LLVM API Documentation

LoopRerollPass.cpp
Go to the documentation of this file.
00001 //===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This pass implements a simple loop reroller.
00011 //
00012 //===----------------------------------------------------------------------===//
00013 
00014 #include "llvm/Transforms/Scalar.h"
00015 #include "llvm/ADT/STLExtras.h"
00016 #include "llvm/ADT/SmallSet.h"
00017 #include "llvm/ADT/Statistic.h"
00018 #include "llvm/Analysis/AliasAnalysis.h"
00019 #include "llvm/Analysis/AliasSetTracker.h"
00020 #include "llvm/Analysis/LoopPass.h"
00021 #include "llvm/Analysis/ScalarEvolution.h"
00022 #include "llvm/Analysis/ScalarEvolutionExpander.h"
00023 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
00024 #include "llvm/Analysis/ValueTracking.h"
00025 #include "llvm/IR/DataLayout.h"
00026 #include "llvm/IR/Dominators.h"
00027 #include "llvm/IR/IntrinsicInst.h"
00028 #include "llvm/Support/CommandLine.h"
00029 #include "llvm/Support/Debug.h"
00030 #include "llvm/Support/raw_ostream.h"
00031 #include "llvm/Target/TargetLibraryInfo.h"
00032 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
00033 #include "llvm/Transforms/Utils/Local.h"
00034 #include "llvm/Transforms/Utils/LoopUtils.h"
00035 
00036 using namespace llvm;
00037 
00038 #define DEBUG_TYPE "loop-reroll"
00039 
00040 STATISTIC(NumRerolledLoops, "Number of rerolled loops");
00041 
00042 static cl::opt<unsigned>
00043 MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden,
00044   cl::desc("The maximum increment for loop rerolling"));
00045 
00046 // This loop re-rolling transformation aims to transform loops like this:
00047 //
00048 // int foo(int a);
00049 // void bar(int *x) {
00050 //   for (int i = 0; i < 500; i += 3) {
00051 //     foo(i);
00052 //     foo(i+1);
00053 //     foo(i+2);
00054 //   }
00055 // }
00056 //
00057 // into a loop like this:
00058 //
00059 // void bar(int *x) {
00060 //   for (int i = 0; i < 500; ++i)
00061 //     foo(i);
00062 // }
00063 //
00064 // It does this by looking for loops that, besides the latch code, are composed
00065 // of isomorphic DAGs of instructions, with each DAG rooted at some increment
00066 // to the induction variable, and where each DAG is isomorphic to the DAG
00067 // rooted at the induction variable (excepting the sub-DAGs which root the
00068 // other induction-variable increments). In other words, we're looking for loop
00069 // bodies of the form:
00070 //
00071 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
00072 // f(%iv)
00073 // %iv.1 = add %iv, 1                <-- a root increment
00074 // f(%iv.1)
00075 // %iv.2 = add %iv, 2                <-- a root increment
00076 // f(%iv.2)
00077 // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
00078 // f(%iv.scale_m_1)
00079 // ...
00080 // %iv.next = add %iv, scale
00081 // %cmp = icmp(%iv, ...)
00082 // br %cmp, header, exit
00083 //
00084 // where each f(i) is a set of instructions that, collectively, are a function
00085 // only of i (and other loop-invariant values).
00086 //
00087 // As a special case, we can also reroll loops like this:
00088 //
00089 // int foo(int);
00090 // void bar(int *x) {
00091 //   for (int i = 0; i < 500; ++i) {
00092 //     x[3*i] = foo(0);
00093 //     x[3*i+1] = foo(0);
00094 //     x[3*i+2] = foo(0);
00095 //   }
00096 // }
00097 //
00098 // into this:
00099 //
00100 // void bar(int *x) {
00101 //   for (int i = 0; i < 1500; ++i)
00102 //     x[i] = foo(0);
00103 // }
00104 //
00105 // in which case, we're looking for inputs like this:
00106 //
00107 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
00108 // %scaled.iv = mul %iv, scale
00109 // f(%scaled.iv)
00110 // %scaled.iv.1 = add %scaled.iv, 1
00111 // f(%scaled.iv.1)
00112 // %scaled.iv.2 = add %scaled.iv, 2
00113 // f(%scaled.iv.2)
00114 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
00115 // f(%scaled.iv.scale_m_1)
00116 // ...
00117 // %iv.next = add %iv, 1
00118 // %cmp = icmp(%iv, ...)
00119 // br %cmp, header, exit
00120 
00121 namespace {
00122   class LoopReroll : public LoopPass {
00123   public:
00124     static char ID; // Pass ID, replacement for typeid
00125     LoopReroll() : LoopPass(ID) {
00126       initializeLoopRerollPass(*PassRegistry::getPassRegistry());
00127     }
00128 
00129     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
00130 
00131     void getAnalysisUsage(AnalysisUsage &AU) const override {
00132       AU.addRequired<AliasAnalysis>();
00133       AU.addRequired<LoopInfo>();
00134       AU.addPreserved<LoopInfo>();
00135       AU.addRequired<DominatorTreeWrapperPass>();
00136       AU.addPreserved<DominatorTreeWrapperPass>();
00137       AU.addRequired<ScalarEvolution>();
00138       AU.addRequired<TargetLibraryInfo>();
00139     }
00140 
00141 protected:
00142     AliasAnalysis *AA;
00143     LoopInfo *LI;
00144     ScalarEvolution *SE;
00145     const DataLayout *DL;
00146     TargetLibraryInfo *TLI;
00147     DominatorTree *DT;
00148 
00149     typedef SmallVector<Instruction *, 16> SmallInstructionVector;
00150     typedef SmallSet<Instruction *, 16>   SmallInstructionSet;
00151 
00152     // A chain of isomorphic instructions, indentified by a single-use PHI,
00153     // representing a reduction. Only the last value may be used outside the
00154     // loop.
