LLVM API Documentation
00001 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This pass performs several transformations to transform natural loops into a 00011 // simpler form, which makes subsequent analyses and transformations simpler and 00012 // more effective. 00013 // 00014 // Loop pre-header insertion guarantees that there is a single, non-critical 00015 // entry edge from outside of the loop to the loop header. This simplifies a 00016 // number of analyses and transformations, such as LICM. 00017 // 00018 // Loop exit-block insertion guarantees that all exit blocks from the loop 00019 // (blocks which are outside of the loop that have predecessors inside of the 00020 // loop) only have predecessors from inside of the loop (and are thus dominated 00021 // by the loop header). This simplifies transformations such as store-sinking 00022 // that are built into LICM. 00023 // 00024 // This pass also guarantees that loops will have exactly one backedge. 00025 // 00026 // Indirectbr instructions introduce several complications. If the loop 00027 // contains or is entered by an indirectbr instruction, it may not be possible 00028 // to transform the loop and make these guarantees. Client code should check 00029 // that these conditions are true before relying on them. 00030 // 00031 // Note that the simplifycfg pass will clean up blocks which are split out but 00032 // end up being unnecessary, so usage of this pass should not pessimize 00033 // generated code. 00034 // 00035 // This pass obviously modifies the CFG, but updates loop information and 00036 // dominator information. 00037 // 00038 //===----------------------------------------------------------------------===// 00039 00040 #include "llvm/Transforms/Scalar.h" 00041 #include "llvm/ADT/DepthFirstIterator.h" 00042 #include "llvm/ADT/SetOperations.h" 00043 #include "llvm/ADT/SetVector.h" 00044 #include "llvm/ADT/SmallVector.h" 00045 #include "llvm/ADT/Statistic.h" 00046 #include "llvm/Analysis/AliasAnalysis.h" 00047 #include "llvm/Analysis/AssumptionTracker.h" 00048 #include "llvm/Analysis/DependenceAnalysis.h" 00049 #include "llvm/Analysis/InstructionSimplify.h" 00050 #include "llvm/Analysis/LoopInfo.h" 00051 #include "llvm/Analysis/ScalarEvolution.h" 00052 #include "llvm/IR/CFG.h" 00053 #include "llvm/IR/Constants.h" 00054 #include "llvm/IR/DataLayout.h" 00055 #include "llvm/IR/Dominators.h" 00056 #include "llvm/IR/Function.h" 00057 #include "llvm/IR/Instructions.h" 00058 #include "llvm/IR/IntrinsicInst.h" 00059 #include "llvm/IR/LLVMContext.h" 00060 #include "llvm/IR/Type.h" 00061 #include "llvm/Support/Debug.h" 00062 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 00063 #include "llvm/Transforms/Utils/Local.h" 00064 #include "llvm/Transforms/Utils/LoopUtils.h" 00065 using namespace llvm; 00066 00067 #define DEBUG_TYPE "loop-simplify" 00068 00069 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 00070 STATISTIC(NumNested , "Number of nested loops split out"); 00071 00072 // If the block isn't already, move the new block to right after some 'outside 00073 // block' block. This prevents the preheader from being placed inside the loop 00074 // body, e.g. when the loop hasn't been rotated. 00075 static void placeSplitBlockCarefully(BasicBlock *NewBB, 00076 SmallVectorImpl<BasicBlock *> &SplitPreds, 00077 Loop *L) { 00078 // Check to see if NewBB is already well placed. 00079 Function::iterator BBI = NewBB; --BBI; 00080 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 00081 if (&*BBI == SplitPreds[i]) 00082 return; 00083 } 00084 00085 // If it isn't already after an outside block, move it after one. This is 00086 // always good as it makes the uncond branch from the outside block into a 00087 // fall-through. 