LLVM API Documentation
00001 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements some loop unrolling utilities. It does not define any 00011 // actual pass or policy, but provides a single function to perform loop 00012 // unrolling. 00013 // 00014 // The process of unrolling can produce extraneous basic blocks linked with 00015 // unconditional branches. This will be corrected in the future. 00016 // 00017 //===----------------------------------------------------------------------===// 00018 00019 #include "llvm/Transforms/Utils/UnrollLoop.h" 00020 #include "llvm/ADT/SmallPtrSet.h" 00021 #include "llvm/ADT/Statistic.h" 00022 #include "llvm/Analysis/AssumptionTracker.h" 00023 #include "llvm/Analysis/InstructionSimplify.h" 00024 #include "llvm/Analysis/LoopIterator.h" 00025 #include "llvm/Analysis/LoopPass.h" 00026 #include "llvm/Analysis/ScalarEvolution.h" 00027 #include "llvm/IR/BasicBlock.h" 00028 #include "llvm/IR/DataLayout.h" 00029 #include "llvm/IR/Dominators.h" 00030 #include "llvm/IR/DiagnosticInfo.h" 00031 #include "llvm/IR/LLVMContext.h" 00032 #include "llvm/Support/Debug.h" 00033 #include "llvm/Support/raw_ostream.h" 00034 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 00035 #include "llvm/Transforms/Utils/Cloning.h" 00036 #include "llvm/Transforms/Utils/Local.h" 00037 #include "llvm/Transforms/Utils/LoopUtils.h" 00038 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 00039 using namespace llvm; 00040 00041 #define DEBUG_TYPE "loop-unroll" 00042 00043 // TODO: Should these be here or in LoopUnroll? 00044 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 00045 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 00046 00047 /// RemapInstruction - Convert the instruction operands from referencing the 00048 /// current values into those specified by VMap. 00049 static inline void RemapInstruction(Instruction *I, 00050 ValueToValueMapTy &VMap) { 00051 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 00052 Value *Op = I->getOperand(op); 00053 ValueToValueMapTy::iterator It = VMap.find(Op); 00054 if (It != VMap.end()) 00055 I->setOperand(op, It->second); 00056 } 00057 00058 if (PHINode *PN = dyn_cast<PHINode>(I)) { 00059 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 00060 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 00061 if (It != VMap.end()) 00062 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 00063 } 00064 } 00065 } 00066 00067 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it 00068 /// only has one predecessor, and that predecessor only has one successor. 00069 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 00070 /// successful references to the containing loop must be removed from 00071 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 00072 /// references to the eliminated BB. The argument ForgottenLoops contains a set 00073 /// of loops that have already been forgotten to prevent redundant, expensive 00074 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 00075 static BasicBlock * 00076 FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, LPPassManager *LPM, 00077 SmallPtrSetImpl<Loop *> &ForgottenLoops) { 00078 // Merge basic blocks into their predecessor if there is only one distinct 00079 // pred, and if there is only one distinct successor of the predecessor, and 00080 // if there are no PHI nodes. 00081 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 00082 if (!OnlyPred) return nullptr; 00083 00084 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 00085 return nullptr; 00086 00087 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 00088 00089 // Resolve any PHI nodes at the start of the block. They are all 00090 // guaranteed to have exactly one entry if they exist, unless there are 00091 // multiple duplicate (but guaranteed to be equal) entries for the 00092 // incoming edges. This occurs when there are multiple edges from 00093 // OnlyPred to OnlySucc. 00094 FoldSingleEntryPHINodes(BB); 00095 00096 // Delete the unconditional branch from the predecessor... 00097 OnlyPred->getInstList().pop_back(); 00098 00099 // Make all PHI nodes that referred to BB now refer to Pred as their 00100 // source... 00101 BB->replaceAllUsesWith(OnlyPred); 00102 00103 // Move all definitions in the successor to the predecessor... 00104 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 00105 00106 // OldName will be valid until erased. 00107 StringRef OldName = BB->getName(); 00108 00109 // Erase basic block from the function... 00110 00111 // ScalarEvolution holds references to loop exit blocks. 00112 if (LPM) { 00113 if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) { 00114 if (Loop *L = LI->getLoopFor(BB)) { 00115 if (ForgottenLoops.insert(L)) 00116 SE->forgetLoop(L); 00117 } 00118 } 00119 } 00120 LI->removeBlock(BB); 00121 00122 // Inherit predecessor's name if it exists... 00123 if (!OldName.empty() && !OnlyPred->hasName()) 00124 OnlyPred->setName(OldName); 00125 00126 BB->eraseFromParent(); 00127 00128 return OnlyPred; 00129 } 00130 00131 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 00132 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 00133 /// can only fail when the loop's latch block is not terminated by a conditional 00134 /// branch instruction. However, if the trip count (and multiple) are not known, 00135 /// loop unrolling will mostly produce more code that is no faster. 