00155     struct SimpleLoopReduction {
00156       SimpleLoopReduction(Instruction *P, Loop *L)
00157         : Valid(false), Instructions(1, P) {
00158         assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
00159         add(L);
00160       }
00161 
00162       bool valid() const {
00163         return Valid;
00164       }
00165 
00166       Instruction *getPHI() const {
00167         assert(Valid && "Using invalid reduction");
00168         return Instructions.front();
00169       }
00170 
00171       Instruction *getReducedValue() const {
00172         assert(Valid && "Using invalid reduction");
00173         return Instructions.back();
00174       }
00175 
00176       Instruction *get(size_t i) const {
00177         assert(Valid && "Using invalid reduction");
00178         return Instructions[i+1];
00179       }
00180 
00181       Instruction *operator [] (size_t i) const { return get(i); }
00182 
00183       // The size, ignoring the initial PHI.
00184       size_t size() const {
00185         assert(Valid && "Using invalid reduction");
00186         return Instructions.size()-1;
00187       }
00188 
00189       typedef SmallInstructionVector::iterator iterator;
00190       typedef SmallInstructionVector::const_iterator const_iterator;
00191 
00192       iterator begin() {
00193         assert(Valid && "Using invalid reduction");
00194         return std::next(Instructions.begin());
00195       }
00196 
00197       const_iterator begin() const {
00198         assert(Valid && "Using invalid reduction");
00199         return std::next(Instructions.begin());
00200       }
00201 
00202       iterator end() { return Instructions.end(); }
00203       const_iterator end() const { return Instructions.end(); }
00204 
00205     protected:
00206       bool Valid;
00207       SmallInstructionVector Instructions;
00208 
00209       void add(Loop *L);
00210     };
00211 
00212     // The set of all reductions, and state tracking of possible reductions
00213     // during loop instruction processing.
00214     struct ReductionTracker {
00215       typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;
00216 
00217       // Add a new possible reduction.
00218       void addSLR(SimpleLoopReduction &SLR) {
00219         PossibleReds.push_back(SLR);
00220       }
00221 
00222       // Setup to track possible reductions corresponding to the provided
00223       // rerolling scale. Only reductions with a number of non-PHI instructions
00224       // that is divisible by the scale are considered. Three instructions sets
00225       // are filled in:
00226       //   - A set of all possible instructions in eligible reductions.
00227       //   - A set of all PHIs in eligible reductions
00228       //   - A set of all reduced values (last instructions) in eligible reductions.
00229       void restrictToScale(uint64_t Scale,
00230                            SmallInstructionSet &PossibleRedSet,
00231                            SmallInstructionSet &PossibleRedPHISet,
00232                            SmallInstructionSet &PossibleRedLastSet) {
00233         PossibleRedIdx.clear();
00234         PossibleRedIter.clear();
00235         Reds.clear();
00236 
00237         for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
00238           if (PossibleReds[i].size() % Scale == 0) {
00239             PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
00240             PossibleRedPHISet.insert(PossibleReds[i].getPHI());
00241       
00242             PossibleRedSet.insert(PossibleReds[i].getPHI());
00243             PossibleRedIdx[PossibleReds[i].getPHI()] = i;
00244             for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
00245                  JE = PossibleReds[i].end(); J != JE; ++J) {
00246               PossibleRedSet.insert(*J);
00247               PossibleRedIdx[*J] = i;
00248             }
00249           }
00250       }
00251 
00252       // The functions below are used while processing the loop instructions.
00253 
00254       // Are the two instructions both from reductions, and furthermore, from
00255       // the same reduction?
00256       bool isPairInSame(Instruction *J1, Instruction *J2) {
00257         DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
00258         if (J1I != PossibleRedIdx.end()) {
00259           DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
00260           if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
00261             return true;
00262         }
00263 
00264         return false;
00265       }
00266 
00267       // The two provided instructions, the first from the base iteration, and
00268       // the second from iteration i, form a matched pair. If these are part of
00269       // a reduction, record that fact.
00270       void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
00271         if (PossibleRedIdx.count(J1)) {
00272           assert(PossibleRedIdx.count(J2) &&
00273                  "Recording reduction vs. non-reduction instruction?");
00274 
00275           PossibleRedIter[J1] = 0;
00276           PossibleRedIter[J2] = i;
00277 
00278           int Idx = PossibleRedIdx[J1];
00279           assert(Idx == PossibleRedIdx[J2] &&
00280                  "Recording pair from different reductions?");
00281           Reds.insert(Idx);
00282         }
00283       }
00284 
00285       // The functions below can be called after we've finished processing all
00286       // instructions in the loop, and we know which reductions were selected.
00287 
00288       // Is the provided instruction the PHI of a reduction selected for
00289       // rerolling?
00290       bool isSelectedPHI(Instruction *J) {
00291         if (!isa<PHINode>(J))
00292           return false;
00293 
00294         for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
00295              RI != RIE; ++RI) {
00296           int i = *RI;
00297           if (cast<Instruction>(J) == PossibleReds[i].getPHI())
00298             return true;
00299         }
00300 
00301         return false;
00302       }
00303 
00304       bool validateSelected();
00305       void replaceSelected();
00306 
00307     protected:
00308       // The vector of all possible reductions (for any scale).