00088 00089 // Figure out *which* outside block to put this after. Prefer an outside 00090 // block that neighbors a BB actually in the loop. 00091 BasicBlock *FoundBB = nullptr; 00092 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 00093 Function::iterator BBI = SplitPreds[i]; 00094 if (++BBI != NewBB->getParent()->end() && 00095 L->contains(BBI)) { 00096 FoundBB = SplitPreds[i]; 00097 break; 00098 } 00099 } 00100 00101 // If our heuristic for a *good* bb to place this after doesn't find 00102 // anything, just pick something. It's likely better than leaving it within 00103 // the loop. 00104 if (!FoundBB) 00105 FoundBB = SplitPreds[0]; 00106 NewBB->moveAfter(FoundBB); 00107 } 00108 00109 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 00110 /// preheader, this method is called to insert one. This method has two phases: 00111 /// preheader insertion and analysis updating. 00112 /// 00113 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) { 00114 BasicBlock *Header = L->getHeader(); 00115 00116 // Compute the set of predecessors of the loop that are not in the loop. 00117 SmallVector<BasicBlock*, 8> OutsideBlocks; 00118 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 00119 PI != PE; ++PI) { 00120 BasicBlock *P = *PI; 00121 if (!L->contains(P)) { // Coming in from outside the loop? 00122 // If the loop is branched to from an indirect branch, we won't 00123 // be able to fully transform the loop, because it prohibits 00124 // edge splitting. 00125 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; 00126 00127 // Keep track of it. 00128 OutsideBlocks.push_back(P); 00129 } 00130 } 00131 00132 // Split out the loop pre-header. 00133 BasicBlock *PreheaderBB; 00134 if (!Header->isLandingPad()) { 00135 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", 00136 PP); 00137 } else { 00138 SmallVector<BasicBlock*, 2> NewBBs; 00139 SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader", 00140 ".split-lp", PP, NewBBs); 00141 PreheaderBB = NewBBs[0]; 00142 } 00143 00144 PreheaderBB->getTerminator()->setDebugLoc( 00145 Header->getFirstNonPHI()->getDebugLoc()); 00146 DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 00147 << PreheaderBB->getName() << "\n"); 00148 00149 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 00150 // code layout too horribly. 00151 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 00152 00153 return PreheaderBB; 00154 } 00155 00156 /// \brief Ensure that the loop preheader dominates all exit blocks. 00157 /// 00158 /// This method is used to split exit blocks that have predecessors outside of 00159 /// the loop. 00160 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, Pass *PP) { 00161 SmallVector<BasicBlock*, 8> LoopBlocks; 00162 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 00163 BasicBlock *P = *I; 00164 if (L->contains(P)) { 00165 // Don't do this if the loop is exited via an indirect branch. 00166 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; 00167 00168 LoopBlocks.push_back(P); 00169 } 00170 } 00171 00172 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 00173 BasicBlock *NewExitBB = nullptr; 00174 00175 if (Exit->isLandingPad()) { 00176 SmallVector<BasicBlock*, 2> NewBBs; 00177 SplitLandingPadPredecessors(Exit, LoopBlocks, 00178 ".loopexit", ".nonloopexit", 00179 PP, NewBBs); 00180 NewExitBB = NewBBs[0]; 00181 } else { 00182 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", PP); 00183 } 00184 00185 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 00186 << NewExitBB->getName() << "\n"); 00187 return NewExitBB; 00188 } 00189 00190 /// Add the specified block, and all of its predecessors, to the specified set, 00191 /// if it's not already in there. Stop predecessor traversal when we reach 00192 /// StopBlock. 00193 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 00194 std::set<BasicBlock*> &Blocks) { 00195 SmallVector<BasicBlock *, 8> Worklist; 00196 Worklist.push_back(InputBB); 00197 do { 00198 BasicBlock *BB = Worklist.pop_back_val(); 00199 if (Blocks.insert(BB).second && BB != StopBlock) 00200 // If BB is not already processed and it is not a stop block then 00201 // insert its predecessor in the work list 00202 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 00203 BasicBlock *WBB = *I; 00204 Worklist.push_back(WBB); 00205 } 00206 } while (!Worklist.empty()); 00207 } 00208 00209 /// \brief The first part of loop-nestification is to find a PHI node that tells 00210 /// us how to partition the loops. 