LLVM API Documentation

LowerSwitch.cpp
Go to the documentation of this file.
00001 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // The LowerSwitch transformation rewrites switch instructions with a sequence
00011 // of branches, which allows targets to get away with not implementing the
00012 // switch instruction until it is convenient.
00013 //
00014 //===----------------------------------------------------------------------===//
00015 
00016 #include "llvm/Transforms/Scalar.h"
00017 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
00018 #include "llvm/ADT/STLExtras.h"
00019 #include "llvm/IR/Constants.h"
00020 #include "llvm/IR/Function.h"
00021 #include "llvm/IR/Instructions.h"
00022 #include "llvm/IR/LLVMContext.h"
00023 #include "llvm/IR/CFG.h"
00024 #include "llvm/Pass.h"
00025 #include "llvm/Support/Compiler.h"
00026 #include "llvm/Support/Debug.h"
00027 #include "llvm/Support/raw_ostream.h"
00028 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
00029 #include <algorithm>
00030 using namespace llvm;
00031 
00032 #define DEBUG_TYPE "lower-switch"
00033 
00034 namespace {
00035   /// LowerSwitch Pass - Replace all SwitchInst instructions with chained branch
00036   /// instructions.
00037   class LowerSwitch : public FunctionPass {
00038   public:
00039     static char ID; // Pass identification, replacement for typeid
00040     LowerSwitch() : FunctionPass(ID) {
00041       initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
00042     } 
00043 
00044     bool runOnFunction(Function &F) override;
00045 
00046     void getAnalysisUsage(AnalysisUsage &AU) const override {
00047       // This is a cluster of orthogonal Transforms
00048       AU.addPreserved<UnifyFunctionExitNodes>();
00049       AU.addPreserved("mem2reg");
00050       AU.addPreservedID(LowerInvokePassID);
00051     }
00052 
00053     struct CaseRange {
00054       Constant* Low;
00055       Constant* High;
00056       BasicBlock* BB;
00057 
00058       CaseRange(Constant *low = nullptr, Constant *high = nullptr,
00059                 BasicBlock *bb = nullptr) :
00060         Low(low), High(high), BB(bb) { }
00061     };
00062 
00063     typedef std::vector<CaseRange> CaseVector;
00064     typedef std::vector<CaseRange>::iterator CaseItr;
00065   private:
00066     void processSwitchInst(SwitchInst *SI);
00067 
00068     BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
00069                               ConstantInt *LowerBound, ConstantInt *UpperBound,
00070                               Value *Val, BasicBlock *Predecessor,
00071                               BasicBlock *OrigBlock, BasicBlock *Default);
00072     BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock,
00073                              BasicBlock *Default);
00074     unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
00075   };
00076 
00077   /// The comparison function for sorting the switch case values in the vector.
00078   /// WARNING: Case ranges should be disjoint!
00079   struct CaseCmp {
00080     bool operator () (const LowerSwitch::CaseRange& C1,
00081                       const LowerSwitch::CaseRange& C2) {
00082 
00083       const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
00084       const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
00085       return CI1->getValue().slt(CI2->getValue());
00086     }
00087   };
00088 }
00089 
00090 char LowerSwitch::ID = 0;
00091 INITIALIZE_PASS(LowerSwitch, "lowerswitch",
00092                 "Lower SwitchInst's to branches", false, false)
00093 
00094 // Publicly exposed interface to pass...
00095 char &llvm::LowerSwitchID = LowerSwitch::ID;
00096 // createLowerSwitchPass - Interface to this file...
00097 FunctionPass *llvm::createLowerSwitchPass() {
00098   return new LowerSwitch();
00099 }
00100 
00101 bool LowerSwitch::runOnFunction(Function &F) {
00102   bool Changed = false;
00103 
00104   for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
00105     BasicBlock *Cur = I++; // Advance over block so we don't traverse new blocks
00106 
00107     if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
00108       Changed = true;
00109       processSwitchInst(SI);
00110     }
00111   }
00112 
00113   return Changed;
00114 }
00115 
00116 // operator<< - Used for debugging purposes.
