LLVM API Documentation

LoopUnrollRuntime.cpp
Go to the documentation of this file.
00001 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file implements some loop unrolling utilities for loops with run-time
00011 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
00012 // trip counts.
00013 //
00014 // The functions in this file are used to generate extra code when the
00015 // run-time trip count modulo the unroll factor is not 0.  When this is the
00016 // case, we need to generate code to execute these 'left over' iterations.
00017 //
00018 // The current strategy generates an if-then-else sequence prior to the
00019 // unrolled loop to execute the 'left over' iterations.  Other strategies
00020 // include generate a loop before or after the unrolled loop.
00021 //
00022 //===----------------------------------------------------------------------===//
00023 
00024 #include "llvm/Transforms/Utils/UnrollLoop.h"
00025 #include "llvm/ADT/Statistic.h"
00026 #include "llvm/Analysis/LoopIterator.h"
00027 #include "llvm/Analysis/LoopPass.h"
00028 #include "llvm/Analysis/ScalarEvolution.h"
00029 #include "llvm/Analysis/ScalarEvolutionExpander.h"
00030 #include "llvm/IR/BasicBlock.h"
00031 #include "llvm/Support/Debug.h"
00032 #include "llvm/Support/raw_ostream.h"
00033 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
00034 #include "llvm/Transforms/Utils/Cloning.h"
00035 #include <algorithm>
00036 
00037 using namespace llvm;
00038 
00039 #define DEBUG_TYPE "loop-unroll"
00040 
00041 STATISTIC(NumRuntimeUnrolled,
00042           "Number of loops unrolled with run-time trip counts");
00043 
00044 /// Connect the unrolling prolog code to the original loop.
00045 /// The unrolling prolog code contains code to execute the
00046 /// 'extra' iterations if the run-time trip count modulo the
00047 /// unroll count is non-zero.
00048 ///
00049 /// This function performs the following:
00050 /// - Create PHI nodes at prolog end block to combine values
00051 ///   that exit the prolog code and jump around the prolog.
00052 /// - Add a PHI operand to a PHI node at the loop exit block
00053 ///   for values that exit the prolog and go around the loop.
00054 /// - Branch around the original loop if the trip count is less
00055 ///   than the unroll factor.
00056 ///
00057 static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count,
00058                           BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
00059                           BasicBlock *OrigPH, BasicBlock *NewPH,
00060                           ValueToValueMapTy &LVMap, Pass *P) {
00061   BasicBlock *Latch = L->getLoopLatch();
00062   assert(Latch && "Loop must have a latch");
00063 
00064   // Create a PHI node for each outgoing value from the original loop
00065   // (which means it is an outgoing value from the prolog code too).
00066   // The new PHI node is inserted in the prolog end basic block.
00067   // The new PHI name is added as an operand of a PHI node in either
00068   // the loop header or the loop exit block.
00069   for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
00070        SBI != SBE; ++SBI) {
00071     for (BasicBlock::iterator BBI = (*SBI)->begin();
00072          PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
00073 
00074       // Add a new PHI node to the prolog end block and add the
00075       // appropriate incoming values.
00076       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
00077                                        PrologEnd->getTerminator());
00078       // Adding a value to the new PHI node from the original loop preheader.
00079       // This is the value that skips all the prolog code.
00080       if (L->contains(PN)) {
00081         NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
00082       } else {
00083         NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH);
00084       }
00085 
00086       Value *V = PN->getIncomingValueForBlock(Latch);
00087       if (Instruction *I = dyn_cast<Instruction>(V)) {
00088         if (L->contains(I)) {
00089           V = LVMap[I];
00090         }
00091       }
00092       // Adding a value to the new PHI node from the last prolog block
00093       // that was created.
00094       NewPN->addIncoming(V, LastPrologBB);
00095 
00096       // Update the existing PHI node operand with the value from the
00097       // new PHI node.  How this is done depends on if the existing
00098       // PHI node is in the original loop block, or the exit block.