00211 static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA, 00212 DominatorTree *DT, 00213 AssumptionTracker *AT) { 00214 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 00215 PHINode *PN = cast<PHINode>(I); 00216 ++I; 00217 if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT, AT)) { 00218 // This is a degenerate PHI already, don't modify it! 00219 PN->replaceAllUsesWith(V); 00220 if (AA) AA->deleteValue(PN); 00221 PN->eraseFromParent(); 00222 continue; 00223 } 00224 00225 // Scan this PHI node looking for a use of the PHI node by itself. 00226 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 00227 if (PN->getIncomingValue(i) == PN && 00228 L->contains(PN->getIncomingBlock(i))) 00229 // We found something tasty to remove. 00230 return PN; 00231 } 00232 return nullptr; 00233 } 00234 00235 /// \brief If this loop has multiple backedges, try to pull one of them out into 00236 /// a nested loop. 00237 /// 00238 /// This is important for code that looks like 00239 /// this: 00240 /// 00241 /// Loop: 00242 /// ... 00243 /// br cond, Loop, Next 00244 /// ... 00245 /// br cond2, Loop, Out 00246 /// 00247 /// To identify this common case, we look at the PHI nodes in the header of the 00248 /// loop. PHI nodes with unchanging values on one backedge correspond to values 00249 /// that change in the "outer" loop, but not in the "inner" loop. 00250 /// 00251 /// If we are able to separate out a loop, return the new outer loop that was 00252 /// created. 00253 /// 00254 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 00255 AliasAnalysis *AA, DominatorTree *DT, 00256 LoopInfo *LI, ScalarEvolution *SE, Pass *PP, 00257 AssumptionTracker *AT) { 00258 // Don't try to separate loops without a preheader. 00259 if (!Preheader) 00260 return nullptr; 00261 00262 // The header is not a landing pad; preheader insertion should ensure this. 00263 assert(!L->getHeader()->isLandingPad() && 00264 "Can't insert backedge to landing pad"); 00265 00266 PHINode *PN = findPHIToPartitionLoops(L, AA, DT, AT); 00267 if (!PN) return nullptr; // No known way to partition. 00268 00269 // Pull out all predecessors that have varying values in the loop. This 00270 // handles the case when a PHI node has multiple instances of itself as 00271 // arguments. 00272 SmallVector<BasicBlock*, 8> OuterLoopPreds; 00273 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 00274 if (PN->getIncomingValue(i) != PN || 00275 !L->contains(PN->getIncomingBlock(i))) { 00276 // We can't split indirectbr edges. 00277 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 00278 return nullptr; 00279 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 00280 } 00281 } 00282 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 00283 00284 // If ScalarEvolution is around and knows anything about values in 00285 // this loop, tell it to forget them, because we're about to 00286 // substantially change it. 00287 if (SE) 00288 SE->forgetLoop(L); 00289 00290 BasicBlock *Header = L->getHeader(); 00291 BasicBlock *NewBB = 00292 SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", PP); 00293 00294 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 00295 // code layout too horribly. 00296 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 00297 00298 // Create the new outer loop. 00299 Loop *NewOuter = new Loop(); 00300 00301 // Change the parent loop to use the outer loop as its child now. 00302 if (Loop *Parent = L->getParentLoop()) 00303 Parent->replaceChildLoopWith(L, NewOuter); 00304 else 00305 LI->changeTopLevelLoop(L, NewOuter); 00306 00307 // L is now a subloop of our outer loop. 00308 NewOuter->addChildLoop(L); 00309 00310 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 00311 I != E; ++I) 00312 NewOuter->addBlockEntry(*I); 00313 00314 // Now reset the header in L, which had been moved by 00315 // SplitBlockPredecessors for the outer loop. 00316 L->moveToHeader(Header); 00317 00318 // Determine which blocks should stay in L and which should be moved out to 00319 // the Outer loop now. 00320 std::set<BasicBlock*> BlocksInL; 00321 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 00322 BasicBlock *P = *PI; 00323 if (DT->dominates(Header, P)) 00324 addBlockAndPredsToSet(P, Header, BlocksInL); 00325 } 00326 00327 // Scan all of the loop children of L, moving them