00136 /// 00137 /// TripCount is generally defined as the number of times the loop header 00138 /// executes. UnrollLoop relaxes the definition to permit early exits: here 00139 /// TripCount is the iteration on which control exits LatchBlock if no early 00140 /// exits were taken. Note that UnrollLoop assumes that the loop counter test 00141 /// terminates LatchBlock in order to remove unnecesssary instances of the 00142 /// test. In other words, control may exit the loop prior to TripCount 00143 /// iterations via an early branch, but control may not exit the loop from the 00144 /// LatchBlock's terminator prior to TripCount iterations. 00145 /// 00146 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 00147 /// execute without exiting the loop. 00148 /// 00149 /// The LoopInfo Analysis that is passed will be kept consistent. 00150 /// 00151 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be 00152 /// removed from the LoopPassManager as well. LPM can also be NULL. 00153 /// 00154 /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are 00155 /// available from the Pass it must also preserve those analyses. 00156 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, 00157 bool AllowRuntime, unsigned TripMultiple, 00158 LoopInfo *LI, Pass *PP, LPPassManager *LPM, 00159 AssumptionTracker *AT) { 00160 BasicBlock *Preheader = L->getLoopPreheader(); 00161 if (!Preheader) { 00162 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 00163 return false; 00164 } 00165 00166 BasicBlock *LatchBlock = L->getLoopLatch(); 00167 if (!LatchBlock) { 00168 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 00169 return false; 00170 } 00171 00172 // Loops with indirectbr cannot be cloned. 00173 if (!L->isSafeToClone()) { 00174 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 00175 return false; 00176 } 00177 00178 BasicBlock *Header = L->getHeader(); 00179 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 00180 00181 if (!BI || BI->isUnconditional()) { 00182 // The loop-rotate pass can be helpful to avoid this in many cases. 00183 DEBUG(dbgs() << 00184 " Can't unroll; loop not terminated by a conditional branch.\n"); 00185 return false; 00186 } 00187 00188 if (Header->hasAddressTaken()) { 00189 // The loop-rotate pass can be helpful to avoid this in many cases. 00190 DEBUG(dbgs() << 00191 " Won't unroll loop: address of header block is taken.\n"); 00192 return false; 00193 } 00194 00195 if (TripCount != 0) 00196 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 00197 if (TripMultiple != 1) 00198 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 00199 00200 // Effectively "DCE" unrolled iterations that are beyond the tripcount 00201 // and will never be executed. 00202 if (TripCount != 0 && Count > TripCount) 00203 Count = TripCount; 00204 00205 // Don't enter the unroll code if there is nothing to do. This way we don't 00206 // need to support "partial unrolling by 1". 00207 if (TripCount == 0 && Count < 2) 00208 return false; 00209 00210 assert(Count > 0); 00211 assert(TripMultiple > 0); 00212 assert(TripCount == 0 || TripCount % TripMultiple == 0); 00213 00214 // Are we eliminating the loop control altogether? 00215 bool CompletelyUnroll = Count == TripCount; 00216 00217 // We assume a run-time trip count if the compiler cannot 00218 // figure out the loop trip count and the unroll-runtime 00219 // flag is specified. 00220 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 00221 00222 if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM)) 00223 return false; 00224 00225 // Notify ScalarEvolution that the loop will be substantially changed, 00226 // if not outright eliminated. 00227 if (PP) { 00228 ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>(); 00229 if (SE) 00230 SE->forgetLoop(L); 00231 } 00232 00233 // If we know the trip count, we know the multiple... 00234 unsigned BreakoutTrip = 0; 00235 if (TripCount != 0) { 00236 BreakoutTrip = TripCount % Count; 00237 TripMultiple = 0; 00238 } else { 00239 // Figure out what multiple to use. 00240 BreakoutTrip = TripMultiple = 00241 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 00242 } 00243 00244 // Report the unrolling decision. 00245 DebugLoc LoopLoc = L->getStartLoc(); 00246 Function *F = Header->getParent(); 00247 LLVMContext &Ctx = F->getContext(); 00248 00249 if (CompletelyUnroll) { 00250 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 00251 << " with trip count " << TripCount << "!