00309       SmallReductionVector PossibleReds;
00310 
00311       DenseMap<Instruction *, int> PossibleRedIdx;
00312       DenseMap<Instruction *, int> PossibleRedIter;
00313       DenseSet<int> Reds;
00314     };
00315 
00316     void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
00317     void collectPossibleReductions(Loop *L,
00318            ReductionTracker &Reductions);
00319     void collectInLoopUserSet(Loop *L,
00320            const SmallInstructionVector &Roots,
00321            const SmallInstructionSet &Exclude,
00322            const SmallInstructionSet &Final,
00323            DenseSet<Instruction *> &Users);
00324     void collectInLoopUserSet(Loop *L,
00325            Instruction * Root,
00326            const SmallInstructionSet &Exclude,
00327            const SmallInstructionSet &Final,
00328            DenseSet<Instruction *> &Users);
00329     bool findScaleFromMul(Instruction *RealIV, uint64_t &Scale,
00330                           Instruction *&IV,
00331                           SmallInstructionVector &LoopIncs);
00332     bool collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale, Instruction *IV,
00333                          SmallVector<SmallInstructionVector, 32> &Roots,
00334                          SmallInstructionSet &AllRoots,
00335                          SmallInstructionVector &LoopIncs);
00336     bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount,
00337                 ReductionTracker &Reductions);
00338   };
00339 }
00340 
00341 char LoopReroll::ID = 0;
00342 INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
00343 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
00344 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
00345 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
00346 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
00347 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
00348 INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
00349 
00350 Pass *llvm::createLoopRerollPass() {
00351   return new LoopReroll;
00352 }
00353 
00354 // Returns true if the provided instruction is used outside the given loop.
00355 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
00356 // non-loop blocks to be outside the loop.
00357 static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
00358   for (User *U : I->users())
00359     if (!L->contains(cast<Instruction>(U)))
00360       return true;
00361 
00362   return false;
00363 }
00364 
00365 // Collect the list of loop induction variables with respect to which it might
00366 // be possible to reroll the loop.
00367 void LoopReroll::collectPossibleIVs(Loop *L,
00368                                     SmallInstructionVector &PossibleIVs) {
00369   BasicBlock *Header = L->getHeader();
00370   for (BasicBlock::iterator I = Header->begin(),
00371        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
00372     if (!isa<PHINode>(I))
00373       continue;
00374     if (!I->getType()->isIntegerTy())
00375       continue;
00376 
00377     if (const SCEVAddRecExpr *PHISCEV =
00378         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(I))) {
00379       if (PHISCEV->getLoop() != L)
00380         continue;
00381       if (!PHISCEV->isAffine())
00382         continue;
00383       if (const SCEVConstant *IncSCEV =
00384           dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE))) {
00385         if (!IncSCEV->getValue()->getValue().isStrictlyPositive())
00386           continue;
00387         if (IncSCEV->getValue()->uge(MaxInc))
00388           continue;
00389 
00390         DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " <<
00391               *PHISCEV << "\n");
00392         PossibleIVs.push_back(I);
00393       }
00394     }
00395   }
00396 }
00397 
00398 // Add the remainder of the reduction-variable chain to the instruction vector
00399 // (the initial PHINode has already been added). If successful, the object is
00400 // marked as valid.
00401 void LoopReroll::SimpleLoopReduction::add(Loop *L) {
00402   assert(!Valid && "Cannot add to an already-valid chain");
00403 
00404   // The reduction variable must be a chain of single-use instructions
00405   // (including the PHI), except for the last value (which is used by the PHI
00406   // and also outside the loop).
00407   Instruction *C = Instructions.front();
00408 
00409   do {
00410     C = cast<Instruction>(*C->user_begin());
00411     if (C->hasOneUse()) {
00412       if (!C->isBinaryOp())
00413         return;
00414 
00415       if (!(isa<PHINode>(Instructions.back()) ||
00416             C->isSameOperationAs(Instructions.back())))
00417         return;
00418 
00419       Instructions.push_back(C);
00420     }
00421   } while (C->hasOneUse());
00422 
00423   if (Instructions.size() < 2 ||
00424       !C->isSameOperationAs(Instructions.back()) ||
00425       C->use_empty())
00426     return;
00427 
00428   // C is now the (potential) last instruction in the reduction chain.
00429   for (User *U : C->users())
00430     // The only in-loop user can be the initial PHI.
00431     if (L->contains(cast<Instruction>(U)))
00432       if (cast<Instruction>(U) != Instructions.front())
00433         return;
00434 
00435   Instructions.push_back(C);
00436   Valid = true;
00437 }
00438 
00439 // Collect the vector of possible reduction variables.
00440 void LoopReroll::collectPossibleReductions(Loop *L,
00441   ReductionTracker &Reductions) {
00442   BasicBlock *Header = L->getHeader();
00443   for (BasicBlock::iterator I = Header->begin(),
00444        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
00445     if (!isa<PHINode>(I))
00446       continue;
00447     if (!I->getType()->isSingleValueType())
00448       continue;
00449 
00450     SimpleLoopReduction SLR(I, L);
00451     if (!SLR.valid())
00452       continue;
00453 
00454     DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " <<
00455           SLR.size() << " chained instructions)\n");
00456     Reductions.addSLR(SLR);
00457   }
00458 }
00459 
00460 // Collect the set of all users of the provided root instruction. This set of
00461 // users contains not only the direct users of the root instruction, but also
00462 // all users of those users, and so on. There are two exceptions:
00463 //
00464 //   1. Instructions in the set of excluded instructions are never added to the
00465 //   use set (even if they are users). This is used, for example, to exclude
00466 //   including root increments in the use set of the primary IV.
00467 //
00468 //   2. Instructions in the set of final instructions are added to the use set
00469 //   if they are users, but their users are not added. This is used, for
00470 //   example, to prevent a reduction update from forcing all later reduction
00471 //   updates into the use set.
00472 void LoopReroll::collectInLoopUserSet(Loop *L,
00473   Instruction *Root, const SmallInstructionSet &Exclude,
00474   const SmallInstructionSet &Final,
00475   DenseSet<Instruction *> &Users) {
00476   SmallInstructionVector Queue(1, Root);
00477   while (!Queue.empty()) {
00478     Instruction *I = Queue.pop_back_val();
00479     if (!Users.insert(I).second)
00480       continue;
00481 
00482     if (!Final.count(I))
00483       for (Use &U : I->uses()) {
00484         Instruction *User = cast<Instruction>(U.getUser());
00485         if (PHINode *PN = dyn_cast<PHINode>(User)) {
00486           // Ignore "wrap-around" uses to PHIs of this loop's header.