to OuterLoop if they are 00328 // not part of the inner loop. 00329 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 00330 for (size_t I = 0; I != SubLoops.size(); ) 00331 if (BlocksInL.count(SubLoops[I]->getHeader())) 00332 ++I; // Loop remains in L 00333 else 00334 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 00335 00336 // Now that we know which blocks are in L and which need to be moved to 00337 // OuterLoop, move any blocks that need it. 00338 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 00339 BasicBlock *BB = L->getBlocks()[i]; 00340 if (!BlocksInL.count(BB)) { 00341 // Move this block to the parent, updating the exit blocks sets 00342 L->removeBlockFromLoop(BB); 00343 if ((*LI)[BB] == L) 00344 LI->changeLoopFor(BB, NewOuter); 00345 --i; 00346 } 00347 } 00348 00349 return NewOuter; 00350 } 00351 00352 /// \brief This method is called when the specified loop has more than one 00353 /// backedge in it. 00354 /// 00355 /// If this occurs, revector all of these backedges to target a new basic block 00356 /// and have that block branch to the loop header. This ensures that loops 00357 /// have exactly one backedge. 00358 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 00359 AliasAnalysis *AA, 00360 DominatorTree *DT, LoopInfo *LI) { 00361 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 00362 00363 // Get information about the loop 00364 BasicBlock *Header = L->getHeader(); 00365 Function *F = Header->getParent(); 00366 00367 // Unique backedge insertion currently depends on having a preheader. 00368 if (!Preheader) 00369 return nullptr; 00370 00371 // The header is not a landing pad; preheader insertion should ensure this. 00372 assert(!Header->isLandingPad() && "Can't insert backedge to landing pad"); 00373 00374 // Figure out which basic blocks contain back-edges to the loop header. 00375 std::vector<BasicBlock*> BackedgeBlocks; 00376 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 00377 BasicBlock *P = *I; 00378 00379 // Indirectbr edges cannot be split, so we must fail if we find one. 00380 if (isa<IndirectBrInst>(P->getTerminator())) 00381 return nullptr; 00382 00383 if (P != Preheader) BackedgeBlocks.push_back(P); 00384 } 00385 00386 // Create and insert the new backedge block... 00387 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 00388 Header->getName()+".backedge", F); 00389 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 00390 00391 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 00392 << BEBlock->getName() << "\n"); 00393 00394 // Move the new backedge block to right after the last backedge block. 00395 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 00396 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 00397 00398 // Now that the block has been inserted into the function, create PHI nodes in 00399 // the backedge block which correspond to any PHI nodes in the header block. 00400 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 00401 PHINode *PN = cast<PHINode>(I); 00402 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 00403 PN->getName()+".be", BETerminator); 00404 if (AA) AA->copyValue(PN, NewPN); 00405 00406 // Loop over the PHI node, moving all entries except the one for the 00407 // preheader over to the new PHI node. 00408 unsigned PreheaderIdx = ~0U; 00409 bool HasUniqueIncomingValue = true; 00410 Value *UniqueValue = nullptr; 00411 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 00412 BasicBlock *IBB = PN->getIncomingBlock(i); 00413 Value *IV = PN->getIncomingValue(i); 00414 if (IBB == Preheader) { 00415 PreheaderIdx = i; 00416 } else { 00417 NewPN->addIncoming(IV, IBB); 00418 if (HasUniqueIncomingValue) { 00419 if (!UniqueValue) 00420 UniqueValue = IV; 00421 else if (UniqueValue != IV) 00422 HasUniqueIncomingValue = false; 00423 } 00424 } 00425 } 00426 00427 // Delete all of the incoming values from the old PN except the preheader's 00428 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 00429 if (PreheaderIdx != 0) { 00430 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 00431 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 00432 } 00433 // Nuke all entries except the zero'th. 00434 