LLVM API Documentation
00001 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements an analysis that determines, for a given memory 00011 // operation, what preceding memory operations it depends on. It builds on 00012 // alias analysis information, and tries to provide a lazy, caching interface to 00013 // a common kind of alias information query. 00014 // 00015 //===----------------------------------------------------------------------===// 00016 00017 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 00018 #include "llvm/ADT/STLExtras.h" 00019 #include "llvm/ADT/Statistic.h" 00020 #include "llvm/Analysis/AliasAnalysis.h" 00021 #include "llvm/Analysis/AssumptionTracker.h" 00022 #include "llvm/Analysis/InstructionSimplify.h" 00023 #include "llvm/Analysis/MemoryBuiltins.h" 00024 #include "llvm/Analysis/PHITransAddr.h" 00025 #include "llvm/Analysis/ValueTracking.h" 00026 #include "llvm/IR/DataLayout.h" 00027 #include "llvm/IR/Dominators.h" 00028 #include "llvm/IR/Function.h" 00029 #include "llvm/IR/Instructions.h" 00030 #include "llvm/IR/IntrinsicInst.h" 00031 #include "llvm/IR/LLVMContext.h" 00032 #include "llvm/IR/PredIteratorCache.h" 00033 #include "llvm/Support/Debug.h" 00034 using namespace llvm; 00035 00036 #define DEBUG_TYPE "memdep" 00037 00038 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 00039 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 00040 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 00041 00042 STATISTIC(NumCacheNonLocalPtr, 00043 "Number of fully cached non-local ptr responses"); 00044 STATISTIC(NumCacheDirtyNonLocalPtr, 00045 "Number of cached, but dirty, non-local ptr responses"); 00046 STATISTIC(NumUncacheNonLocalPtr, 00047 "Number of uncached non-local ptr responses"); 00048 STATISTIC(NumCacheCompleteNonLocalPtr, 00049 "Number of block queries that were completely cached"); 00050 00051 // Limit for the number of instructions to scan in a block. 00052 static const int BlockScanLimit = 100; 00053 00054 char MemoryDependenceAnalysis::ID = 0; 00055 00056 // Register this pass... 00057 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", 00058 "Memory Dependence Analysis", false, true) 00059 INITIALIZE_PASS_DEPENDENCY(AssumptionTracker) 00060 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 00061 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep", 00062 "Memory Dependence Analysis", false, true) 00063 00064 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 00065 : FunctionPass(ID), PredCache() { 00066 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry()); 00067 } 00068 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 00069 } 00070 00071 /// Clean up memory in between runs 00072 void MemoryDependenceAnalysis::releaseMemory() { 00073 LocalDeps.clear(); 00074 NonLocalDeps.clear(); 00075 NonLocalPointerDeps.clear(); 00076 ReverseLocalDeps.clear(); 00077 ReverseNonLocalDeps.clear(); 00078 ReverseNonLocalPtrDeps.clear(); 00079 PredCache->clear(); 00080 } 00081 00082 00083 00084 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 00085 /// 00086 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 00087 AU.setPreservesAll(); 00088 AU.addRequired<AssumptionTracker>(); 00089 AU.addRequiredTransitive<AliasAnalysis>(); 00090 } 00091 00092 bool MemoryDependenceAnalysis::runOnFunction(Function &) { 00093 AA = &getAnalysis<AliasAnalysis>(); 00094 AT = &getAnalysis<AssumptionTracker>(); 00095 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 00096 DL = DLP ? &DLP->getDataLayout() : nullptr; 00097 DominatorTreeWrapperPass *DTWP = 00098 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 00099 DT = DTWP ? &DTWP->getDomTree() : nullptr; 00100 if (!PredCache) 00101 PredCache.reset(new PredIteratorCache()); 00102 return false; 00103 } 00104 00105 /// RemoveFromReverseMap - This is a helper function that removes Val from 00106 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 00107 template <typename KeyTy> 00108 static void RemoveFromReverseMap(DenseMap<Instruction*, 00109 SmallPtrSet<KeyTy, 4> > &ReverseMap, 00110 Instruction *Inst, KeyTy Val) { 00111 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 00112 InstIt = ReverseMap.find(Inst); 00113 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 00114 bool Found = InstIt->second.erase(Val); 00115 assert(Found && "Invalid reverse map!"); (void)Found; 00116 if (InstIt->second.empty()) 00117 ReverseMap.erase(InstIt); 00118 } 00119 00120 /// GetLocation - If the given instruction references a specific memory 00121 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null. 00122 /// Return a ModRefInfo value describing the general behavior of the 00123 /// instruction. 00124 static 00125 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst, 00126 AliasAnalysis::Location &Loc, 00127 AliasAnalysis *AA) { 00128 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 00129 if (LI->isUnordered()) { 00130 Loc = AA->getLocation(LI); 00131 return AliasAnalysis::Ref; 00132 } 00133 if (LI->getOrdering() == Monotonic) { 00134 Loc = AA->getLocation(LI); 00135 return AliasAnalysis::ModRef; 00136 } 00137 Loc = AliasAnalysis::Location(); 00138 return AliasAnalysis::ModRef; 00139 } 00140 00141 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 00142 if (SI->isUnordered()) { 00143 Loc = AA->getLocation(SI); 00144 return AliasAnalysis::Mod; 00145 } 00146 if (SI->getOrdering() == Monotonic) { 00147 Loc = AA->getLocation(SI); 00148 return AliasAnalysis::ModRef; 00149 } 00150 Loc = AliasAnalysis::Location(); 00151 return AliasAnalysis::ModRef; 00152 } 00153 00154 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 00155 Loc = AA->getLocation(V); 00156 return AliasAnalysis::ModRef; 00157 } 00158 00159 if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) { 00160 // calls to free() deallocate the entire structure 00161 Loc = AliasAnalysis::Location(CI->getArgOperand(0)); 00162 return AliasAnalysis::Mod; 00163 } 00164 00165 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 00166 AAMDNodes AAInfo; 00167 00168 switch (II->getIntrinsicID()) { 00169 case Intrinsic::lifetime_start: 00170 case Intrinsic::lifetime_end: 00171 case Intrinsic::invariant_start: 00172 II->getAAMetadata(AAInfo); 00173 Loc = AliasAnalysis::Location(II->getArgOperand(1), 00174 cast<ConstantInt>(II->getArgOperand(0)) 00175 ->getZExtValue(), AAInfo); 00176 // These intrinsics don't really modify the memory, but returning Mod 00177 // will allow them to be handled conservatively. 00178 return AliasAnalysis::Mod; 00179 case Intrinsic::invariant_end: 00180 II->getAAMetadata(AAInfo); 00181 Loc = AliasAnalysis::Location(II->getArgOperand(2), 00182 cast<ConstantInt>(II->getArgOperand(1)) 00183 ->getZExtValue(), AAInfo); 00184 // These intrinsics don't really modify the memory, but returning Mod 00185 // will allow them to be handled conservatively. 00186 return AliasAnalysis::Mod; 00187 default: 00188 break; 00189 } 00190 } 00191 00192 // Otherwise, just do the coarse-grained thing that always works. 00193 if (Inst->mayWriteToMemory()) 00194 return AliasAnalysis::ModRef; 00195 if (Inst->mayReadFromMemory()) 00196 return AliasAnalysis::Ref; 00197 return AliasAnalysis::NoModRef; 00198 } 00199 00200 /// getCallSiteDependencyFrom - Private helper for finding the local 00201 /// dependencies of a call site. 00202 MemDepResult MemoryDependenceAnalysis:: 00203 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 00204 BasicBlock::iterator ScanIt, BasicBlock *BB) { 00205 unsigned Limit = BlockScanLimit; 00206 00207 // Walk backwards through the block, looking for dependencies 00208 while (ScanIt != BB->begin()) { 00209 // Limit the amount of scanning we do so we don't end up with quadratic 00210 // running time on extreme testcases. 00211 --Limit; 00212 if (!Limit) 00213 return MemDepResult::getUnknown(); 00214 00215 Instruction *Inst = --ScanIt; 00216 00217 // If this inst is a memory op, get the pointer it accessed 00218 AliasAnalysis::Location Loc; 00219 AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA); 00220 if (Loc.Ptr) { 00221 // A simple instruction. 00222 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef) 00223 return MemDepResult::getClobber(Inst); 00224 continue; 00225 } 00226 00227 if (CallSite InstCS = cast<Value>(Inst)) { 00228 // Debug intrinsics don't cause dependences. 