00099       if (L->contains(PN)) {
00100         PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
00101       } else {
00102         PN->addIncoming(NewPN, PrologEnd);
00103       }
00104     }
00105   }
00106 
00107   // Create a branch around the orignal loop, which is taken if the
00108   // trip count is less than the unroll factor.
00109   Instruction *InsertPt = PrologEnd->getTerminator();
00110   Instruction *BrLoopExit =
00111     new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, TripCount,
00112                  ConstantInt::get(TripCount->getType(), Count));
00113   BasicBlock *Exit = L->getUniqueExitBlock();
00114   assert(Exit && "Loop must have a single exit block only");
00115   // Split the exit to maintain loop canonicalization guarantees
00116   SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
00117   if (!Exit->isLandingPad()) {
00118     SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", P);
00119   } else {
00120     SmallVector<BasicBlock*, 2> NewBBs;
00121     SplitLandingPadPredecessors(Exit, Preds, ".unr1-lcssa", ".unr2-lcssa",
00122                                 P, NewBBs);
00123   }
00124   // Add the branch to the exit block (around the unrolled loop)
00125   BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt);
00126   InsertPt->eraseFromParent();
00127 }
00128 
00129 /// Create a clone of the blocks in a loop and connect them together.
00130 /// This function doesn't create a clone of the loop structure.
00131 ///
00132 /// There are two value maps that are defined and used.  VMap is
00133 /// for the values in the current loop instance.  LVMap contains
00134 /// the values from the last loop instance.  We need the LVMap values
00135 /// to update the initial values for the current loop instance.
00136 ///
00137 static void CloneLoopBlocks(Loop *L,
00138                             bool FirstCopy,
00139                             BasicBlock *InsertTop,
00140                             BasicBlock *InsertBot,
00141                             std::vector<BasicBlock *> &NewBlocks,
00142                             LoopBlocksDFS &LoopBlocks,
00143                             ValueToValueMapTy &VMap,
00144                             ValueToValueMapTy &LVMap,
00145                             LoopInfo *LI) {
00146 
00147   BasicBlock *Preheader = L->getLoopPreheader();
00148   BasicBlock *Header = L->getHeader();
00149   BasicBlock *Latch = L->getLoopLatch();
00150   Function *F = Header->getParent();
00151   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
00152   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
00153   // For each block in the original loop, create a new copy,
00154   // and update the value map with the newly created values.
00155   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
00156     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".unr", F);
00157     NewBlocks.push_back(NewBB);
00158 
00159     if (Loop *ParentLoop = L->getParentLoop())
00160       ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
00161 
00162     VMap[*BB] = NewBB;
00163     if (Header == *BB) {
00164       // For the first block, add a CFG connection to this newly
00165       // created block
00166       InsertTop->getTerminator()->setSuccessor(0, NewBB);
00167 
00168       // Change the incoming values to the ones defined in the
00169       // previously cloned loop.
00170       for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
00171         PHINode *NewPHI = cast<PHINode>(VMap[I]);
00172         if (FirstCopy) {
00173           // We replace the first phi node with the value from the preheader
00174           VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
00175           NewBB->getInstList().erase(NewPHI);
00176         } else {
00177           // Update VMap with values from the previous block
00178           unsigned idx = NewPHI->getBasicBlockIndex(Latch);
00179           Value *InVal = NewPHI->getIncomingValue(idx);
00180           if (Instruction *I = dyn_cast<Instruction>(InVal))
00181             if (L->contains(I))
00182               InVal = LVMap[InVal];
00183           NewPHI->setIncomingValue(idx, InVal);
00184           NewPHI->setIncomingBlock(idx, InsertTop);
00185         }
00186       }
00187     }
00188 
00189     if (Latch == *BB) {
00190       VMap.erase((*BB)->getTerminator());
00191       NewBB->getTerminator()->eraseFromParent();
00192       BranchInst::Create(InsertBot, NewBB);
00193     }
00194   }
00195   // LastValueMap is updated with the values for the current loop
00196   // which are used the next time this function is called.