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 00435 PN->removeIncomingValue(e-i, false); 00436 00437 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 00438 PN->addIncoming(NewPN, BEBlock); 00439 00440 // As an optimization, if all incoming values in the new PhiNode (which is a 00441 // subset of the incoming values of the old PHI node) have the same value, 00442 // eliminate the PHI Node. 00443 if (HasUniqueIncomingValue) { 00444 NewPN->replaceAllUsesWith(UniqueValue); 00445 if (AA) AA->deleteValue(NewPN); 00446 BEBlock->getInstList().erase(NewPN); 00447 } 00448 } 00449 00450 // Now that all of the PHI nodes have been inserted and adjusted, modify the 00451 // backedge blocks to just to the BEBlock instead of the header. 00452 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 00453 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 00454 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 00455 if (TI->getSuccessor(Op) == Header) 00456 TI->setSuccessor(Op, BEBlock); 00457 } 00458 00459 //===--- Update all analyses which we must preserve now -----------------===// 00460 00461 // Update Loop Information - we know that this block is now in the current 00462 // loop and all parent loops. 00463 L->addBasicBlockToLoop(BEBlock, LI->getBase()); 00464 00465 // Update dominator information 00466 DT->splitBlock(BEBlock); 00467 00468 return BEBlock; 00469 } 00470 00471 /// \brief Simplify one loop and queue further loops for simplification. 00472 /// 00473 /// FIXME: Currently this accepts both lots of analyses that it uses and a raw 00474 /// Pass pointer. The Pass pointer is used by numerous utilities to update 00475 /// specific analyses. Rather than a pass it would be much cleaner and more 00476 /// explicit if they accepted the analysis directly and then updated it. 00477 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 00478 AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI, 00479 ScalarEvolution *SE, Pass *PP, 00480 const DataLayout *DL, AssumptionTracker *AT) { 00481 bool Changed = false; 00482 ReprocessLoop: 00483 00484 // Check to see that no blocks (other than the header) in this loop have 00485 // predecessors that are not in the loop. This is not valid for natural 00486 // loops, but can occur if the blocks are unreachable. Since they are 00487 // unreachable we can just shamelessly delete those CFG edges! 00488 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 00489 BB != E; ++BB) { 00490 if (*BB == L->getHeader()) continue; 00491 00492 SmallPtrSet<BasicBlock*, 4> BadPreds; 00493 for (pred_iterator PI = pred_begin(*BB), 00494 PE = pred_end(*BB); PI != PE; ++PI) { 00495 BasicBlock *P = *PI; 00496 if (!L->contains(P)) 00497 BadPreds.insert(P); 00498 } 00499 00500 // Delete each unique out-of-loop (and thus dead) predecessor. 00501 for (BasicBlock *P : BadPreds) { 00502 00503 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 00504 << P->getName() << "\n"); 00505 00506 // Inform each successor of each dead pred. 00507 for (succ_iterator SI = succ_begin(P), SE = succ_end(P); SI != SE; ++SI) 00508 (*SI)->removePredecessor(P); 00509 // Zap the dead pred's terminator and replace it with unreachable. 00510 TerminatorInst *TI = P->getTerminator(); 00511 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 00512 P->getTerminator()->eraseFromParent(); 00513 new UnreachableInst(P->getContext(), P); 00514 Changed = true; 00515 } 00516 } 00517 00518 // If there are exiting blocks with branches on undef, resolve the undef in 00519 // the direction which will exit the loop. This will help simplify loop 00520 // trip count computations. 00521 SmallVector<BasicBlock*, 8> ExitingBlocks; 00522 L->getExitingBlocks(ExitingBlocks); 00523 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 00524 E = ExitingBlocks.end(); I != E; ++I) 00525 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 00526 if (BI->isConditional()) { 00527 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 00528 00529 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 00530 << (*I)->getName() << "\n"); 00531 00532 BI->setCondition(ConstantInt::get(Cond->getType(), 00533 !L->contains(BI->getSuccessor(0)))); 00534 00535 // This may make the loop analyzable, force SCEV recomputation. 