00229 if (isa<DbgInfoIntrinsic>(Inst)) continue; 00230 // If these two calls do not interfere, look past it. 00231 switch (AA->getModRefInfo(CS, InstCS)) { 00232 case AliasAnalysis::NoModRef: 00233 // If the two calls are the same, return InstCS as a Def, so that 00234 // CS can be found redundant and eliminated. 00235 if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) && 00236 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 00237 return MemDepResult::getDef(Inst); 00238 00239 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 00240 // keep scanning. 00241 continue; 00242 default: 00243 return MemDepResult::getClobber(Inst); 00244 } 00245 } 00246 00247 // If we could not obtain a pointer for the instruction and the instruction 00248 // touches memory then assume that this is a dependency. 00249 if (MR != AliasAnalysis::NoModRef) 00250 return MemDepResult::getClobber(Inst); 00251 } 00252 00253 // No dependence found. If this is the entry block of the function, it is 00254 // unknown, otherwise it is non-local. 00255 if (BB != &BB->getParent()->getEntryBlock()) 00256 return MemDepResult::getNonLocal(); 00257 return MemDepResult::getNonFuncLocal(); 00258 } 00259 00260 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that 00261 /// would fully overlap MemLoc if done as a wider legal integer load. 00262 /// 00263 /// MemLocBase, MemLocOffset are lazily computed here the first time the 00264 /// base/offs of memloc is needed. 00265 static bool 00266 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc, 00267 const Value *&MemLocBase, 00268 int64_t &MemLocOffs, 00269 const LoadInst *LI, 00270 const DataLayout *DL) { 00271 // If we have no target data, we can't do this. 00272 if (!DL) return false; 00273 00274 // If we haven't already computed the base/offset of MemLoc, do so now. 00275 if (!MemLocBase) 00276 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL); 00277 00278 unsigned Size = MemoryDependenceAnalysis:: 00279 getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size, 00280 LI, *DL); 00281 return Size != 0; 00282 } 00283 00284 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that 00285 /// looks at a memory location for a load (specified by MemLocBase, Offs, 00286 /// and Size) and compares it against a load. If the specified load could 00287 /// be safely widened to a larger integer load that is 1) still efficient, 00288 /// 2) safe for the target, and 3) would provide the specified memory 00289 /// location value, then this function returns the size in bytes of the 00290 /// load width to use. If not, this returns zero. 00291 unsigned MemoryDependenceAnalysis:: 00292 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, 00293 unsigned MemLocSize, const LoadInst *LI, 00294 const DataLayout &DL) { 00295 // We can only extend simple integer loads. 00296 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0; 00297 00298 // Load widening is hostile to ThreadSanitizer: it may cause false positives 00299 // or make the reports more cryptic (access sizes are wrong). 00300 if (LI->getParent()->getParent()->getAttributes(). 00301 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeThread)) 00302 return 0; 00303 00304 // Get the base of this load. 00305 int64_t LIOffs = 0; 00306 const Value *LIBase = 00307 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &DL); 00308 00309 // If the two pointers are not based on the same pointer, we can't tell that 00310 // they are related. 00311 if (LIBase != MemLocBase) return 0; 00312 00313 // Okay, the two values are based on the same pointer, but returned as 00314 // no-alias. This happens when we have things like two byte loads at "P+1" 00315 // and "P+3". Check to see if increasing the size of the "LI" load up to its 00316 // alignment (or the largest native integer type) will allow us to load all 00317 // the bits required by MemLoc. 00318 00319 // If MemLoc is before LI, then no widening of LI will help us out. 00320 if (MemLocOffs < LIOffs) return 0; 00321 00322 // Get the alignment of the load in bytes. We assume that it is safe to load 00323 // any legal integer up to this size without a problem. For example, if we're 00324 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 00325 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 00326 // to i16. 00327 unsigned LoadAlign = LI->getAlignment(); 00328 00329 int64_t MemLocEnd = MemLocOffs+MemLocSize; 00330 00331 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 00332 if (LIOffs+LoadAlign < MemLocEnd) return 0; 00333 00334 // This is the size of the load to try. Start with the next larger power of 00335 // two. 00336 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U; 00337 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 00338 00339 while (1) { 00340 // If this load size is bigger than our known alignment or would not fit 00341 // into a native integer register, then we fail. 00342 if (NewLoadByteSize > LoadAlign || 00343 !DL.fitsInLegalInteger(NewLoadByteSize*8)) 00344 return 0; 00345 00346 if (LIOffs+NewLoadByteSize > MemLocEnd && 00347 LI->getParent()->getParent()->getAttributes(). 00348 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeAddress)) 00349 // We will be reading past the location accessed by the original program. 00350 // While this is safe in a regular build, Address Safety analysis tools 00351 // may start reporting false warnings. So, don't do widening. 00352 return 0; 00353 00354 // If a load of this width would include all of MemLoc, then we succeed. 00355 if (LIOffs+NewLoadByteSize >= MemLocEnd) 00356 return NewLoadByteSize; 00357 00358 NewLoadByteSize <<= 1; 00359 } 00360 } 00361 00362 /// getPointerDependencyFrom - Return the instruction on which a memory 00363 /// location depends. If isLoad is true, this routine ignores may-aliases with 00364 /// read-only operations. If isLoad is false, this routine ignores may-aliases 00365 /// with reads from read-only locations. If possible, pass the query 00366 /// instruction as well; this function may take advantage of the metadata 00367 /// annotated to the query instruction to refine the result. 00368 MemDepResult MemoryDependenceAnalysis:: 00369 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, 00370 BasicBlock::iterator ScanIt, BasicBlock *BB, 00371 Instruction *QueryInst) { 00372 00373 const Value *MemLocBase = nullptr; 00374 int64_t MemLocOffset = 0; 00375 unsigned Limit = BlockScanLimit; 00376 bool isInvariantLoad = false; 00377 00378 // We must be careful with atomic accesses, as they may allow another thread 00379 // to touch this location, cloberring it. We are conservative: if the 00380 // QueryInst is not a simple (non-atomic) memory access, we automatically 00381 // return getClobber. 00382 // If it is simple, we know based on the results of 00383 // "Compiler testing via a theory of sound optimisations in the C11/C++11 00384 // memory model" in PLDI 2013, that a non-atomic location can only be 00385 // clobbered between a pair of a release and an acquire action, with no 00386 // access to the location in between. 00387 // Here is an example for giving the general intuition behind this rule. 00388 // In the following code: 00389 // store x 0; 00390 // release action; [1] 00391 // acquire action; [4] 00392 // %val = load x; 00393 // It is unsafe to replace %val by 0 because another thread may be running: 00394 // acquire action; [2] 00395 // store x 42; 00396 // release action; [3] 00397 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 00398 // being 42. A key property of this program however is that if either 00399 // 1 or 4 were missing, there would be a race between the store of 42 00400 // either the store of 0 or the load (making the whole progam racy). 00401 // The paper mentionned above shows that the same property is respected 00402 // by every program that can detect any optimisation of that kind: either 00403 // it is racy (undefined) or there is a release followed by an acquire 00404 // between the pair of accesses under consideration. 00405 bool HasSeenAcquire = false; 00406 00407 if (isLoad && QueryInst) { 00408 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 00409 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 00410 isInvariantLoad = true; 00411 } 00412 00413 // Walk backwards through the basic block, looking for dependencies. 