00197   for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
00198        VI != VE; ++VI) {
00199     LVMap[VI->first] = VI->second;
00200   }
00201 }
00202 
00203 /// Insert code in the prolog code when unrolling a loop with a
00204 /// run-time trip-count.
00205 ///
00206 /// This method assumes that the loop unroll factor is total number
00207 /// of loop bodes in the loop after unrolling. (Some folks refer
00208 /// to the unroll factor as the number of *extra* copies added).
00209 /// We assume also that the loop unroll factor is a power-of-two. So, after
00210 /// unrolling the loop, the number of loop bodies executed is 2,
00211 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
00212 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
00213 /// the switch instruction is generated.
00214 ///
00215 ///    extraiters = tripcount % loopfactor
00216 ///    if (extraiters == 0) jump Loop:
00217 ///    if (extraiters == loopfactor) jump L1
00218 ///    if (extraiters == loopfactor-1) jump L2
00219 ///    ...
00220 ///    L1:  LoopBody;
00221 ///    L2:  LoopBody;
00222 ///    ...
00223 ///    if tripcount < loopfactor jump End
00224 ///    Loop:
00225 ///    ...
00226 ///    End:
00227 ///
00228 bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
00229                                    LPPassManager *LPM) {
00230   // for now, only unroll loops that contain a single exit
00231   if (!L->getExitingBlock())
00232     return false;
00233 
00234   // Make sure the loop is in canonical form, and there is a single
00235   // exit block only.
00236   if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock())
00237     return false;
00238 
00239   // Use Scalar Evolution to compute the trip count.  This allows more
00240   // loops to be unrolled than relying on induction var simplification
00241   if (!LPM)
00242     return false;
00243   ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
00244   if (!SE)
00245     return false;
00246 
00247   // Only unroll loops with a computable trip count and the trip count needs
00248   // to be an int value (allowing a pointer type is a TODO item)
00249   const SCEV *BECount = SE->getBackedgeTakenCount(L);
00250   if (isa<SCEVCouldNotCompute>(BECount) || !BECount->getType()->isIntegerTy())
00251     return false;
00252 
00253   // Add 1 since the backedge count doesn't include the first loop iteration
00254   const SCEV *TripCountSC =
00255     SE->getAddExpr(BECount, SE->getConstant(BECount->getType(), 1));
00256   if (isa<SCEVCouldNotCompute>(TripCountSC))
00257     return false;
00258 
00259   // We only handle cases when the unroll factor is a power of 2.
00260   // Count is the loop unroll factor, the number of extra copies added + 1.
00261   if ((Count & (Count-1)) != 0)
00262     return false;
00263 
00264   // If this loop is nested, then the loop unroller changes the code in
00265   // parent loop, so the Scalar Evolution pass needs to be run again
00266   if (Loop *ParentLoop = L->getParentLoop())
00267     SE->forgetLoop(ParentLoop);
00268 
00269   BasicBlock *PH = L->getLoopPreheader();
00270   BasicBlock *Header = L->getHeader();
00271   BasicBlock *Latch = L->getLoopLatch();
00272   // It helps to splits the original preheader twice, one for the end of the
00273   // prolog code and one for a new loop preheader
00274   BasicBlock *PEnd = SplitEdge(PH, Header, LPM->getAsPass());
00275   BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), LPM->getAsPass());
00276   BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
00277 
00278   // Compute the number of extra iterations required, which is:
00279   //  extra iterations = run-time trip count % (loop unroll factor + 1)
00280   SCEVExpander Expander(*SE, "loop-unroll");
00281   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
00282                                             PreHeaderBR);
00283 
00284   IRBuilder<> B(PreHeaderBR);
00285   Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
00286 
00287   // Check if for no extra iterations, then jump to unrolled loop.  We have to
00288   // check that the trip count computation didn't overflow when adding one to
00289   // the backedge taken count.