00117 //
00118 static raw_ostream& operator<<(raw_ostream &O,
00119                                const LowerSwitch::CaseVector &C)
00120     LLVM_ATTRIBUTE_USED;
00121 static raw_ostream& operator<<(raw_ostream &O,
00122                                const LowerSwitch::CaseVector &C) {
00123   O << "[";
00124 
00125   for (LowerSwitch::CaseVector::const_iterator B = C.begin(),
00126          E = C.end(); B != E; ) {
00127     O << *B->Low << " -" << *B->High;
00128     if (++B != E) O << ", ";
00129   }
00130 
00131   return O << "]";
00132 }
00133 
00134 static void fixPhis(BasicBlock *Succ,
00135                     BasicBlock *OrigBlock,
00136                     BasicBlock *NewNode) {
00137   for (BasicBlock::iterator I = Succ->begin(),
00138                             E = Succ->getFirstNonPHI();
00139        I != E; ++I) {
00140     PHINode *PN = cast<PHINode>(I);
00141 
00142     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
00143       if (PN->getIncomingBlock(I) == OrigBlock)
00144         PN->setIncomingBlock(I, NewNode);
00145     }
00146   }
00147 }
00148 
00149 // switchConvert - Convert the switch statement into a binary lookup of
00150 // the case values. The function recursively builds this tree.
00151 // LowerBound and UpperBound are used to keep track of the bounds for Val
00152 // that have already been checked by a block emitted by one of the previous
00153 // calls to switchConvert in the call stack.
00154 BasicBlock *LowerSwitch::switchConvert(CaseItr Begin, CaseItr End,
00155                                        ConstantInt *LowerBound,
00156                                        ConstantInt *UpperBound, Value *Val,
00157                                        BasicBlock *Predecessor,
00158                                        BasicBlock *OrigBlock,
00159                                        BasicBlock *Default) {
00160   unsigned Size = End - Begin;
00161 
00162   if (Size == 1) {
00163     // Check if the Case Range is perfectly squeezed in between
00164     // already checked Upper and Lower bounds. If it is then we can avoid
00165     // emitting the code that checks if the value actually falls in the range
00166     // because the bounds already tell us so.
00167     if (Begin->Low == LowerBound && Begin->High == UpperBound) {
00168       fixPhis(Begin->BB, OrigBlock, Predecessor);
00169       return Begin->BB;
00170     }
00171     return newLeafBlock(*Begin, Val, OrigBlock, Default);
00172   }
00173 
00174   unsigned Mid = Size / 2;
00175   std::vector<CaseRange> LHS(Begin, Begin + Mid);
00176   DEBUG(dbgs() << "LHS: " << LHS << "\n");
00177   std::vector<CaseRange> RHS(Begin + Mid, End);
00178   DEBUG(dbgs() << "RHS: " << RHS << "\n");
00179 
00180   CaseRange &Pivot = *(Begin + Mid);
00181   DEBUG(dbgs() << "Pivot ==> "
00182                << cast<ConstantInt>(Pivot.Low)->getValue()
00183                << " -" << cast<ConstantInt>(Pivot.High)->getValue() << "\n");
00184 
00185   // NewLowerBound here should never be the integer minimal value.
00186   // This is because it is computed from a case range that is never
00187   // the smallest, so there is always a case range that has at least
00188   // a smaller value.
00189   ConstantInt *NewLowerBound = cast<ConstantInt>(Pivot.Low);
00190   ConstantInt *NewUpperBound;
00191 
00192   // If we don't have a Default block then it means that we can never
00193   // have a value outside of a case range, so set the UpperBound to the highest
00194   // value in the LHS part of the case ranges.
00195   if (Default != nullptr) {
00196     // Because NewLowerBound is never the smallest representable integer
00197     // it is safe here to subtract one.
00198     NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
00199                                      NewLowerBound->getValue() - 1);
00200   } else {
00201     CaseItr LastLHS = LHS.begin() + LHS.size() - 1;
00202     NewUpperBound = cast<ConstantInt>(LastLHS->High);
00203   }
00204 
00205   DEBUG(dbgs() << "LHS Bounds ==> ";
00206         if (LowerBound) {
00207           dbgs() << cast<ConstantInt>(LowerBound)->getSExtValue();
00208         } else {
00209           dbgs() << "NONE";
00210         }
00211         dbgs() << " - " << NewUpperBound->getSExtValue() << "\n";
00212         dbgs() << "RHS Bounds ==> ";
00213         dbgs() << NewLowerBound->getSExtValue() << " - ";
00214         if (UpperBound) {
00215           dbgs() << cast<ConstantInt>(UpperBound)->getSExtValue() << "\n";
00216         } else {
00217           dbgs() << "NONE\n";
00218         });
00219 
00220   // Create a new node that checks if the value is < pivot. Go to the
00221   // left branch if it is and right branch if not.