00414 while (ScanIt != BB->begin()) { 00415 Instruction *Inst = --ScanIt; 00416 00417 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 00418 // Debug intrinsics don't (and can't) cause dependencies. 00419 if (isa<DbgInfoIntrinsic>(II)) continue; 00420 00421 // Limit the amount of scanning we do so we don't end up with quadratic 00422 // running time on extreme testcases. 00423 --Limit; 00424 if (!Limit) 00425 return MemDepResult::getUnknown(); 00426 00427 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 00428 // If we reach a lifetime begin or end marker, then the query ends here 00429 // because the value is undefined. 00430 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 00431 // FIXME: This only considers queries directly on the invariant-tagged 00432 // pointer, not on query pointers that are indexed off of them. It'd 00433 // be nice to handle that at some point (the right approach is to use 00434 // GetPointerBaseWithConstantOffset). 00435 if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)), 00436 MemLoc)) 00437 return MemDepResult::getDef(II); 00438 continue; 00439 } 00440 } 00441 00442 // Values depend on loads if the pointers are must aliased. This means that 00443 // a load depends on another must aliased load from the same value. 00444 // One exception is atomic loads: a value can depend on an atomic load that it 00445 // does not alias with when this atomic load indicates that another thread may 00446 // be accessing the location. 00447 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 00448 // Atomic loads have complications involved. 00449 // A Monotonic (or higher) load is OK if the query inst is itself not atomic. 00450 // An Acquire (or higher) load sets the HasSeenAcquire flag, so that any 00451 // release store will know to return getClobber. 00452 // FIXME: This is overly conservative. 00453 if (!LI->isUnordered()) { 00454 if (!QueryInst) 00455 return MemDepResult::getClobber(LI); 00456 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) { 00457 if (!QueryLI->isSimple()) 00458 return MemDepResult::getClobber(LI); 00459 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) { 00460 if (!QuerySI->isSimple()) 00461 return MemDepResult::getClobber(LI); 00462 } else if (QueryInst->mayReadOrWriteMemory()) { 00463 return MemDepResult::getClobber(LI); 00464 } 00465 00466 if (isAtLeastAcquire(LI->getOrdering())) 00467 HasSeenAcquire = true; 00468 } 00469 00470 // FIXME: this is overly conservative. 00471 // While volatile access cannot be eliminated, they do not have to clobber 00472 // non-aliasing locations, as normal accesses can for example be reordered 00473 // with volatile accesses. 00474 if (LI->isVolatile()) 00475 return MemDepResult::getClobber(LI); 00476 00477 AliasAnalysis::Location LoadLoc = AA->getLocation(LI); 00478 00479 // If we found a pointer, check if it could be the same as our pointer. 00480 AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc); 00481 00482 if (isLoad) { 00483 if (R == AliasAnalysis::NoAlias) { 00484 // If this is an over-aligned integer load (for example, 00485 // "load i8* %P, align 4") see if it would obviously overlap with the 00486 // queried location if widened to a larger load (e.g. if the queried 00487 // location is 1 byte at P+1). If so, return it as a load/load 00488 // clobber result, allowing the client to decide to widen the load if 00489 // it wants to. 00490 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) 00491 if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() && 00492 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, 00493 MemLocOffset, LI, DL)) 00494 return MemDepResult::getClobber(Inst); 00495 00496 continue; 00497 } 00498 00499 // Must aliased loads are defs of each other. 00500 if (R == AliasAnalysis::MustAlias) 00501 return MemDepResult::getDef(Inst); 00502 00503 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 00504 // in terms of clobbering loads, but since it does this by looking 00505 // at the clobbering load directly, it doesn't know about any 00506 // phi translation that may have happened along the way. 00507 00508 // If we have a partial alias, then return this as a clobber for the 00509 // client to handle. 00510 if (R == AliasAnalysis::PartialAlias) 00511 return MemDepResult::getClobber(Inst); 00512 #endif 00513 00514 // Random may-alias loads don't depend on each other without a 00515 // dependence. 00516 continue; 00517 } 00518 00519 // Stores don't depend on other no-aliased accesses. 00520 if (R == AliasAnalysis::NoAlias) 00521 continue; 00522 00523 // Stores don't alias loads from read-only memory. 00524 if (AA->pointsToConstantMemory(LoadLoc)) 00525 continue; 00526 00527 // Stores depend on may/must aliased loads. 00528 return MemDepResult::getDef(Inst); 00529 } 00530 00531 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 00532 // Atomic stores have complications involved. 00533 // A Monotonic store is OK if the query inst is itself not atomic. 00534 // A Release (or higher) store further requires that no acquire load 00535 // has been seen. 00536 // FIXME: This is overly conservative. 00537 if (!SI->isUnordered()) { 00538 if (!QueryInst) 00539 return MemDepResult::getClobber(SI); 00540 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) { 00541 if (!QueryLI->isSimple()) 00542 return MemDepResult::getClobber(SI); 00543 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) { 00544 if (!QuerySI->isSimple()) 00545 return MemDepResult::getClobber(SI); 00546 } else if (QueryInst->mayReadOrWriteMemory()) { 00547 return MemDepResult::getClobber(SI); 00548 } 00549 00550 if (HasSeenAcquire && isAtLeastRelease(SI->getOrdering())) 00551 return MemDepResult::getClobber(SI); 00552 } 00553 00554 // FIXME: this is overly conservative. 00555 // While volatile access cannot be eliminated, they do not have to clobber 00556 // non-aliasing locations, as normal accesses can for example be reordered 00557 // with volatile accesses. 00558 if (SI->isVolatile()) 00559 return MemDepResult::getClobber(SI); 00560 00561 // If alias analysis can tell that this store is guaranteed to not modify 00562 // the query pointer, ignore it. Use getModRefInfo to handle cases where 00563 // the query pointer points to constant memory etc. 00564 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef) 00565 continue; 00566 00567 // Ok, this store might clobber the query pointer. Check to see if it is 00568 // a must alias: in this case, we want to return this as a def. 00569 AliasAnalysis::Location StoreLoc = AA->getLocation(SI); 00570 00571 // If we found a pointer, check if it could be the same as our pointer. 00572 AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc); 00573 00574 if (R == AliasAnalysis::NoAlias) 00575 continue; 00576 if (R == AliasAnalysis::MustAlias) 00577 return MemDepResult::getDef(Inst); 00578 if (isInvariantLoad) 00579 continue; 00580 return MemDepResult::getClobber(Inst); 00581 } 00582 00583 // If this is an allocation, and if we know that the accessed pointer is to 00584 // the allocation, return Def. This means that there is no dependence and 00585 // the access can be optimized based on that. For example, a load could 00586 // turn into undef. 00587 // Note: Only determine this to be a malloc if Inst is the malloc call, not 00588 // a subsequent bitcast of the malloc call result. There can be stores to 00589 // the malloced memory between the malloc call and its bitcast uses, and we 00590 // need to continue scanning until the malloc call. 00591 const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo(); 00592 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) { 00593 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 00594 00595 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr)) 00596 return MemDepResult::getDef(Inst); 00597 // Be conservative if the accessed pointer may alias the allocation. 00598 if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias) 00599 return MemDepResult::getClobber(Inst); 00600 // If the allocation is not aliased and does not read memory (like 00601 // strdup), it is safe to ignore. 00602 if (isa<AllocaInst>(Inst) || 00603 isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI)) 00604 continue; 00605 } 00606 00607 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 00608 AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc); 00609 // If necessary, perform additional analysis. 