00536 if (SE) 00537 SE->forgetLoop(L); 00538 00539 Changed = true; 00540 } 00541 } 00542 00543 // Does the loop already have a preheader? If so, don't insert one. 00544 BasicBlock *Preheader = L->getLoopPreheader(); 00545 if (!Preheader) { 00546 Preheader = InsertPreheaderForLoop(L, PP); 00547 if (Preheader) { 00548 ++NumInserted; 00549 Changed = true; 00550 } 00551 } 00552 00553 // Next, check to make sure that all exit nodes of the loop only have 00554 // predecessors that are inside of the loop. This check guarantees that the 00555 // loop preheader/header will dominate the exit blocks. If the exit block has 00556 // predecessors from outside of the loop, split the edge now. 00557 SmallVector<BasicBlock*, 8> ExitBlocks; 00558 L->getExitBlocks(ExitBlocks); 00559 00560 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 00561 ExitBlocks.end()); 00562 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 00563 E = ExitBlockSet.end(); I != E; ++I) { 00564 BasicBlock *ExitBlock = *I; 00565 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 00566 PI != PE; ++PI) 00567 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 00568 // allowed. 00569 if (!L->contains(*PI)) { 00570 if (rewriteLoopExitBlock(L, ExitBlock, PP)) { 00571 ++NumInserted; 00572 Changed = true; 00573 } 00574 break; 00575 } 00576 } 00577 00578 // If the header has more than two predecessors at this point (from the 00579 // preheader and from multiple backedges), we must adjust the loop. 00580 BasicBlock *LoopLatch = L->getLoopLatch(); 00581 if (!LoopLatch) { 00582 // If this is really a nested loop, rip it out into a child loop. Don't do 00583 // this for loops with a giant number of backedges, just factor them into a 00584 // common backedge instead. 00585 if (L->getNumBackEdges() < 8) { 00586 if (Loop *OuterL = separateNestedLoop(L, Preheader, AA, DT, LI, SE, 00587 PP, AT)) { 00588 ++NumNested; 00589 // Enqueue the outer loop as it should be processed next in our 00590 // depth-first nest walk. 00591 Worklist.push_back(OuterL); 00592 00593 // This is a big restructuring change, reprocess the whole loop. 00594 Changed = true; 00595 // GCC doesn't tail recursion eliminate this. 00596 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 00597 goto ReprocessLoop; 00598 } 00599 } 00600 00601 // If we either couldn't, or didn't want to, identify nesting of the loops, 00602 // insert a new block that all backedges target, then make it jump to the 00603 // loop header. 00604 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, AA, DT, LI); 00605 if (LoopLatch) { 00606 ++NumInserted; 00607 Changed = true; 00608 } 00609 } 00610 00611 // Scan over the PHI nodes in the loop header. Since they now have only two 00612 // incoming values (the loop is canonicalized), we may have simplified the PHI 00613 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 00614 PHINode *PN; 00615 for (BasicBlock::iterator I = L->getHeader()->begin(); 00616 (PN = dyn_cast<PHINode>(I++)); ) 00617 if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT, AT)) { 00618 if (AA) AA->deleteValue(PN); 00619 if (SE) SE->forgetValue(PN); 00620 PN->replaceAllUsesWith(V); 00621 PN->eraseFromParent(); 00622 } 00623 00624 // If this loop has multiple exits and the exits all go to the same 00625 // block, attempt to merge the exits. This helps several passes, such 00626 // as LoopRotation, which do not support loops with multiple exits. 00627 // SimplifyCFG also does this (and this code uses the same utility 00628 // function), however this code is loop-aware, where SimplifyCFG is 00629 // not. That gives it the advantage of being able to hoist 00630 // loop-invariant instructions out of the way to open up more 00631 // opportunities, and the disadvantage of having the responsibility 00632 // to preserve dominator information. 