\n"); 00252 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 00253 Twine("completely unrolled loop with ") + 00254 Twine(TripCount) + " iterations"); 00255 } else { 00256 auto EmitDiag = [&](const Twine &T) { 00257 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 00258 "unrolled loop by a factor of " + Twine(Count) + 00259 T); 00260 }; 00261 00262 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 00263 << " by " << Count); 00264 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 00265 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 00266 EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip)); 00267 } else if (TripMultiple != 1) { 00268 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 00269 EmitDiag(" with " + Twine(TripMultiple) + " trips per branch"); 00270 } else if (RuntimeTripCount) { 00271 DEBUG(dbgs() << " with run-time trip count"); 00272 EmitDiag(" with run-time trip count"); 00273 } 00274 DEBUG(dbgs() << "!\n"); 00275 } 00276 00277 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 00278 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 00279 00280 // For the first iteration of the loop, we should use the precloned values for 00281 // PHI nodes. Insert associations now. 00282 ValueToValueMapTy LastValueMap; 00283 std::vector<PHINode*> OrigPHINode; 00284 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 00285 OrigPHINode.push_back(cast<PHINode>(I)); 00286 } 00287 00288 std::vector<BasicBlock*> Headers; 00289 std::vector<BasicBlock*> Latches; 00290 Headers.push_back(Header); 00291 Latches.push_back(LatchBlock); 00292 00293 // The current on-the-fly SSA update requires blocks to be processed in 00294 // reverse postorder so that LastValueMap contains the correct value at each 00295 // exit. 00296 LoopBlocksDFS DFS(L); 00297 DFS.perform(LI); 00298 00299 // Stash the DFS iterators before adding blocks to the loop. 00300 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 00301 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 00302 00303 for (unsigned It = 1; It != Count; ++It) { 00304 std::vector<BasicBlock*> NewBlocks; 00305 00306 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 00307 ValueToValueMapTy VMap; 00308 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 00309 Header->getParent()->getBasicBlockList().push_back(New); 00310 00311 // Loop over all of the PHI nodes in the block, changing them to use the 00312 // incoming values from the previous block. 00313 if (*BB == Header) 00314 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 00315 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]); 00316 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 00317 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 00318 if (It > 1 && L->contains(InValI)) 00319 InVal = LastValueMap[InValI]; 00320 VMap[OrigPHINode[i]] = InVal; 00321 New->getInstList().erase(NewPHI); 00322 } 00323 00324 // Update our running map of newest clones 00325 LastValueMap[*BB] = New; 00326 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 00327 VI != VE; ++VI) 00328 LastValueMap[VI->first] = VI->second; 00329 00330 L->addBasicBlockToLoop(New, LI->getBase()); 00331 00332 // Add phi entries for newly created values to all exit blocks. 00333 for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB); 00334 SI != SE; ++SI) { 00335 if (L->contains(*SI)) 00336 continue; 00337 for (BasicBlock::iterator BBI = (*SI)->begin(); 00338 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 00339 Value *Incoming = phi->getIncomingValueForBlock(*BB); 00340 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 00341 if (It != LastValueMap.end()) 00342 Incoming = It->second; 00343 phi->addIncoming(Incoming, New); 00344 } 00345 } 00346 // Keep track of new headers and latches as we create them, so that 00347 // we can insert the proper branches later. 00348 if (*BB == Header) 00349 Headers.push_back(New); 00350 if (*BB == LatchBlock) 00351 Latches.push_back(New); 00352 00353 NewBlocks.push_back(New); 00354 } 00355 00356 // Remap all instructions in the most recent iteration 00357 for (unsigned i = 0; i < NewBlocks.size(); ++i) 00358 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 00359 E = NewBlocks[i]->end(); I != E; ++I) 00360 ::RemapInstruction(I, LastValueMap); 00361 } 00362 00363 // Loop over the PHI nodes in the original block, setting incoming values. 00364 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 00365 PHINode *PN = OrigPHINode[i]; 00366 if (CompletelyUnroll) { 00367 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 00368 Header->getInstList().erase(PN); 00369 } 00370 else if (Count > 1) { 00371 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 00372 // If this value was defined in the loop, take the value defined by the 00373 // last iteration of the loop. 00374 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 00375 if (L->contains(InValI)) 00376 InVal = LastValueMap[InVal]; 00377 } 00378 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 00379 PN->addIncoming(InVal, Latches.back()); 00380 } 00381 } 00382 00383 // Now that all the basic blocks for the unrolled iterations are in place, 00384 // set up the branches to connect them. 00385 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 00386 // The original branch was replicated in each unrolled iteration. 00387 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 00388 00389 // The branch destination. 