00610 if (MR == AliasAnalysis::ModRef) 00611 MR = AA->callCapturesBefore(Inst, MemLoc, DT); 00612 switch (MR) { 00613 case AliasAnalysis::NoModRef: 00614 // If the call has no effect on the queried pointer, just ignore it. 00615 continue; 00616 case AliasAnalysis::Mod: 00617 return MemDepResult::getClobber(Inst); 00618 case AliasAnalysis::Ref: 00619 // If the call is known to never store to the pointer, and if this is a 00620 // load query, we can safely ignore it (scan past it). 00621 if (isLoad) 00622 continue; 00623 default: 00624 // Otherwise, there is a potential dependence. Return a clobber. 00625 return MemDepResult::getClobber(Inst); 00626 } 00627 } 00628 00629 // No dependence found. If this is the entry block of the function, it is 00630 // unknown, otherwise it is non-local. 00631 if (BB != &BB->getParent()->getEntryBlock()) 00632 return MemDepResult::getNonLocal(); 00633 return MemDepResult::getNonFuncLocal(); 00634 } 00635 00636 /// getDependency - Return the instruction on which a memory operation 00637 /// depends. 00638 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 00639 Instruction *ScanPos = QueryInst; 00640 00641 // Check for a cached result 00642 MemDepResult &LocalCache = LocalDeps[QueryInst]; 00643 00644 // If the cached entry is non-dirty, just return it. Note that this depends 00645 // on MemDepResult's default constructing to 'dirty'. 00646 if (!LocalCache.isDirty()) 00647 return LocalCache; 00648 00649 // Otherwise, if we have a dirty entry, we know we can start the scan at that 00650 // instruction, which may save us some work. 00651 if (Instruction *Inst = LocalCache.getInst()) { 00652 ScanPos = Inst; 00653 00654 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 00655 } 00656 00657 BasicBlock *QueryParent = QueryInst->getParent(); 00658 00659 // Do the scan. 00660 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 00661 // No dependence found. If this is the entry block of the function, it is 00662 // unknown, otherwise it is non-local. 00663 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 00664 LocalCache = MemDepResult::getNonLocal(); 00665 else 00666 LocalCache = MemDepResult::getNonFuncLocal(); 00667 } else { 00668 AliasAnalysis::Location MemLoc; 00669 AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA); 00670 if (MemLoc.Ptr) { 00671 // If we can do a pointer scan, make it happen. 00672 bool isLoad = !(MR & AliasAnalysis::Mod); 00673 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 00674 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 00675 00676 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos, 00677 QueryParent, QueryInst); 00678 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 00679 CallSite QueryCS(QueryInst); 00680 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 00681 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, 00682 QueryParent); 00683 } else 00684 // Non-memory instruction. 00685 LocalCache = MemDepResult::getUnknown(); 00686 } 00687 00688 // Remember the result! 00689 if (Instruction *I = LocalCache.getInst()) 00690 ReverseLocalDeps[I].insert(QueryInst); 00691 00692 return LocalCache; 00693 } 00694 00695 #ifndef NDEBUG 00696 /// AssertSorted - This method is used when -debug is specified to verify that 00697 /// cache arrays are properly kept sorted. 00698 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 00699 int Count = -1) { 00700 if (Count == -1) Count = Cache.size(); 00701 if (Count == 0) return; 00702 00703 for (unsigned i = 1; i != unsigned(Count); ++i) 00704 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"); 00705 } 00706 #endif 00707 00708 /// getNonLocalCallDependency - Perform a full dependency query for the 00709 /// specified call, returning the set of blocks that the value is 00710 /// potentially live across. The returned set of results will include a 00711 /// "NonLocal" result for all blocks where the value is live across. 00712 /// 00713 /// This method assumes the instruction returns a "NonLocal" dependency 00714 /// within its own block. 00715 /// 00716 /// This returns a reference to an internal data structure that may be 00717 /// invalidated on the next non-local query or when an instruction is 00718 /// removed. Clients must copy this data if they want it around longer than 00719 /// that. 00720 const MemoryDependenceAnalysis::NonLocalDepInfo & 00721 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 00722 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 00723 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 00724 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 00725 NonLocalDepInfo &Cache = CacheP.first; 00726 00727 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 00728 /// the cached case, this can happen due to instructions being deleted etc. In 00729 /// the uncached case, this starts out as the set of predecessors we care 00730 /// about. 00731 SmallVector<BasicBlock*, 32> DirtyBlocks; 00732 00733 if (!Cache.empty()) { 00734 // Okay, we have a cache entry. If we know it is not dirty, just return it 00735 // with no computation. 00736 if (!CacheP.second) { 00737 ++NumCacheNonLocal; 00738 return Cache; 00739 } 00740 00741 // If we already have a partially computed set of results, scan them to 00742 // determine what is dirty, seeding our initial DirtyBlocks worklist. 00743 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 00744 I != E; ++I) 00745 if (I->getResult().isDirty()) 00746 DirtyBlocks.push_back(I->getBB()); 00747 00748 // Sort the cache so that we can do fast binary search lookups below. 00749 std::sort(Cache.begin(), Cache.end()); 00750 00751 ++NumCacheDirtyNonLocal; 00752 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 00753 // << Cache.size() << " cached: " << *QueryInst; 00754 } else { 00755 // Seed DirtyBlocks with each of the preds of QueryInst's block. 00756 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 00757 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI) 00758 DirtyBlocks.push_back(*PI); 00759 ++NumUncacheNonLocal; 00760 } 00761 00762 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 00763 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 00764 00765 SmallPtrSet<BasicBlock*, 64> Visited; 00766 00767 unsigned NumSortedEntries = Cache.size(); 00768 DEBUG(AssertSorted(Cache)); 00769 00770 // Iterate while we still have blocks to update. 00771 while (!DirtyBlocks.empty()) { 00772 BasicBlock *DirtyBB = DirtyBlocks.back(); 00773 DirtyBlocks.pop_back(); 00774 00775 // Already processed this block? 00776 if (!Visited.insert(DirtyBB)) 00777 continue; 00778 00779 // Do a binary search to see if we already have an entry for this block in 00780 // the cache set. If so, find it. 00781 DEBUG(AssertSorted(Cache, NumSortedEntries)); 00782 NonLocalDepInfo::iterator Entry = 00783 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 00784 NonLocalDepEntry(DirtyBB)); 00785 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 00786 --Entry; 00787 00788 NonLocalDepEntry *ExistingResult = nullptr; 00789 if (Entry != Cache.begin()+NumSortedEntries && 00790 Entry->getBB() == DirtyBB) { 00791 // If we already have an entry, and if it isn't already dirty, the block 00792 // is done. 00793 if (!Entry->getResult().isDirty()) 00794 continue; 00795 00796 // Otherwise, remember this slot so we can update the value. 00797 ExistingResult = &*Entry; 00798 } 00799 00800 // If the dirty entry has a pointer, start scanning from it so we don't have 00801 // to rescan the entire block. 00802 BasicBlock::iterator ScanPos = DirtyBB->end(); 00803 if (ExistingResult) { 00804 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 00805 ScanPos = Inst; 00806 // We're removing QueryInst's use of Inst. 00807 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 00808 QueryCS.getInstruction()); 00809 } 00810 } 00811 00812 // Find out if this block has a local dependency for QueryInst. 00813 MemDepResult Dep; 00814 00815 if (ScanPos != DirtyBB->begin()) { 00816 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 00817 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 00818 // No dependence found. If this is the entry block of the function, it is 00819 // a clobber, otherwise it is unknown. 00820 Dep = MemDepResult::getNonLocal(); 00821 } else { 00822 Dep = MemDepResult::getNonFuncLocal(); 00823 } 00824 00825 // If we had a dirty entry for the block, update it. Otherwise, just add 00826 // a new entry. 