 inline const Loop *operator[](const BasicBlock *BB) const { 00665 return LI.getLoopFor(BB); 00666 } 00667 00668 /// getLoopDepth - Return the loop nesting level of the specified block. A 00669 /// depth of 0 means the block is not inside any loop. 00670 /// 00671 inline unsigned getLoopDepth(const BasicBlock *BB) const { 00672 return LI.getLoopDepth(BB); 00673 } 00674 00675 // isLoopHeader - True if the block is a loop header node 00676 inline bool isLoopHeader(BasicBlock *BB) const { 00677 return LI.isLoopHeader(BB); 00678 } 00679 00680 /// runOnFunction - Calculate the natural loop information. 00681 /// 00682 bool runOnFunction(Function &F) override; 00683 00684 void verifyAnalysis() const override; 00685 00686 void releaseMemory() override { LI.releaseMemory(); } 00687 00688 void print(raw_ostream &O, const Module* M = nullptr) const override; 00689 00690 void getAnalysisUsage(AnalysisUsage &AU) const override; 00691 00692 /// removeLoop - This removes the specified top-level loop from this loop info 00693 /// object. The loop is not deleted, as it will presumably be inserted into 00694 /// another loop. 00695 inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); } 00696 00697 /// changeLoopFor - Change the top-level loop that contains BB to the 00698 /// specified loop. This should be used by transformations that restructure 00699 /// the loop hierarchy tree. 00700 inline void changeLoopFor(BasicBlock *BB, Loop *L) { 00701 LI.changeLoopFor(BB, L); 00702 } 00703 00704 /// changeTopLevelLoop - Replace the specified loop in the top-level loops 00705 /// list with the indicated loop. 00706 inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) { 00707 LI.changeTopLevelLoop(OldLoop, NewLoop); 00708 } 00709 00710 /// addTopLevelLoop - This adds the specified loop to the collection of 00711 /// top-level loops. 00712 inline void addTopLevelLoop(Loop *New) { 00713 LI.addTopLevelLoop(New); 00714 } 00715 00716 /// removeBlock - This method completely removes BB from all data structures, 00717 /// including all of the Loop objects it is nested in and our mapping from 00718 /// BasicBlocks to loops. 00719 void removeBlock(BasicBlock *BB) { 00720 LI.removeBlock(BB); 00721 } 00722 00723 /// updateUnloop - Update LoopInfo after removing the last backedge from a 00724 /// loop--now the "unloop". This updates the loop forest and parent loops for 00725 /// each block so that Unloop is no longer referenced, but the caller must 00726 /// actually delete the Unloop object. 00727 void updateUnloop(Loop *Unloop); 00728 00729 /// replacementPreservesLCSSAForm - Returns true if replacing From with To 00730 /// everywhere is guaranteed to preserve LCSSA form. 00731 bool replacementPreservesLCSSAForm(Instruction *From, Value *To) { 00732 // Preserving LCSSA form is only problematic if the replacing value is an 00733 // instruction. 00734 Instruction *I = dyn_cast<Instruction>(To); 00735 if (!I) return true; 00736 // If both instructions are defined in the same basic block then replacement 00737 // cannot break LCSSA form. 00738 if (I->getParent() == From->getParent()) 00739 return true; 00740 // If the instruction is not defined in a loop then it can safely replace 00741 // anything. 00742 Loop *ToLoop = getLoopFor(I->getParent()); 00743 if (!ToLoop) return true; 00744 // If the replacing instruction is defined in the same loop as the original 00745 // instruction, or in a loop that contains it as an inner loop, then using 00746 // it as a replacement will not break LCSSA form. 00747 return ToLoop->contains(getLoopFor(From->getParent())); 00748 } 00749 }; 00750 00751 00752 // Allow clients to walk the list of nested loops... 00753 template <> struct GraphTraits<const Loop*> { 00754 typedef const Loop NodeType; 00755 typedef LoopInfo::iterator ChildIteratorType; 00756 00757 static NodeType *getEntryNode(const Loop *L) { return L; } 00758 static inline ChildIteratorType child_begin(NodeType *N) { 00759 return N->begin(); 00760 } 00761 static inline ChildIteratorType child_end(NodeType *N) { 00762 return N->end(); 00763 } 00764 }; 00765 00766 template <> struct GraphTraits<Loop*> { 00767 typedef Loop NodeType; 00768 typedef LoopInfo::iterator ChildIteratorType; 00769 00770 static NodeType *getEntryNode(Loop *L) { return L; } 00771 static inline ChildIteratorType child_begin(NodeType *N) { 00772 return N->begin(); 00773 } 00774 static inline ChildIteratorType child_end(NodeType *N) { 00775 return N->end(); 00776 } 00777 }; 00778 00779 } // End llvm namespace 00780 00781 #endif