00487           if (PN->getIncomingBlock(U) == L->getHeader())
00488             continue;
00489         }
00490   
00491         if (L->contains(User) && !Exclude.count(User)) {
00492           Queue.push_back(User);
00493         }
00494       }
00495 
00496     // We also want to collect single-user "feeder" values.
00497     for (User::op_iterator OI = I->op_begin(),
00498          OIE = I->op_end(); OI != OIE; ++OI) {
00499       if (Instruction *Op = dyn_cast<Instruction>(*OI))
00500         if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
00501             !Final.count(Op))
00502           Queue.push_back(Op);
00503     }
00504   }
00505 }
00506 
00507 // Collect all of the users of all of the provided root instructions (combined
00508 // into a single set).
00509 void LoopReroll::collectInLoopUserSet(Loop *L,
00510   const SmallInstructionVector &Roots,
00511   const SmallInstructionSet &Exclude,
00512   const SmallInstructionSet &Final,
00513   DenseSet<Instruction *> &Users) {
00514   for (SmallInstructionVector::const_iterator I = Roots.begin(),
00515        IE = Roots.end(); I != IE; ++I)
00516     collectInLoopUserSet(L, *I, Exclude, Final, Users);
00517 }
00518 
00519 static bool isSimpleLoadStore(Instruction *I) {
00520   if (LoadInst *LI = dyn_cast<LoadInst>(I))
00521     return LI->isSimple();
00522   if (StoreInst *SI = dyn_cast<StoreInst>(I))
00523     return SI->isSimple();
00524   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
00525     return !MI->isVolatile();
00526   return false;
00527 }
00528 
00529 // Recognize loops that are setup like this:
00530 //
00531 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
00532 // %scaled.iv = mul %iv, scale
00533 // f(%scaled.iv)
00534 // %scaled.iv.1 = add %scaled.iv, 1
00535 // f(%scaled.iv.1)
00536 // %scaled.iv.2 = add %scaled.iv, 2
00537 // f(%scaled.iv.2)
00538 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
00539 // f(%scaled.iv.scale_m_1)
00540 // ...
00541 // %iv.next = add %iv, 1
00542 // %cmp = icmp(%iv, ...)
00543 // br %cmp, header, exit
00544 //
00545 // and, if found, set IV = %scaled.iv, and add %iv.next to LoopIncs.
00546 bool LoopReroll::findScaleFromMul(Instruction *RealIV, uint64_t &Scale,
00547                                   Instruction *&IV,
00548                                   SmallInstructionVector &LoopIncs) {
00549   // This is a special case: here we're looking for all uses (except for
00550   // the increment) to be multiplied by a common factor. The increment must
00551   // be by one. This is to capture loops like:
00552   //   for (int i = 0; i < 500; ++i) {
00553   //     foo(3*i); foo(3*i+1); foo(3*i+2);
00554   //   }
00555   if (RealIV->getNumUses() != 2)
00556     return false;
00557   const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(RealIV));
00558   Instruction *User1 = cast<Instruction>(*RealIV->user_begin()),
00559               *User2 = cast<Instruction>(*std::next(RealIV->user_begin()));
00560   if (!SE->isSCEVable(User1->getType()) || !SE->isSCEVable(User2->getType()))
00561     return false;
00562   const SCEVAddRecExpr *User1SCEV =
00563                          dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User1)),
00564                        *User2SCEV =
00565                          dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User2));
00566   if (!User1SCEV || !User1SCEV->isAffine() ||
00567       !User2SCEV || !User2SCEV->isAffine())
00568     return false;
00569 
00570   // We assume below that User1 is the scale multiply and User2 is the
00571   // increment. If this can't be true, then swap them.
00572   if (User1SCEV == RealIVSCEV->getPostIncExpr(*SE)) {
00573     std::swap(User1, User2);
00574     std::swap(User1SCEV, User2SCEV);
00575   }
00576 
00577   if (User2SCEV != RealIVSCEV->getPostIncExpr(*SE))
00578     return false;
00579   assert(User2SCEV->getStepRecurrence(*SE)->isOne() &&
00580          "Invalid non-unit step for multiplicative scaling");
00581   LoopIncs.push_back(User2);
00582 
00583   if (const SCEVConstant *MulScale =
00584       dyn_cast<SCEVConstant>(User1SCEV->getStepRecurrence(*SE))) {
00585     // Make sure that both the start and step have the same multiplier.
00586     if (RealIVSCEV->getStart()->getType() != MulScale->getType())
00587       return false;
00588     if (SE->getMulExpr(RealIVSCEV->getStart(), MulScale) !=
00589         User1SCEV->getStart())
00590       return false;
00591 
00592     ConstantInt *MulScaleCI = MulScale->getValue();
00593     if (!MulScaleCI->uge(2) || MulScaleCI->uge(MaxInc))
00594       return false;
00595     Scale = MulScaleCI->getZExtValue();
00596     IV = User1;
00597   } else
00598     return false;
00599 
00600   DEBUG(dbgs() << "LRR: Found possible scaling " << *User1 << "\n");
00601   return true;
00602 }
00603 
00604 // Collect all root increments with respect to the provided induction variable
00605 // (normally the PHI, but sometimes a multiply). A root increment is an
00606 // instruction, normally an add, with a positive constant less than Scale. In a
00607 // rerollable loop, each of these increments is the root of an instruction
00608 // graph isomorphic to the others. Also, we collect the final induction
00609 // increment (the increment equal to the Scale), and its users in LoopIncs.