00827 if (ExistingResult) 00828 ExistingResult->setResult(Dep); 00829 else 00830 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 00831 00832 // If the block has a dependency (i.e. it isn't completely transparent to 00833 // the value), remember the association! 00834 if (!Dep.isNonLocal()) { 00835 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 00836 // update this when we remove instructions. 00837 if (Instruction *Inst = Dep.getInst()) 00838 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 00839 } else { 00840 00841 // If the block *is* completely transparent to the load, we need to check 00842 // the predecessors of this block. Add them to our worklist. 00843 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI) 00844 DirtyBlocks.push_back(*PI); 00845 } 00846 } 00847 00848 return Cache; 00849 } 00850 00851 /// getNonLocalPointerDependency - Perform a full dependency query for an 00852 /// access to the specified (non-volatile) memory location, returning the 00853 /// set of instructions that either define or clobber the value. 00854 /// 00855 /// This method assumes the pointer has a "NonLocal" dependency within its 00856 /// own block. 00857 /// 00858 void MemoryDependenceAnalysis:: 00859 getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad, 00860 BasicBlock *FromBB, 00861 SmallVectorImpl<NonLocalDepResult> &Result) { 00862 assert(Loc.Ptr->getType()->isPointerTy() && 00863 "Can't get pointer deps of a non-pointer!"); 00864 Result.clear(); 00865 00866 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, AT); 00867 00868 // This is the set of blocks we've inspected, and the pointer we consider in 00869 // each block. Because of critical edges, we currently bail out if querying 00870 // a block with multiple different pointers. This can happen during PHI 00871 // translation. 00872 DenseMap<BasicBlock*, Value*> Visited; 00873 if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB, 00874 Result, Visited, true)) 00875 return; 00876 Result.clear(); 00877 Result.push_back(NonLocalDepResult(FromBB, 00878 MemDepResult::getUnknown(), 00879 const_cast<Value *>(Loc.Ptr))); 00880 } 00881 00882 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 00883 /// Pointer/PointeeSize using either cached information in Cache or by doing a 00884 /// lookup (which may use dirty cache info if available). If we do a lookup, 00885 /// add the result to the cache. 00886 MemDepResult MemoryDependenceAnalysis:: 00887 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc, 00888 bool isLoad, BasicBlock *BB, 00889 NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 00890 00891 // Do a binary search to see if we already have an entry for this block in 00892 // the cache set. If so, find it. 00893 NonLocalDepInfo::iterator Entry = 00894 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 00895 NonLocalDepEntry(BB)); 00896 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 00897 --Entry; 00898 00899 NonLocalDepEntry *ExistingResult = nullptr; 00900 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 00901 ExistingResult = &*Entry; 00902 00903 // If we have a cached entry, and it is non-dirty, use it as the value for 00904 // this dependency. 00905 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 00906 ++NumCacheNonLocalPtr; 00907 return ExistingResult->getResult(); 00908 } 00909 00910 // Otherwise, we have to scan for the value. If we have a dirty cache 00911 // entry, start scanning from its position, otherwise we scan from the end 00912 // of the block. 00913 BasicBlock::iterator ScanPos = BB->end(); 00914 if (ExistingResult && ExistingResult->getResult().getInst()) { 00915 assert(ExistingResult->getResult().getInst()->getParent() == BB && 00916 "Instruction invalidated?"); 00917 ++NumCacheDirtyNonLocalPtr; 00918 ScanPos = ExistingResult->getResult().getInst(); 00919 00920 // Eliminating the dirty entry from 'Cache', so update the reverse info. 00921 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 00922 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); 00923 } else { 00924 ++NumUncacheNonLocalPtr; 00925 } 00926 00927 // Scan the block for the dependency. 00928 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB); 00929 00930 // If we had a dirty entry for the block, update it. Otherwise, just add 00931 // a new entry. 00932 if (ExistingResult) 00933 ExistingResult->setResult(Dep); 00934 else 00935 Cache->push_back(NonLocalDepEntry(BB, Dep)); 00936 00937 // If the block has a dependency (i.e. it isn't completely transparent to 00938 // the value), remember the reverse association because we just added it 00939 // to Cache! 00940 if (!Dep.isDef() && !Dep.isClobber()) 00941 return Dep; 00942 00943 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 00944 // update MemDep when we remove instructions. 00945 Instruction *Inst = Dep.getInst(); 00946 assert(Inst && "Didn't depend on anything?"); 00947 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 00948 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 00949 return Dep; 00950 } 00951 00952 /// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain 00953 /// number of elements in the array that are already properly ordered. This is 00954 /// optimized for the case when only a few entries are added. 00955 static void 00956 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 00957 unsigned NumSortedEntries) { 00958 switch (Cache.size() - NumSortedEntries) { 00959 case 0: 00960 // done, no new entries. 00961 break; 00962 case 2: { 00963 // Two new entries, insert the last one into place. 00964 NonLocalDepEntry Val = Cache.back(); 00965 Cache.pop_back(); 00966 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 00967 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 00968 Cache.insert(Entry, Val); 00969 // FALL THROUGH. 00970 } 00971 case 1: 00972 // One new entry, Just insert the new value at the appropriate position. 00973 if (Cache.size() != 1) { 00974 NonLocalDepEntry Val = Cache.back(); 00975 Cache.pop_back(); 00976 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 00977 std::upper_bound(Cache.begin(), Cache.end(), Val); 00978 Cache.insert(Entry, Val); 00979 } 00980 break; 00981 default: 00982 // Added many values, do a full scale sort. 00983 std::sort(Cache.begin(), Cache.end()); 00984 break; 00985 } 00986 } 00987 00988 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 00989 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 00990 /// results to the results vector and keep track of which blocks are visited in 00991 /// 'Visited'. 00992 /// 00993 /// This has special behavior for the first block queries (when SkipFirstBlock 00994 /// is true). In this special case, it ignores the contents of the specified 00995 /// block and starts returning dependence info for its predecessors. 00996 /// 00997 /// This function returns false on success, or true to indicate that it could 00998 /// not compute dependence information for some reason. This should be treated 00999 /// as a clobber dependence on the first instruction in the predecessor block. 01000 bool MemoryDependenceAnalysis:: 01001 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, 01002 const AliasAnalysis::Location &Loc, 01003 bool isLoad, BasicBlock *StartBB, 01004 SmallVectorImpl<NonLocalDepResult> &Result, 01005 DenseMap<BasicBlock*, Value*> &Visited, 01006 bool SkipFirstBlock) { 01007 // Look up the cached info for Pointer. 01008 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 01009 01010 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 01011 // CacheKey, this value will be inserted as the associated value. Otherwise, 01012 // it'll be ignored, and we'll have to check to see if the cached size and 01013 // aa tags are consistent with the current query. 01014 NonLocalPointerInfo InitialNLPI; 01015 InitialNLPI.Size = Loc.Size; 01016 InitialNLPI.AATags = Loc.AATags; 01017 01018 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 01019 // already have one. 01020 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 01021 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 01022 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 01023 01024 // If we already have a cache entry for this CacheKey, we may need to do some 01025 // work to reconcile the cache entry and the current query. 