00222   Function* F = OrigBlock->getParent();
00223   BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
00224 
00225   ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
00226                                 Val, Pivot.Low, "Pivot");
00227 
00228   BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
00229                                       NewUpperBound, Val, NewNode, OrigBlock,
00230                                       Default);
00231   BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
00232                                       UpperBound, Val, NewNode, OrigBlock,
00233                                       Default);
00234 
00235   Function::iterator FI = OrigBlock;
00236   F->getBasicBlockList().insert(++FI, NewNode);
00237   NewNode->getInstList().push_back(Comp);
00238 
00239   BranchInst::Create(LBranch, RBranch, Comp, NewNode);
00240   return NewNode;
00241 }
00242 
00243 // newLeafBlock - Create a new leaf block for the binary lookup tree. It
00244 // checks if the switch's value == the case's value. If not, then it
00245 // jumps to the default branch. At this point in the tree, the value
00246 // can't be another valid case value, so the jump to the "default" branch
00247 // is warranted.
00248 //
00249 BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
00250                                       BasicBlock* OrigBlock,
00251                                       BasicBlock* Default)
00252 {
00253   Function* F = OrigBlock->getParent();
00254   BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
00255   Function::iterator FI = OrigBlock;
00256   F->getBasicBlockList().insert(++FI, NewLeaf);
00257 
00258   // Emit comparison
00259   ICmpInst* Comp = nullptr;
00260   if (Leaf.Low == Leaf.High) {
00261     // Make the seteq instruction...
00262     Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
00263                         Leaf.Low, "SwitchLeaf");
00264   } else {
00265     // Make range comparison
00266     if (cast<ConstantInt>(Leaf.Low)->isMinValue(true /*isSigned*/)) {
00267       // Val >= Min && Val <= Hi --> Val <= Hi
00268       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
00269                           "SwitchLeaf");
00270     } else if (cast<ConstantInt>(Leaf.Low)->isZero()) {
00271       // Val >= 0 && Val <= Hi --> Val <=u Hi
00272       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
00273                           "SwitchLeaf");      
00274     } else {
00275       // Emit V-Lo <=u Hi-Lo
00276       Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
00277       Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
00278                                                    Val->getName()+".off",
00279                                                    NewLeaf);
00280       Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
00281       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
00282                           "SwitchLeaf");
00283     }
00284   }
00285 
00286   // Make the conditional branch...
00287   BasicBlock* Succ = Leaf.BB;
00288   BranchInst::Create(Succ, Default, Comp, NewLeaf);
00289 
00290   // If there were any PHI nodes in this successor, rewrite one entry
00291   // from OrigBlock to come from NewLeaf.
00292   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
00293     PHINode* PN = cast<PHINode>(I);
00294     // Remove all but one incoming entries from the cluster
00295     uint64_t Range = cast<ConstantInt>(Leaf.High)->getSExtValue() -
00296                      cast<ConstantInt>(Leaf.Low)->getSExtValue();    
00297     for (uint64_t j = 0; j < Range; ++j) {
00298       PN->removeIncomingValue(OrigBlock);
00299     }
00300     
00301     int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
00302     assert(BlockIdx != -1 && "Switch didn't go to this successor??");
00303     PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
00304   }
00305 
00306   return NewLeaf;
00307 }
00308 
00309 // Clusterify - Transform simple list of Cases into list of CaseRange's
00310 unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
00311   unsigned numCmps = 0;
00312 
00313   // Start with "simple" cases
00314   for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
00315     Cases.push_back(CaseRange(i.getCaseValue(), i.getCaseValue(),
00316                               i.getCaseSuccessor()));
00317   
00318   std::sort(Cases.begin(), Cases.end(), CaseCmp());
00319 
00320   // Merge case into clusters
00321   if (Cases.size()>=2)
00322     for (CaseItr I = Cases.begin(), J = std::next(Cases.begin());
00323          J != Cases.end();) {
00324       int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
00325       int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
00326       BasicBlock* nextBB = J->BB;
00327       BasicBlock* currentBB = I->BB;
00328 
00329       // If the two neighboring cases go to the same destination, merge them
00330       // into a single case.