00610 bool LoopReroll::collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale,
00611                                  Instruction *IV,
00612                                  SmallVector<SmallInstructionVector, 32> &Roots,
00613                                  SmallInstructionSet &AllRoots,
00614                                  SmallInstructionVector &LoopIncs) {
00615   for (User *U : IV->users()) {
00616     Instruction *UI = cast<Instruction>(U);
00617     if (!SE->isSCEVable(UI->getType()))
00618       continue;
00619     if (UI->getType() != IV->getType())
00620       continue;
00621     if (!L->contains(UI))
00622       continue;
00623     if (hasUsesOutsideLoop(UI, L))
00624       continue;
00625 
00626     if (const SCEVConstant *Diff = dyn_cast<SCEVConstant>(SE->getMinusSCEV(
00627           SE->getSCEV(UI), SE->getSCEV(IV)))) {
00628       uint64_t Idx = Diff->getValue()->getValue().getZExtValue();
00629       if (Idx > 0 && Idx < Scale) {
00630         Roots[Idx-1].push_back(UI);
00631         AllRoots.insert(UI);
00632       } else if (Idx == Scale && Inc > 1) {
00633         LoopIncs.push_back(UI);
00634       }
00635     }
00636   }
00637 
00638   if (Roots[0].empty())
00639     return false;
00640   bool AllSame = true;
00641   for (unsigned i = 1; i < Scale-1; ++i)
00642     if (Roots[i].size() != Roots[0].size()) {
00643       AllSame = false;
00644       break;
00645     }
00646 
00647   if (!AllSame)
00648     return false;
00649 
00650   return true;
00651 }
00652 
00653 // Validate the selected reductions. All iterations must have an isomorphic
00654 // part of the reduction chain and, for non-associative reductions, the chain
00655 // entries must appear in order.
00656 bool LoopReroll::ReductionTracker::validateSelected() {
00657   // For a non-associative reduction, the chain entries must appear in order.
00658   for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
00659        RI != RIE; ++RI) {
00660     int i = *RI;
00661     int PrevIter = 0, BaseCount = 0, Count = 0;
00662     for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
00663          JE = PossibleReds[i].end(); J != JE; ++J) {
00664   // Note that all instructions in the chain must have been found because
00665   // all instructions in the function must have been assigned to some
00666   // iteration.
00667       int Iter = PossibleRedIter[*J];
00668       if (Iter != PrevIter && Iter != PrevIter + 1 &&
00669           !PossibleReds[i].getReducedValue()->isAssociative()) {
00670         DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
00671                         *J << "\n");
00672         return false;
00673       }
00674 
00675       if (Iter != PrevIter) {
00676         if (Count != BaseCount) {
00677           DEBUG(dbgs() << "LRR: Iteration " << PrevIter <<
00678                 " reduction use count " << Count <<
00679                 " is not equal to the base use count " <<
00680                 BaseCount << "\n");
00681           return false;
00682         }
00683 
00684         Count = 0;
00685       }
00686 
00687       ++Count;
00688       if (Iter == 0)
00689         ++BaseCount;
00690 
00691       PrevIter = Iter;
00692     }
00693   }
00694 
00695   return true;
00696 }
00697 
00698 // For all selected reductions, remove all parts except those in the first
00699 // iteration (and the PHI). Replace outside uses of the reduced value with uses
00700 // of the first-iteration reduced value (in other words, reroll the selected
00701 // reductions).
00702 void LoopReroll::ReductionTracker::replaceSelected() {
00703   // Fixup reductions to refer to the last instruction associated with the
00704   // first iteration (not the last).
00705   for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
00706        RI != RIE; ++RI) {
00707     int i = *RI;
00708     int j = 0;
00709     for (int e = PossibleReds[i].size(); j != e; ++j)
00710       if (PossibleRedIter[PossibleReds[i][j]] != 0) {
00711         --j;
00712         break;
00713       }
00714 
00715     // Replace users with the new end-of-chain value.
00716     SmallInstructionVector Users;
00717     for (User *U : PossibleReds[i].getReducedValue()->users())
00718       Users.push_back(cast<Instruction>(U));
00719 
00720     for (SmallInstructionVector::iterator J = Users.begin(),
00721          JE = Users.end(); J != JE; ++J)
00722       (*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
00723                               PossibleReds[i][j]);
00724   }
00725 }
00726 
00727 // Reroll the provided loop with respect to the provided induction variable.
00728 // Generally, we're looking for a loop like this:
00729 //
00730 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
00731 // f(%iv)
00732 // %iv.1 = add %iv, 1                <-- a root increment
00733 // f(%iv.1)
00734 // %iv.2 = add %iv, 2                <-- a root increment
00735 // f(%iv.2)
00736 // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
00737 // f(%iv.scale_m_1)
00738 // ...
00739 // %iv.next = add %iv, scale
00740 // %cmp = icmp(%iv, ...)
00741 // br %cmp, header, exit
00742 //
00743 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
00744 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
00745 // be intermixed with eachother. The restriction imposed by this algorithm is
00746 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
00747 // etc. be the same.
00748 //
00749 // First, we collect the use set of %iv, excluding the other increment roots.
00750 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
00751 // times, having collected the use set of f(%iv.(i+1)), during which we:
00752 //   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
00753 //     the next unmatched instruction in f(%iv.(i+1)).
00754 //   - Ensure that both matched instructions don't have any external users
00755 //     (with the exception of last-in-chain reduction instructions).
00756 //   - Track the (aliasing) write set, and other side effects, of all
00757 //     instructions that belong to future iterations that come before the matched
00758 //     instructions. If the matched instructions read from that write set, then
00759 //     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
00760 //     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
00761 //     if any of these future instructions had side effects (could not be
00762 //     speculatively executed), and so do the matched instructions, when we
00763 //     cannot reorder those side-effect-producing instructions, and rerolling
00764 //     fails.
00765 //
00766 // Finally, we make sure that all loop instructions are either loop increment
00767 // roots, belong to simple latch code, parts of validated reductions, part of
00768 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
00769 // have been validated), then we reroll the loop.