00633 bool UniqueExit = true; 00634 if (!ExitBlocks.empty()) 00635 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 00636 if (ExitBlocks[i] != ExitBlocks[0]) { 00637 UniqueExit = false; 00638 break; 00639 } 00640 if (UniqueExit) { 00641 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 00642 BasicBlock *ExitingBlock = ExitingBlocks[i]; 00643 if (!ExitingBlock->getSinglePredecessor()) continue; 00644 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 00645 if (!BI || !BI->isConditional()) continue; 00646 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 00647 if (!CI || CI->getParent() != ExitingBlock) continue; 00648 00649 // Attempt to hoist out all instructions except for the 00650 // comparison and the branch. 00651 bool AllInvariant = true; 00652 bool AnyInvariant = false; 00653 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 00654 Instruction *Inst = I++; 00655 // Skip debug info intrinsics. 00656 if (isa<DbgInfoIntrinsic>(Inst)) 00657 continue; 00658 if (Inst == CI) 00659 continue; 00660 if (!L->makeLoopInvariant(Inst, AnyInvariant, 00661 Preheader ? Preheader->getTerminator() 00662 : nullptr)) { 00663 AllInvariant = false; 00664 break; 00665 } 00666 } 00667 if (AnyInvariant) { 00668 Changed = true; 00669 // The loop disposition of all SCEV expressions that depend on any 00670 // hoisted values have also changed. 00671 if (SE) 00672 SE->forgetLoopDispositions(L); 00673 } 00674 if (!AllInvariant) continue; 00675 00676 // The block has now been cleared of all instructions except for 00677 // a comparison and a conditional branch. SimplifyCFG may be able 00678 // to fold it now. 00679 if (!FoldBranchToCommonDest(BI, DL)) continue; 00680 00681 // Success. The block is now dead, so remove it from the loop, 00682 // update the dominator tree and delete it. 00683 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 00684 << ExitingBlock->getName() << "\n"); 00685 00686 // Notify ScalarEvolution before deleting this block. Currently assume the 00687 // parent loop doesn't change (spliting edges doesn't count). If blocks, 00688 // CFG edges, or other values in the parent loop change, then we need call 00689 // to forgetLoop() for the parent instead. 00690 if (SE) 00691 SE->forgetLoop(L); 00692 00693 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 00694 Changed = true; 00695 LI->removeBlock(ExitingBlock); 00696 00697 DomTreeNode *Node = DT->getNode(ExitingBlock); 00698 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 00699 Node->getChildren(); 00700 while (!Children.empty()) { 00701 DomTreeNode *Child = Children.front(); 00702 DT->changeImmediateDominator(Child, Node->getIDom()); 00703 } 00704 DT->eraseNode(ExitingBlock); 00705 00706 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 00707 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 00708 ExitingBlock->eraseFromParent(); 00709 } 00710 } 00711 00712 return Changed; 00713 } 00714 00715 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP, 00716 AliasAnalysis *AA, ScalarEvolution *SE, 00717 const DataLayout *DL, AssumptionTracker *AT) { 00718 bool Changed = false; 00719 00720 // Worklist maintains our depth-first queue of loops in this nest to process. 00721 SmallVector<Loop *, 4> Worklist; 00722 Worklist.push_back(L); 00723 00724 // Walk the worklist from front to back, pushing newly found sub loops onto 00725 // the back. This will let us process loops from back to front in depth-first 00726 // order. We can use this simple process because loops form a tree. 00727 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 00728 Loop *L2 = Worklist[Idx]; 00729 for (Loop::iterator I = L2->begin(), E = L2->end(); I != E; ++I) 00730 Worklist.push_back(*I); 00731 } 00732 00733 while (!Worklist.empty()) 00734 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI, 00735 SE, PP, DL, AT); 00736 00737 return Changed; 00738 } 00739 00740 namespace { 00741 struct LoopSimplify : public FunctionPass { 00742 static char ID; // Pass identification, replacement for typeid 00743 LoopSimplify() : FunctionPass(ID) { 00744 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 00745 } 00746 00747 // AA - If we have an alias analysis object to update, this is it, otherwise 00748 // this is null. 00749 AliasAnalysis *AA; 00750 DominatorTree *DT; 00751 LoopInfo *LI; 00752 ScalarEvolution *SE; 00753 const DataLayout *DL; 00754 AssumptionTracker *AT; 00755 00756 bool runOnFunction(Function &F) override; 00757 00758 void getAnalysisUsage(AnalysisUsage &AU) const override { 00759 AU.addRequired<AssumptionTracker>(); 00760 00761 // We need loop information to identify the loops... 