00331       if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
00332         I->High = J->High;
00333         J = Cases.erase(J);
00334       } else {
00335         I = J++;
00336       }
00337     }
00338 
00339   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
00340     if (I->Low != I->High)
00341       // A range counts double, since it requires two compares.
00342       ++numCmps;
00343   }
00344 
00345   return numCmps;
00346 }
00347 
00348 // processSwitchInst - Replace the specified switch instruction with a sequence
00349 // of chained if-then insts in a balanced binary search.
00350 //
00351 void LowerSwitch::processSwitchInst(SwitchInst *SI) {
00352   BasicBlock *CurBlock = SI->getParent();
00353   BasicBlock *OrigBlock = CurBlock;
00354   Function *F = CurBlock->getParent();
00355   Value *Val = SI->getCondition();  // The value we are switching on...
00356   BasicBlock* Default = SI->getDefaultDest();
00357 
00358   // If there is only the default destination, don't bother with the code below.
00359   if (!SI->getNumCases()) {
00360     BranchInst::Create(SI->getDefaultDest(), CurBlock);
00361     CurBlock->getInstList().erase(SI);
00362     return;
00363   }
00364 
00365   const bool DefaultIsUnreachable =
00366       Default->size() == 1 && isa<UnreachableInst>(Default->getTerminator());
00367   // Create a new, empty default block so that the new hierarchy of
00368   // if-then statements go to this and the PHI nodes are happy.
00369   // if the default block is set as an unreachable we avoid creating one
00370   // because will never be a valid target.
00371   BasicBlock *NewDefault = nullptr;
00372   if (!DefaultIsUnreachable) {
00373     NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
00374     F->getBasicBlockList().insert(Default, NewDefault);
00375 
00376     BranchInst::Create(Default, NewDefault);
00377   }
00378   // If there is an entry in any PHI nodes for the default edge, make sure
00379   // to update them as well.
00380   for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) {
00381     PHINode *PN = cast<PHINode>(I);
00382     int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
00383     assert(BlockIdx != -1 && "Switch didn't go to this successor??");
00384     PN->setIncomingBlock((unsigned)BlockIdx, NewDefault);
00385   }
00386 
00387   // Prepare cases vector.
00388   CaseVector Cases;
00389   unsigned numCmps = Clusterify(Cases, SI);
00390 
00391   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
00392                << ". Total compares: " << numCmps << "\n");
00393   DEBUG(dbgs() << "Cases: " << Cases << "\n");
00394   (void)numCmps;
00395   
00396   ConstantInt *UpperBound = nullptr;
00397   ConstantInt *LowerBound = nullptr;
00398 
00399   // Optimize the condition where Default is an unreachable block. In this case
00400   // we can make the bounds tightly fitted around the case value ranges,
00401   // because we know that the value passed to the switch should always be
00402   // exactly one of the case values.
00403   if (DefaultIsUnreachable) {
00404     CaseItr LastCase = Cases.begin() + Cases.size() - 1;
00405     UpperBound = cast<ConstantInt>(LastCase->High);
00406     LowerBound = cast<ConstantInt>(Cases.begin()->Low);
00407   }
00408   BasicBlock *SwitchBlock =
00409       switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
00410                     OrigBlock, OrigBlock, NewDefault);
00411 
00412   // Branch to our shiny new if-then stuff...
00413   BranchInst::Create(SwitchBlock, OrigBlock);
00414 
00415   // We are now done with the switch instruction, delete it.
00416   CurBlock->getInstList().erase(SI);
00417 
00418   pred_iterator PI = pred_begin(Default), E = pred_end(Default);
00419   // If the Default block has no more predecessors just remove it
00420   if (PI == E) {
00421     DeleteDeadBlock(Default);
00422   }
00423 }