01026 if (!Pair.second) { 01027 if (CacheInfo->Size < Loc.Size) { 01028 // The query's Size is greater than the cached one. Throw out the 01029 // cached data and proceed with the query at the greater size. 01030 CacheInfo->Pair = BBSkipFirstBlockPair(); 01031 CacheInfo->Size = Loc.Size; 01032 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 01033 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 01034 if (Instruction *Inst = DI->getResult().getInst()) 01035 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 01036 CacheInfo->NonLocalDeps.clear(); 01037 } else if (CacheInfo->Size > Loc.Size) { 01038 // This query's Size is less than the cached one. Conservatively restart 01039 // the query using the greater size. 01040 return getNonLocalPointerDepFromBB(Pointer, 01041 Loc.getWithNewSize(CacheInfo->Size), 01042 isLoad, StartBB, Result, Visited, 01043 SkipFirstBlock); 01044 } 01045 01046 // If the query's AATags are inconsistent with the cached one, 01047 // conservatively throw out the cached data and restart the query with 01048 // no tag if needed. 01049 if (CacheInfo->AATags != Loc.AATags) { 01050 if (CacheInfo->AATags) { 01051 CacheInfo->Pair = BBSkipFirstBlockPair(); 01052 CacheInfo->AATags = AAMDNodes(); 01053 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 01054 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 01055 if (Instruction *Inst = DI->getResult().getInst()) 01056 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 01057 CacheInfo->NonLocalDeps.clear(); 01058 } 01059 if (Loc.AATags) 01060 return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutAATags(), 01061 isLoad, StartBB, Result, Visited, 01062 SkipFirstBlock); 01063 } 01064 } 01065 01066 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 01067 01068 // If we have valid cached information for exactly the block we are 01069 // investigating, just return it with no recomputation. 01070 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 01071 // We have a fully cached result for this query then we can just return the 01072 // cached results and populate the visited set. However, we have to verify 01073 // that we don't already have conflicting results for these blocks. Check 01074 // to ensure that if a block in the results set is in the visited set that 01075 // it was for the same pointer query. 01076 if (!Visited.empty()) { 01077 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 01078 I != E; ++I) { 01079 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 01080 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 01081 continue; 01082 01083 // We have a pointer mismatch in a block. Just return clobber, saying 01084 // that something was clobbered in this result. We could also do a 01085 // non-fully cached query, but there is little point in doing this. 01086 return true; 01087 } 01088 } 01089 01090 Value *Addr = Pointer.getAddr(); 01091 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 01092 I != E; ++I) { 01093 Visited.insert(std::make_pair(I->getBB(), Addr)); 01094 if (I->getResult().isNonLocal()) { 01095 continue; 01096 } 01097 01098 if (!DT) { 01099 Result.push_back(NonLocalDepResult(I->getBB(), 01100 MemDepResult::getUnknown(), 01101 Addr)); 01102 } else if (DT->isReachableFromEntry(I->getBB())) { 01103 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr)); 01104 } 01105 } 01106 ++NumCacheCompleteNonLocalPtr; 01107 return false; 01108 } 01109 01110 // Otherwise, either this is a new block, a block with an invalid cache 01111 // pointer or one that we're about to invalidate by putting more info into it 01112 // than its valid cache info. If empty, the result will be valid cache info, 01113 // otherwise it isn't. 01114 if (Cache->empty()) 01115 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 01116 else 01117 CacheInfo->Pair = BBSkipFirstBlockPair(); 01118 01119 SmallVector<BasicBlock*, 32> Worklist; 01120 Worklist.push_back(StartBB); 01121 01122 // PredList used inside loop. 01123 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList; 01124 01125 // Keep track of the entries that we know are sorted. Previously cached 01126 // entries will all be sorted. The entries we add we only sort on demand (we 01127 // don't insert every element into its sorted position). We know that we 01128 // won't get any reuse from currently inserted values, because we don't 01129 // revisit blocks after we insert info for them. 01130 unsigned NumSortedEntries = Cache->size(); 01131 DEBUG(AssertSorted(*Cache)); 01132 01133 while (!Worklist.empty()) { 01134 BasicBlock *BB = Worklist.pop_back_val(); 01135 01136 // Skip the first block if we have it. 01137 if (!SkipFirstBlock) { 01138 // Analyze the dependency of *Pointer in FromBB. See if we already have 01139 // been here. 01140 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 01141 01142 // Get the dependency info for Pointer in BB. If we have cached 01143 // information, we will use it, otherwise we compute it. 01144 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 01145 MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache, 01146 NumSortedEntries); 01147 01148 // If we got a Def or Clobber, add this to the list of results. 01149 if (!Dep.isNonLocal()) { 01150 if (!DT) { 01151 Result.push_back(NonLocalDepResult(BB, 01152 MemDepResult::getUnknown(), 01153 Pointer.getAddr())); 01154 continue; 01155 } else if (DT->isReachableFromEntry(BB)) { 01156 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 01157 continue; 01158 } 01159 } 01160 } 01161 01162 // If 'Pointer' is an instruction defined in this block, then we need to do 01163 // phi translation to change it into a value live in the predecessor block. 01164 // If not, we just add the predecessors to the worklist and scan them with 01165 // the same Pointer. 01166 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 01167 SkipFirstBlock = false; 01168 SmallVector<BasicBlock*, 16> NewBlocks; 01169 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 01170 // Verify that we haven't looked at this block yet. 01171 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 01172 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr())); 01173 if (InsertRes.second) { 01174 // First time we've looked at *PI. 01175 NewBlocks.push_back(*PI); 01176 continue; 01177 } 01178 01179 // If we have seen this block before, but it was with a different 01180 // pointer then we have a phi translation failure and we have to treat 01181 // this as a clobber. 01182 if (InsertRes.first->second != Pointer.getAddr()) { 01183 // Make sure to clean up the Visited map before continuing on to 01184 // PredTranslationFailure. 01185 for (unsigned i = 0; i < NewBlocks.size(); i++) 01186 Visited.erase(NewBlocks[i]); 01187 goto PredTranslationFailure; 01188 } 01189 } 01190 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 01191 continue; 01192 } 01193 01194 // We do need to do phi translation, if we know ahead of time we can't phi 01195 // translate this value, don't even try. 01196 if (!Pointer.IsPotentiallyPHITranslatable()) 01197 goto PredTranslationFailure; 01198 01199 // We may have added values to the cache list before this PHI translation. 01200 // If so, we haven't done anything to ensure that the cache remains sorted. 01201 // Sort it now (if needed) so that recursive invocations of 01202 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 01203 // value will only see properly sorted cache arrays. 01204 if (Cache && NumSortedEntries != Cache->size()) { 01205 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 01206 NumSortedEntries = Cache->size(); 01207 } 01208 Cache = nullptr; 01209 01210 PredList.clear(); 01211 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 01212 BasicBlock *Pred = *PI; 01213 PredList.push_back(std::make_pair(Pred, Pointer)); 01214 01215 // Get the PHI translated pointer in this predecessor. This can fail if 01216 // not translatable, in which case the getAddr() returns null. 01217 PHITransAddr &PredPointer = PredList.back().second; 01218 PredPointer.PHITranslateValue(BB, Pred, nullptr); 01219 01220 Value *PredPtrVal = PredPointer.getAddr(); 01221 01222 // Check to see if we have already visited this pred block with another 01223 // pointer. If so, we can't do this lookup. This failure can occur 01224 // with PHI translation when a critical edge exists and the PHI node in 01225 // the successor translates to a pointer value different than the 01226 // pointer the block was first analyzed with. 01227 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 01228 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 01229 01230 if (!InsertRes.second) { 01231 // We found the pred; take it off the list of preds to visit. 