00770 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
00771                         const SCEV *IterCount,
00772                         ReductionTracker &Reductions) {
00773   const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(IV));
00774   uint64_t Inc = cast<SCEVConstant>(RealIVSCEV->getOperand(1))->
00775                    getValue()->getZExtValue();
00776   // The collection of loop increment instructions.
00777   SmallInstructionVector LoopIncs;
00778   uint64_t Scale = Inc;
00779 
00780   // The effective induction variable, IV, is normally also the real induction
00781   // variable. When we're dealing with a loop like:
00782   //   for (int i = 0; i < 500; ++i)
00783   //     x[3*i] = ...;
00784   //     x[3*i+1] = ...;
00785   //     x[3*i+2] = ...;
00786   // then the real IV is still i, but the effective IV is (3*i).
00787   Instruction *RealIV = IV;
00788   if (Inc == 1 && !findScaleFromMul(RealIV, Scale, IV, LoopIncs))
00789     return false;
00790 
00791   assert(Scale <= MaxInc && "Scale is too large");
00792   assert(Scale > 1 && "Scale must be at least 2");
00793 
00794   // The set of increment instructions for each increment value.
00795   SmallVector<SmallInstructionVector, 32> Roots(Scale-1);
00796   SmallInstructionSet AllRoots;
00797   if (!collectAllRoots(L, Inc, Scale, IV, Roots, AllRoots, LoopIncs))
00798     return false;
00799 
00800   DEBUG(dbgs() << "LRR: Found all root induction increments for: " <<
00801                   *RealIV << "\n");
00802 
00803   // An array of just the possible reductions for this scale factor. When we
00804   // collect the set of all users of some root instructions, these reduction
00805   // instructions are treated as 'final' (their uses are not considered).
00806   // This is important because we don't want the root use set to search down
00807   // the reduction chain.
00808   SmallInstructionSet PossibleRedSet;
00809   SmallInstructionSet PossibleRedLastSet, PossibleRedPHISet;
00810   Reductions.restrictToScale(Scale, PossibleRedSet, PossibleRedPHISet,
00811                              PossibleRedLastSet);
00812 
00813   // We now need to check for equivalence of the use graph of each root with
00814   // that of the primary induction variable (excluding the roots). Our goal
00815   // here is not to solve the full graph isomorphism problem, but rather to
00816   // catch common cases without a lot of work. As a result, we will assume
00817   // that the relative order of the instructions in each unrolled iteration
00818   // is the same (although we will not make an assumption about how the
00819   // different iterations are intermixed). Note that while the order must be
00820   // the same, the instructions may not be in the same basic block.
00821   SmallInstructionSet Exclude(AllRoots);
00822   Exclude.insert(LoopIncs.begin(), LoopIncs.end());
00823 
00824   DenseSet<Instruction *> BaseUseSet;
00825   collectInLoopUserSet(L, IV, Exclude, PossibleRedSet, BaseUseSet);
00826 
00827   DenseSet<Instruction *> AllRootUses;
00828   std::vector<DenseSet<Instruction *> > RootUseSets(Scale-1);
00829 
00830   bool MatchFailed = false;
00831   for (unsigned i = 0; i < Scale-1 && !MatchFailed; ++i) {
00832     DenseSet<Instruction *> &RootUseSet = RootUseSets[i];
00833     collectInLoopUserSet(L, Roots[i], SmallInstructionSet(),
00834                          PossibleRedSet, RootUseSet);
00835 
00836     DEBUG(dbgs() << "LRR: base use set size: " << BaseUseSet.size() <<
00837                     " vs. iteration increment " << (i+1) <<
00838                     " use set size: " << RootUseSet.size() << "\n");
00839 
00840     if (BaseUseSet.size() != RootUseSet.size()) {
00841       MatchFailed = true;
00842       break;
00843     }
00844 
00845     // In addition to regular aliasing information, we need to look for
00846     // instructions from later (future) iterations that have side effects
00847     // preventing us from reordering them past other instructions with side
00848     // effects.
00849     bool FutureSideEffects = false;
00850     AliasSetTracker AST(*AA);
00851 
00852     // The map between instructions in f(%iv.(i+1)) and f(%iv).
00853     DenseMap<Value *, Value *> BaseMap;
00854 
00855     assert(L->getNumBlocks() == 1 && "Cannot handle multi-block loops");
00856     for (BasicBlock::iterator J1 = Header->begin(), J2 = Header->begin(),
00857          JE = Header->end(); J1 != JE && !MatchFailed; ++J1) {
00858       if (cast<Instruction>(J1) == RealIV)
00859         continue;
00860       if (cast<Instruction>(J1) == IV)
00861         continue;
00862       if (!BaseUseSet.count(J1))
00863         continue;
00864       if (PossibleRedPHISet.count(J1)) // Skip reduction PHIs.
00865         continue;
00866 
00867       while (J2 != JE && (!RootUseSet.count(J2) ||
00868              std::find(Roots[i].begin(), Roots[i].end(), J2) !=
00869                Roots[i].end())) {
00870         // As we iterate through the instructions, instructions that don't
00871         // belong to previous iterations (or the base case), must belong to
00872         // future iterations. We want to track the alias set of writes from
00873         // previous iterations.
00874         if (!isa<PHINode>(J2) && !BaseUseSet.count(J2) &&
00875             !AllRootUses.count(J2)) {
00876           if (J2->mayWriteToMemory())
00877             AST.add(J2);
00878 
00879           // Note: This is specifically guarded by a check on isa<PHINode>,
00880           // which while a valid (somewhat arbitrary) micro-optimization, is
00881           // needed because otherwise isSafeToSpeculativelyExecute returns
00882           // false on PHI nodes.