00290   Value *LCmp = B.CreateIsNotNull(ModVal, "lcmp.mod");
00291   Value *OverflowCheck = B.CreateIsNull(TripCount, "lcmp.overflow");
00292   Value *BranchVal = B.CreateOr(OverflowCheck, LCmp, "lcmp.or");
00293 
00294   // Branch to either the extra iterations or the unrolled loop
00295   // We will fix up the true branch label when adding loop body copies
00296   BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
00297   assert(PreHeaderBR->isUnconditional() &&
00298          PreHeaderBR->getSuccessor(0) == PEnd &&
00299          "CFG edges in Preheader are not correct");
00300   PreHeaderBR->eraseFromParent();
00301 
00302   ValueToValueMapTy LVMap;
00303   Function *F = Header->getParent();
00304   // These variables are used to update the CFG links in each iteration
00305   BasicBlock *CompareBB = nullptr;
00306   BasicBlock *LastLoopBB = PH;
00307   // Get an ordered list of blocks in the loop to help with the ordering of the
00308   // cloned blocks in the prolog code
00309   LoopBlocksDFS LoopBlocks(L);
00310   LoopBlocks.perform(LI);
00311 
00312   //
00313   // For each extra loop iteration, create a copy of the loop's basic blocks
00314   // and generate a condition that branches to the copy depending on the
00315   // number of 'left over' iterations.
00316   //
00317   for (unsigned leftOverIters = Count-1; leftOverIters > 0; --leftOverIters) {
00318     std::vector<BasicBlock*> NewBlocks;
00319     ValueToValueMapTy VMap;
00320 
00321     // Clone all the basic blocks in the loop, but we don't clone the loop
00322     // This function adds the appropriate CFG connections.
00323     CloneLoopBlocks(L, (leftOverIters == Count-1), LastLoopBB, PEnd, NewBlocks,
00324                     LoopBlocks, VMap, LVMap, LI);
00325     LastLoopBB = cast<BasicBlock>(VMap[Latch]);
00326 
00327     // Insert the cloned blocks into function just before the original loop
00328     F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(),
00329                                   NewBlocks[0], F->end());
00330 
00331     // Generate the code for the comparison which determines if the loop
00332     // prolog code needs to be executed.
00333     if (leftOverIters == Count-1) {
00334       // There is no compare block for the fall-thru case when for the last
00335       // left over iteration
00336       CompareBB = NewBlocks[0];
00337     } else {
00338       // Create a new block for the comparison
00339       BasicBlock *NewBB = BasicBlock::Create(CompareBB->getContext(), "unr.cmp",
00340                                              F, CompareBB);
00341       if (Loop *ParentLoop = L->getParentLoop()) {
00342         // Add the new block to the parent loop, if needed
00343         ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
00344       }
00345 
00346       // The comparison w/ the extra iteration value and branch
00347       Type *CountTy = TripCount->getType();
00348       Value *BranchVal = new ICmpInst(*NewBB, ICmpInst::ICMP_EQ, ModVal,
00349                                       ConstantInt::get(CountTy, leftOverIters),
00350                                       "un.tmp");
00351       // Branch to either the extra iterations or the unrolled loop
00352       BranchInst::Create(NewBlocks[0], CompareBB,
00353                          BranchVal, NewBB);
00354       CompareBB = NewBB;
00355       PH->getTerminator()->setSuccessor(0, NewBB);
00356       VMap[NewPH] = CompareBB;
00357     }
00358 
00359     // Rewrite the cloned instruction operands to use the values
00360     // created when the clone is created.
00361     for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
00362       for (BasicBlock::iterator I = NewBlocks[i]->begin(),
00363              E = NewBlocks[i]->end(); I != E; ++I) {
00364         RemapInstruction(I, VMap,
00365                          RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
00366       }
00367     }
00368   }
00369 
00370   // Connect the prolog code to the original loop and update the
00371   // PHI functions.
00372   ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, LVMap,
00373                 LPM->getAsPass());
00374   NumRuntimeUnrolled++;
00375   return true;
00376 }