01232 PredList.pop_back(); 01233 01234 // If the predecessor was visited with PredPtr, then we already did 01235 // the analysis and can ignore it. 01236 if (InsertRes.first->second == PredPtrVal) 01237 continue; 01238 01239 // Otherwise, the block was previously analyzed with a different 01240 // pointer. We can't represent the result of this case, so we just 01241 // treat this as a phi translation failure. 01242 01243 // Make sure to clean up the Visited map before continuing on to 01244 // PredTranslationFailure. 01245 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 01246 Visited.erase(PredList[i].first); 01247 01248 goto PredTranslationFailure; 01249 } 01250 } 01251 01252 // Actually process results here; this need to be a separate loop to avoid 01253 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 01254 // any results for. (getNonLocalPointerDepFromBB will modify our 01255 // datastructures in ways the code after the PredTranslationFailure label 01256 // doesn't expect.) 01257 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 01258 BasicBlock *Pred = PredList[i].first; 01259 PHITransAddr &PredPointer = PredList[i].second; 01260 Value *PredPtrVal = PredPointer.getAddr(); 01261 01262 bool CanTranslate = true; 01263 // If PHI translation was unable to find an available pointer in this 01264 // predecessor, then we have to assume that the pointer is clobbered in 01265 // that predecessor. We can still do PRE of the load, which would insert 01266 // a computation of the pointer in this predecessor. 01267 if (!PredPtrVal) 01268 CanTranslate = false; 01269 01270 // FIXME: it is entirely possible that PHI translating will end up with 01271 // the same value. Consider PHI translating something like: 01272 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 01273 // to recurse here, pedantically speaking. 01274 01275 // If getNonLocalPointerDepFromBB fails here, that means the cached 01276 // result conflicted with the Visited list; we have to conservatively 01277 // assume it is unknown, but this also does not block PRE of the load. 01278 if (!CanTranslate || 01279 getNonLocalPointerDepFromBB(PredPointer, 01280 Loc.getWithNewPtr(PredPtrVal), 01281 isLoad, Pred, 01282 Result, Visited)) { 01283 // Add the entry to the Result list. 01284 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 01285 Result.push_back(Entry); 01286 01287 // Since we had a phi translation failure, the cache for CacheKey won't 01288 // include all of the entries that we need to immediately satisfy future 01289 // queries. Mark this in NonLocalPointerDeps by setting the 01290 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 01291 // cached value to do more work but not miss the phi trans failure. 01292 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 01293 NLPI.Pair = BBSkipFirstBlockPair(); 01294 continue; 01295 } 01296 } 01297 01298 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 01299 CacheInfo = &NonLocalPointerDeps[CacheKey]; 01300 Cache = &CacheInfo->NonLocalDeps; 01301 NumSortedEntries = Cache->size(); 01302 01303 // Since we did phi translation, the "Cache" set won't contain all of the 01304 // results for the query. This is ok (we can still use it to accelerate 01305 // specific block queries) but we can't do the fastpath "return all 01306 // results from the set" Clear out the indicator for this. 01307 CacheInfo->Pair = BBSkipFirstBlockPair(); 01308 SkipFirstBlock = false; 01309 continue; 01310 01311 PredTranslationFailure: 01312 // The following code is "failure"; we can't produce a sane translation 01313 // for the given block. It assumes that we haven't modified any of 01314 // our datastructures while processing the current block. 01315 01316 if (!Cache) { 01317 // Refresh the CacheInfo/Cache pointer if it got invalidated. 01318 CacheInfo = &NonLocalPointerDeps[CacheKey]; 01319 Cache = &CacheInfo->NonLocalDeps; 01320 NumSortedEntries = Cache->size(); 01321 } 01322 01323 // Since we failed phi translation, the "Cache" set won't contain all of the 01324 // results for the query. This is ok (we can still use it to accelerate 01325 // specific block queries) but we can't do the fastpath "return all 01326 // results from the set". Clear out the indicator for this. 01327 CacheInfo->Pair = BBSkipFirstBlockPair(); 01328 01329 // If *nothing* works, mark the pointer as unknown. 01330 // 01331 // If this is the magic first block, return this as a clobber of the whole 01332 // incoming value. Since we can't phi translate to one of the predecessors, 01333 // we have to bail out. 01334 if (SkipFirstBlock) 01335 return true; 01336 01337 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { 01338 assert(I != Cache->rend() && "Didn't find current block??"); 01339 if (I->getBB() != BB) 01340 continue; 01341 01342 assert(I->getResult().isNonLocal() && 01343 "Should only be here with transparent block"); 01344 I->setResult(MemDepResult::getUnknown()); 01345 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), 01346 Pointer.getAddr())); 01347 break; 01348 } 01349 } 01350 01351 // Okay, we're done now. If we added new values to the cache, re-sort it. 01352 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 01353 DEBUG(AssertSorted(*Cache)); 01354 return false; 01355 } 01356 01357 /// RemoveCachedNonLocalPointerDependencies - If P exists in 01358 /// CachedNonLocalPointerInfo, remove it. 01359 void MemoryDependenceAnalysis:: 01360 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 01361 CachedNonLocalPointerInfo::iterator It = 01362 NonLocalPointerDeps.find(P); 01363 if (It == NonLocalPointerDeps.end()) return; 01364 01365 // Remove all of the entries in the BB->val map. This involves removing 01366 // instructions from the reverse map. 01367 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 01368 01369 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 01370 Instruction *Target = PInfo[i].getResult().getInst(); 01371 if (!Target) continue; // Ignore non-local dep results. 01372 assert(Target->getParent() == PInfo[i].getBB()); 01373 01374 // Eliminating the dirty entry from 'Cache', so update the reverse info. 01375 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 01376 } 01377 01378 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 01379 NonLocalPointerDeps.erase(It); 01380 } 01381 01382 01383 /// invalidateCachedPointerInfo - This method is used to invalidate cached 01384 /// information about the specified pointer, because it may be too 01385 /// conservative in memdep. This is an optional call that can be used when 01386 /// the client detects an equivalence between the pointer and some other 01387 /// value and replaces the other value with ptr. This can make Ptr available 01388 /// in more places that cached info does not necessarily keep. 01389 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 01390 // If Ptr isn't really a pointer, just ignore it. 01391 if (!Ptr->getType()->isPointerTy()) return; 01392 // Flush store info for the pointer. 01393 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 01394 // Flush load info for the pointer. 01395 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 01396 } 01397 01398 /// invalidateCachedPredecessors - Clear the PredIteratorCache info. 01399 /// This needs to be done when the CFG changes, e.g., due to splitting 01400 /// critical edges. 01401 void MemoryDependenceAnalysis::invalidateCachedPredecessors() { 01402 PredCache->clear(); 01403 } 01404 01405 /// removeInstruction - Remove an instruction from the dependence analysis, 01406 /// updating the dependence of instructions that previously depended on it. 01407 /// This method attempts to keep the cache coherent using the reverse map. 01408 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 01409 // Walk through the Non-local dependencies, removing this one as the value 01410 // for any cached queries. 