00883           if (!isSimpleLoadStore(J2) && !isSafeToSpeculativelyExecute(J2, DL))
00884             FutureSideEffects = true; 
00885         }
00886 
00887         ++J2;
00888       }
00889 
00890       if (!J1->isSameOperationAs(J2)) {
00891         DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
00892                         " vs. " << *J2 << "\n");
00893         MatchFailed = true;
00894         break;
00895       }
00896 
00897       // Make sure that this instruction, which is in the use set of this
00898       // root instruction, does not also belong to the base set or the set of
00899       // some previous root instruction.
00900       if (BaseUseSet.count(J2) || AllRootUses.count(J2)) {
00901         DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
00902                         " vs. " << *J2 << " (prev. case overlap)\n");
00903         MatchFailed = true;
00904         break;
00905       }
00906 
00907       // Make sure that we don't alias with any instruction in the alias set
00908       // tracker. If we do, then we depend on a future iteration, and we
00909       // can't reroll.
00910       if (J2->mayReadFromMemory()) {
00911         for (AliasSetTracker::iterator K = AST.begin(), KE = AST.end();
00912              K != KE && !MatchFailed; ++K) {
00913           if (K->aliasesUnknownInst(J2, *AA)) {
00914             DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
00915                             " vs. " << *J2 << " (depends on future store)\n");
00916             MatchFailed = true;
00917             break;
00918           }
00919         }
00920       }
00921 
00922       // If we've past an instruction from a future iteration that may have
00923       // side effects, and this instruction might also, then we can't reorder
00924       // them, and this matching fails. As an exception, we allow the alias
00925       // set tracker to handle regular (simple) load/store dependencies.
00926       if (FutureSideEffects &&
00927             ((!isSimpleLoadStore(J1) &&
00928               !isSafeToSpeculativelyExecute(J1, DL)) ||
00929              (!isSimpleLoadStore(J2) &&
00930               !isSafeToSpeculativelyExecute(J2, DL)))) {
00931         DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
00932                         " vs. " << *J2 <<
00933                         " (side effects prevent reordering)\n");
00934         MatchFailed = true;
00935         break;
00936       }
00937 
00938       // For instructions that are part of a reduction, if the operation is
00939       // associative, then don't bother matching the operands (because we
00940       // already know that the instructions are isomorphic, and the order
00941       // within the iteration does not matter). For non-associative reductions,
00942       // we do need to match the operands, because we need to reject
00943       // out-of-order instructions within an iteration!
00944       // For example (assume floating-point addition), we need to reject this:
00945       //   x += a[i]; x += b[i];
00946       //   x += a[i+1]; x += b[i+1];
00947       //   x += b[i+2]; x += a[i+2];
00948       bool InReduction = Reductions.isPairInSame(J1, J2);
00949 
00950       if (!(InReduction && J1->isAssociative())) {
00951         bool Swapped = false, SomeOpMatched = false;
00952         for (unsigned j = 0; j < J1->getNumOperands() && !MatchFailed; ++j) {
00953           Value *Op2 = J2->getOperand(j);
00954 
00955     // If this is part of a reduction (and the operation is not
00956     // associatve), then we match all operands, but not those that are
00957     // part of the reduction.
00958           if (InReduction)
00959             if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
00960               if (Reductions.isPairInSame(J2, Op2I))
00961                 continue;
00962 
00963           DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
00964           if (BMI != BaseMap.end())
00965             Op2 = BMI->second;
00966           else if (std::find(Roots[i].begin(), Roots[i].end(),
00967                              (Instruction*) Op2) != Roots[i].end())
00968             Op2 = IV;
00969 
00970           if (J1->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
00971       // If we've not already decided to swap the matched operands, and
00972       // we've not already matched our first operand (note that we could
00973       // have skipped matching the first operand because it is part of a
00974       // reduction above), and the instruction is commutative, then try
00975       // the swapped match.
00976             if (!Swapped && J1->isCommutative() && !SomeOpMatched &&
00977                 J1->getOperand(!j) == Op2) {
00978               Swapped = true;
00979             } else {
00980               DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
00981                               " vs. " << *J2 << " (operand " << j << ")\n");
00982               MatchFailed = true;
00983               break;
00984             }
00985           }
00986 
00987           SomeOpMatched = true;
00988         }
00989       }
00990 
00991       if ((!PossibleRedLastSet.count(J1) && hasUsesOutsideLoop(J1, L)) ||
00992           (!PossibleRedLastSet.count(J2) && hasUsesOutsideLoop(J2, L))) {
00993         DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
00994                         " vs. " << *J2 << " (uses outside loop)\n");
00995         MatchFailed = true;
00996         break;
00997       }
00998 
00999       if (!MatchFailed)
01000         BaseMap.insert(std::pair<Value *, Value *>(J2, J1));
01001 
01002       AllRootUses.insert(J2);
01003       Reductions.recordPair(J1, J2, i+1);
01004 
01005       ++J2;
01006     }
01007   }
01008 
01009   if (MatchFailed)
01010     return false;
01011 
01012   DEBUG(dbgs() << "LRR: Matched all iteration increments for " <<
01013                   *RealIV << "\n");
01014 
01015   DenseSet<Instruction *> LoopIncUseSet;
01016   collectInLoopUserSet(L, LoopIncs, SmallInstructionSet(),
01017                        SmallInstructionSet(), LoopIncUseSet);
01018   DEBUG(dbgs() << "LRR: Loop increment set size: " <<
01019                   LoopIncUseSet.size() << "\n");
01020 
01021   // Make sure that all instructions in the loop have been included in some
01022   // use set.