00390 unsigned j = (i + 1) % e; 00391 BasicBlock *Dest = Headers[j]; 00392 bool NeedConditional = true; 00393 00394 if (RuntimeTripCount && j != 0) { 00395 NeedConditional = false; 00396 } 00397 00398 // For a complete unroll, make the last iteration end with a branch 00399 // to the exit block. 00400 if (CompletelyUnroll && j == 0) { 00401 Dest = LoopExit; 00402 NeedConditional = false; 00403 } 00404 00405 // If we know the trip count or a multiple of it, we can safely use an 00406 // unconditional branch for some iterations. 00407 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 00408 NeedConditional = false; 00409 } 00410 00411 if (NeedConditional) { 00412 // Update the conditional branch's successor for the following 00413 // iteration. 00414 Term->setSuccessor(!ContinueOnTrue, Dest); 00415 } else { 00416 // Remove phi operands at this loop exit 00417 if (Dest != LoopExit) { 00418 BasicBlock *BB = Latches[i]; 00419 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); 00420 SI != SE; ++SI) { 00421 if (*SI == Headers[i]) 00422 continue; 00423 for (BasicBlock::iterator BBI = (*SI)->begin(); 00424 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 00425 Phi->removeIncomingValue(BB, false); 00426 } 00427 } 00428 } 00429 // Replace the conditional branch with an unconditional one. 00430 BranchInst::Create(Dest, Term); 00431 Term->eraseFromParent(); 00432 } 00433 } 00434 00435 // Merge adjacent basic blocks, if possible. 00436 SmallPtrSet<Loop *, 4> ForgottenLoops; 00437 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 00438 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 00439 if (Term->isUnconditional()) { 00440 BasicBlock *Dest = Term->getSuccessor(0); 00441 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM, 00442 ForgottenLoops)) 00443 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 00444 } 00445 } 00446 00447 // FIXME: We could register any cloned assumptions instead of clearing the 00448 // whole function's cache. 00449 AT->forgetCachedAssumptions(F); 00450 00451 DominatorTree *DT = nullptr; 00452 if (PP) { 00453 // FIXME: Reconstruct dom info, because it is not preserved properly. 00454 // Incrementally updating domtree after loop unrolling would be easy. 00455 if (DominatorTreeWrapperPass *DTWP = 00456 PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 00457 DT = &DTWP->getDomTree(); 00458 DT->recalculate(*L->getHeader()->getParent()); 00459 } 00460 00461 // Simplify any new induction variables in the partially unrolled loop. 00462 ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>(); 00463 if (SE && !CompletelyUnroll) { 00464 SmallVector<WeakVH, 16> DeadInsts; 00465 simplifyLoopIVs(L, SE, LPM, DeadInsts); 00466 00467 // Aggressively clean up dead instructions that simplifyLoopIVs already 00468 // identified. Any remaining should be cleaned up below. 00469 while (!DeadInsts.empty()) 00470 if (Instruction *Inst = 00471 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 00472 RecursivelyDeleteTriviallyDeadInstructions(Inst); 00473 } 00474 } 00475 // At this point, the code is well formed. We now do a quick sweep over the 00476 // inserted code, doing constant propagation and dead code elimination as we 00477 // go. 00478 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 00479 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), 00480 BBE = NewLoopBlocks.end(); BB != BBE; ++BB) 00481 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { 00482 Instruction *Inst = I++; 00483 00484 if (isInstructionTriviallyDead(Inst)) 00485 (*BB)->getInstList().erase(Inst); 00486 else if (Value *V = SimplifyInstruction(Inst)) 00487 if (LI->replacementPreservesLCSSAForm(Inst, V)) { 00488 Inst->replaceAllUsesWith(V); 00489 (*BB)->getInstList().erase(Inst); 00490 } 00491 } 00492 00493 NumCompletelyUnrolled += CompletelyUnroll; 00494 ++NumUnrolled; 00495 00496 Loop *OuterL = L->getParentLoop(); 00497 // Remove the loop from the LoopPassManager if it's completely removed. 00498 if (CompletelyUnroll && LPM != nullptr) 00499 LPM->deleteLoopFromQueue(L); 00500 00501 // If we have a pass and a DominatorTree we should re-simplify impacted loops 00502 // to ensure subsequent analyses can rely on this form. We want to simplify 00503 // at least one layer outside of the loop that was unrolled so that any 00504 // changes to the parent loop exposed by the unrolling are considered. 00505 if (PP && DT) { 00506 if (!OuterL && !CompletelyUnroll) 00507 OuterL = L; 00508 if (OuterL) { 00509 DataLayoutPass *DLP = PP->getAnalysisIfAvailable<DataLayoutPass>(); 00510 const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr; 00511 ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>(); 00512 simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ nullptr, SE, DL, AT); 00513 00514 // LCSSA must be performed on the outermost affected loop. The unrolled 00515 // loop's last loop latch is guaranteed to be in the outermost loop after 00516 // deleteLoopFromQueue updates LoopInfo. 00517 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 00518 if (!OuterL->contains(LatchLoop)) 00519 while (OuterL->getParentLoop() != LatchLoop) 00520 OuterL = OuterL->getParentLoop(); 00521 00522 formLCSSARecursively(*OuterL, *DT, SE); 00523 } 00524 } 00525 00526 return true; 00527 }