01411 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 01412 if (NLDI != NonLocalDeps.end()) { 01413 NonLocalDepInfo &BlockMap = NLDI->second.first; 01414 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 01415 DI != DE; ++DI) 01416 if (Instruction *Inst = DI->getResult().getInst()) 01417 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 01418 NonLocalDeps.erase(NLDI); 01419 } 01420 01421 // If we have a cached local dependence query for this instruction, remove it. 01422 // 01423 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 01424 if (LocalDepEntry != LocalDeps.end()) { 01425 // Remove us from DepInst's reverse set now that the local dep info is gone. 01426 if (Instruction *Inst = LocalDepEntry->second.getInst()) 01427 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 01428 01429 // Remove this local dependency info. 01430 LocalDeps.erase(LocalDepEntry); 01431 } 01432 01433 // If we have any cached pointer dependencies on this instruction, remove 01434 // them. If the instruction has non-pointer type, then it can't be a pointer 01435 // base. 01436 01437 // Remove it from both the load info and the store info. The instruction 01438 // can't be in either of these maps if it is non-pointer. 01439 if (RemInst->getType()->isPointerTy()) { 01440 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 01441 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 01442 } 01443 01444 // Loop over all of the things that depend on the instruction we're removing. 01445 // 01446 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 01447 01448 // If we find RemInst as a clobber or Def in any of the maps for other values, 01449 // we need to replace its entry with a dirty version of the instruction after 01450 // it. If RemInst is a terminator, we use a null dirty value. 01451 // 01452 // Using a dirty version of the instruction after RemInst saves having to scan 01453 // the entire block to get to this point. 01454 MemDepResult NewDirtyVal; 01455 if (!RemInst->isTerminator()) 01456 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); 01457 01458 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 01459 if (ReverseDepIt != ReverseLocalDeps.end()) { 01460 // RemInst can't be the terminator if it has local stuff depending on it. 01461 assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) && 01462 "Nothing can locally depend on a terminator"); 01463 01464 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 01465 assert(InstDependingOnRemInst != RemInst && 01466 "Already removed our local dep info"); 01467 01468 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 01469 01470 // Make sure to remember that new things depend on NewDepInst. 01471 assert(NewDirtyVal.getInst() && "There is no way something else can have " 01472 "a local dep on this if it is a terminator!"); 01473 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 01474 InstDependingOnRemInst)); 01475 } 01476 01477 ReverseLocalDeps.erase(ReverseDepIt); 01478 01479 // Add new reverse deps after scanning the set, to avoid invalidating the 01480 // 'ReverseDeps' reference. 01481 while (!ReverseDepsToAdd.empty()) { 01482 ReverseLocalDeps[ReverseDepsToAdd.back().first] 01483 .insert(ReverseDepsToAdd.back().second); 01484 ReverseDepsToAdd.pop_back(); 01485 } 01486 } 01487 01488 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 01489 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 01490 for (Instruction *I : ReverseDepIt->second) { 01491 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 01492 01493 PerInstNLInfo &INLD = NonLocalDeps[I]; 01494 // The information is now dirty! 01495 INLD.second = true; 01496 01497 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 01498 DE = INLD.first.end(); DI != DE; ++DI) { 01499 if (DI->getResult().getInst() != RemInst) continue; 01500 01501 // Convert to a dirty entry for the subsequent instruction. 01502 DI->setResult(NewDirtyVal); 01503 01504 if (Instruction *NextI = NewDirtyVal.getInst()) 01505 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 01506 } 01507 } 01508 01509 ReverseNonLocalDeps.erase(ReverseDepIt); 01510 01511 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 01512 while (!ReverseDepsToAdd.empty()) { 01513 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 01514 .insert(ReverseDepsToAdd.back().second); 01515 ReverseDepsToAdd.pop_back(); 01516 } 01517 } 01518 01519 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 01520 // value in the NonLocalPointerDeps info. 01521 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 01522 ReverseNonLocalPtrDeps.find(RemInst); 01523 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 01524 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 01525 01526 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 01527 assert(P.getPointer() != RemInst && 01528 "Already removed NonLocalPointerDeps info for RemInst"); 01529 01530 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 01531 01532 // The cache is not valid for any specific block anymore. 01533 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 01534 01535 // Update any entries for RemInst to use the instruction after it. 01536 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 01537 DI != DE; ++DI) { 01538 if (DI->getResult().getInst() != RemInst) continue; 01539 01540 // Convert to a dirty entry for the subsequent instruction. 01541 DI->setResult(NewDirtyVal); 01542 01543 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 01544 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 01545 } 01546 01547 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 01548 // subsequent value may invalidate the sortedness. 01549 std::sort(NLPDI.begin(), NLPDI.end()); 01550 } 01551 01552 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 01553 01554 while (!ReversePtrDepsToAdd.empty()) { 01555 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 01556 .insert(ReversePtrDepsToAdd.back().second); 01557 ReversePtrDepsToAdd.pop_back(); 01558 } 01559 } 01560 01561 01562 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 01563 AA->deleteValue(RemInst); 01564 DEBUG(verifyRemoved(RemInst)); 01565 } 01566 /// verifyRemoved - Verify that the specified instruction does not occur 01567 /// in our internal data structures. This function verifies by asserting in 01568 /// debug builds. 01569 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 01570 #ifndef NDEBUG 01571 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 01572 E = LocalDeps.end(); I != E; ++I) { 01573 assert(I->first != D && "Inst occurs in data structures"); 01574 assert(I->second.getInst() != D && 01575 "Inst occurs in data structures"); 01576 } 01577 01578 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 01579 E = NonLocalPointerDeps.end(); I != E; ++I) { 01580 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 01581 const NonLocalDepInfo &Val = I->second.NonLocalDeps; 01582 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 01583 II != E; ++II) 01584 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 01585 } 01586 01587 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 01588 E = NonLocalDeps.end(); I != E; ++I) { 01589 assert(I->first != D && "Inst occurs in data structures"); 01590 const PerInstNLInfo &INLD = I->second; 01591 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 01592 EE = INLD.first.end(); II != EE; ++II) 01593 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 01594 } 01595 01596 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 01597 E = ReverseLocalDeps.end(); I != E; ++I) { 01598 assert(I->first != D && "Inst occurs in data structures"); 01599 for (Instruction *Inst : I->second) 01600 assert(Inst != D && "Inst occurs in data structures"); 01601 } 01602 01603 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 01604 E = ReverseNonLocalDeps.end(); 01605 I != E; ++I) { 01606 assert(I->first != D && "Inst occurs in data structures"); 01607 for (Instruction *Inst : I->second) 01608 assert(Inst != D && "Inst occurs in data structures"); 01609 } 01610 01611 for (ReverseNonLocalPtrDepTy::const_iterator 01612 I = ReverseNonLocalPtrDeps.begin(), 01613 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 01614 assert(I->first != D && "Inst occurs in rev NLPD map"); 01615 01616 for (ValueIsLoadPair P : I->second) 01617 assert(P != ValueIsLoadPair(D, false) && 01618 P != ValueIsLoadPair(D, true) && 01619 "Inst occurs in ReverseNonLocalPtrDeps map"); 01620 } 01621 #endif 01622 }