00762 AU.addRequired<DominatorTreeWrapperPass>(); 00763 AU.addPreserved<DominatorTreeWrapperPass>(); 00764 00765 AU.addRequired<LoopInfo>(); 00766 AU.addPreserved<LoopInfo>(); 00767 00768 AU.addPreserved<AliasAnalysis>(); 00769 AU.addPreserved<ScalarEvolution>(); 00770 AU.addPreserved<DependenceAnalysis>(); 00771 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 00772 } 00773 00774 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 00775 void verifyAnalysis() const override; 00776 }; 00777 } 00778 00779 char LoopSimplify::ID = 0; 00780 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 00781 "Canonicalize natural loops", true, false) 00782 INITIALIZE_PASS_DEPENDENCY(AssumptionTracker) 00783 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 00784 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 00785 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 00786 "Canonicalize natural loops", true, false) 00787 00788 // Publicly exposed interface to pass... 00789 char &llvm::LoopSimplifyID = LoopSimplify::ID; 00790 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 00791 00792 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 00793 /// it in any convenient order) inserting preheaders... 00794 /// 00795 bool LoopSimplify::runOnFunction(Function &F) { 00796 bool Changed = false; 00797 AA = getAnalysisIfAvailable<AliasAnalysis>(); 00798 LI = &getAnalysis<LoopInfo>(); 00799 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 00800 SE = getAnalysisIfAvailable<ScalarEvolution>(); 00801 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 00802 DL = DLP ? &DLP->getDataLayout() : nullptr; 00803 AT = &getAnalysis<AssumptionTracker>(); 00804 00805 // Simplify each loop nest in the function. 00806 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 00807 Changed |= simplifyLoop(*I, DT, LI, this, AA, SE, DL, AT); 00808 00809 return Changed; 00810 } 00811 00812 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 00813 // below. 00814 #if 0 00815 static void verifyLoop(Loop *L) { 00816 // Verify subloops. 00817 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 00818 verifyLoop(*I); 00819 00820 // It used to be possible to just assert L->isLoopSimplifyForm(), however 00821 // with the introduction of indirectbr, there are now cases where it's 00822 // not possible to transform a loop as necessary. We can at least check 00823 // that there is an indirectbr near any time there's trouble. 00824 00825 // Indirectbr can interfere with preheader and unique backedge insertion. 00826 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 00827 bool HasIndBrPred = false; 00828 for (pred_iterator PI = pred_begin(L->getHeader()), 00829 PE = pred_end(L->getHeader()); PI != PE; ++PI) 00830 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 00831 HasIndBrPred = true; 00832 break; 00833 } 00834 assert(HasIndBrPred && 00835 "LoopSimplify has no excuse for missing loop header info!"); 00836 (void)HasIndBrPred; 00837 } 00838 00839 // Indirectbr can interfere with exit block canonicalization. 00840 if (!L->hasDedicatedExits()) { 00841 bool HasIndBrExiting = false; 00842 SmallVector<BasicBlock*, 8> ExitingBlocks; 00843 L->getExitingBlocks(ExitingBlocks); 00844 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 00845 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 00846 HasIndBrExiting = true; 00847 break; 00848 } 00849 } 00850 00851 assert(HasIndBrExiting && 00852 "LoopSimplify has no excuse for missing exit block info!"); 00853 (void)HasIndBrExiting; 00854 } 00855 } 00856 #endif 00857 00858 void LoopSimplify::verifyAnalysis() const { 00859 // FIXME: This routine is being called mid-way through the loop pass manager 00860 // as loop passes destroy this analysis. That's actually fine, but we have no 00861 // way of expressing that here. Once all of the passes that destroy this are 00862 // hoisted out of the loop pass manager we can add back verification here. 00863 #if 0 00864 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 00865 verifyLoop(*I); 00866 #endif 00867 }