01023   for (BasicBlock::iterator J = Header->begin(), JE = Header->end();
01024        J != JE; ++J) {
01025     if (isa<DbgInfoIntrinsic>(J))
01026       continue;
01027     if (cast<Instruction>(J) == RealIV)
01028       continue;
01029     if (cast<Instruction>(J) == IV)
01030       continue;
01031     if (BaseUseSet.count(J) || AllRootUses.count(J) ||
01032         (LoopIncUseSet.count(J) && (J->isTerminator() ||
01033                                     isSafeToSpeculativelyExecute(J, DL))))
01034       continue;
01035 
01036     if (AllRoots.count(J))
01037       continue;
01038 
01039     if (Reductions.isSelectedPHI(J))
01040       continue;
01041 
01042     DEBUG(dbgs() << "LRR: aborting reroll based on " << *RealIV <<
01043                     " unprocessed instruction found: " << *J << "\n");
01044     MatchFailed = true;
01045     break;
01046   }
01047 
01048   if (MatchFailed)
01049     return false;
01050 
01051   DEBUG(dbgs() << "LRR: all instructions processed from " <<
01052                   *RealIV << "\n");
01053 
01054   if (!Reductions.validateSelected())
01055     return false;
01056 
01057   // At this point, we've validated the rerolling, and we're committed to
01058   // making changes!
01059 
01060   Reductions.replaceSelected();
01061 
01062   // Remove instructions associated with non-base iterations.
01063   for (BasicBlock::reverse_iterator J = Header->rbegin();
01064        J != Header->rend();) {
01065     if (AllRootUses.count(&*J)) {
01066       Instruction *D = &*J;
01067       DEBUG(dbgs() << "LRR: removing: " << *D << "\n");
01068       D->eraseFromParent();
01069       continue;
01070     }
01071 
01072     ++J; 
01073   }
01074 
01075   // Insert the new induction variable.
01076   const SCEV *Start = RealIVSCEV->getStart();
01077   if (Inc == 1)
01078     Start = SE->getMulExpr(Start,
01079                            SE->getConstant(Start->getType(), Scale));
01080   const SCEVAddRecExpr *H =
01081     cast<SCEVAddRecExpr>(SE->getAddRecExpr(Start,
01082                            SE->getConstant(RealIVSCEV->getType(), 1),
01083                            L, SCEV::FlagAnyWrap));
01084   { // Limit the lifetime of SCEVExpander.
01085     SCEVExpander Expander(*SE, "reroll");
01086     Value *NewIV = Expander.expandCodeFor(H, IV->getType(), Header->begin());
01087 
01088     for (DenseSet<Instruction *>::iterator J = BaseUseSet.begin(),
01089          JE = BaseUseSet.end(); J != JE; ++J)
01090       (*J)->replaceUsesOfWith(IV, NewIV);
01091 
01092     if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) {
01093       if (LoopIncUseSet.count(BI)) {
01094         const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
01095         if (Inc == 1)
01096           ICSCEV =
01097             SE->getMulExpr(ICSCEV, SE->getConstant(ICSCEV->getType(), Scale));
01098         // Iteration count SCEV minus 1
01099         const SCEV *ICMinus1SCEV =
01100           SE->getMinusSCEV(ICSCEV, SE->getConstant(ICSCEV->getType(), 1));
01101 
01102         Value *ICMinus1; // Iteration count minus 1
01103         if (isa<SCEVConstant>(ICMinus1SCEV)) {
01104           ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(), BI);
01105         } else {
01106           BasicBlock *Preheader = L->getLoopPreheader();
01107           if (!Preheader)
01108             Preheader = InsertPreheaderForLoop(L, this);
01109 
01110           ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(),
01111                                             Preheader->getTerminator());
01112         }
01113  
01114         Value *Cond = new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinus1,
01115                                    "exitcond");
01116         BI->setCondition(Cond);
01117 
01118         if (BI->getSuccessor(1) != Header)
01119           BI->swapSuccessors();
01120       }
01121     }
01122   }
01123 
01124   SimplifyInstructionsInBlock(Header, DL, TLI);
01125   DeleteDeadPHIs(Header, TLI);
01126   ++NumRerolledLoops;
01127   return true;
01128 }
01129 
01130 bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
01131   if (skipOptnoneFunction(L))
01132     return false;
01133 
01134   AA = &getAnalysis<AliasAnalysis>();
01135   LI = &getAnalysis<LoopInfo>();
01136   SE = &getAnalysis<ScalarEvolution>();
01137   TLI = &getAnalysis<TargetLibraryInfo>();
01138   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
01139   DL = DLP ? &DLP->getDataLayout() : nullptr;
01140   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
01141 
01142   BasicBlock *Header = L->getHeader();
01143   DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<
01144         "] Loop %" << Header->getName() << " (" <<
01145         L->getNumBlocks() << " block(s))\n");
01146 
01147   bool Changed = false;
01148 
01149   // For now, we'll handle only single BB loops.
01150   if (L->getNumBlocks() > 1)
01151     return Changed;
01152 
01153   if (!SE->hasLoopInvariantBackedgeTakenCount(L))
01154     return Changed;
01155 
01156   const SCEV *LIBETC = SE->getBackedgeTakenCount(L);
01157   const SCEV *IterCount =
01158     SE->getAddExpr(LIBETC, SE->getConstant(LIBETC->getType(), 1));
01159   DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n");
01160 
01161   // First, we need to find the induction variable with respect to which we can
01162   // reroll (there may be several possible options).
01163   SmallInstructionVector PossibleIVs;
01164   collectPossibleIVs(L, PossibleIVs);
01165 
01166   if (PossibleIVs.empty()) {
01167     DEBUG(dbgs() << "LRR: No possible IVs found\n");
01168     return Changed;
01169   }
01170 
01171   ReductionTracker Reductions;
01172   collectPossibleReductions(L, Reductions);
01173 
01174   // For each possible IV, collect the associated possible set of 'root' nodes
01175   // (i+1, i+2, etc.).
01176   for (SmallInstructionVector::iterator I = PossibleIVs.begin(),
01177        IE = PossibleIVs.end(); I != IE; ++I)
01178     if (reroll(*I, L, Header, IterCount, Reductions)) {
01179       Changed = true;
01180       break;
01181     }
01182 
01183   return Changed;
01184 }
01185