LLVM API Documentation
00001 //===-- Module.cpp - Implement the Module class ---------------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the Module class for the IR library. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "llvm/IR/Module.h" 00015 #include "SymbolTableListTraitsImpl.h" 00016 #include "llvm/ADT/DenseSet.h" 00017 #include "llvm/ADT/STLExtras.h" 00018 #include "llvm/ADT/SmallString.h" 00019 #include "llvm/ADT/StringExtras.h" 00020 #include "llvm/IR/Constants.h" 00021 #include "llvm/IR/DerivedTypes.h" 00022 #include "llvm/IR/GVMaterializer.h" 00023 #include "llvm/IR/InstrTypes.h" 00024 #include "llvm/IR/LLVMContext.h" 00025 #include "llvm/IR/LeakDetector.h" 00026 #include "llvm/Support/Dwarf.h" 00027 #include "llvm/Support/Path.h" 00028 #include "llvm/Support/RandomNumberGenerator.h" 00029 #include <algorithm> 00030 #include <cstdarg> 00031 #include <cstdlib> 00032 using namespace llvm; 00033 00034 //===----------------------------------------------------------------------===// 00035 // Methods to implement the globals and functions lists. 00036 // 00037 00038 // Explicit instantiations of SymbolTableListTraits since some of the methods 00039 // are not in the public header file. 00040 template class llvm::SymbolTableListTraits<Function, Module>; 00041 template class llvm::SymbolTableListTraits<GlobalVariable, Module>; 00042 template class llvm::SymbolTableListTraits<GlobalAlias, Module>; 00043 00044 //===----------------------------------------------------------------------===// 00045 // Primitive Module methods. 00046 // 00047 00048 Module::Module(StringRef MID, LLVMContext &C) 00049 : Context(C), Materializer(), ModuleID(MID), RNG(nullptr), DL("") { 00050 ValSymTab = new ValueSymbolTable(); 00051 NamedMDSymTab = new StringMap<NamedMDNode *>(); 00052 Context.addModule(this); 00053 } 00054 00055 Module::~Module() { 00056 Context.removeModule(this); 00057 dropAllReferences(); 00058 GlobalList.clear(); 00059 FunctionList.clear(); 00060 AliasList.clear(); 00061 NamedMDList.clear(); 00062 delete ValSymTab; 00063 delete static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab); 00064 delete RNG; 00065 } 00066 00067 /// getNamedValue - Return the first global value in the module with 00068 /// the specified name, of arbitrary type. This method returns null 00069 /// if a global with the specified name is not found. 00070 GlobalValue *Module::getNamedValue(StringRef Name) const { 00071 return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name)); 00072 } 00073 00074 /// getMDKindID - Return a unique non-zero ID for the specified metadata kind. 00075 /// This ID is uniqued across modules in the current LLVMContext. 00076 unsigned Module::getMDKindID(StringRef Name) const { 00077 return Context.getMDKindID(Name); 00078 } 00079 00080 /// getMDKindNames - Populate client supplied SmallVector with the name for 00081 /// custom metadata IDs registered in this LLVMContext. ID #0 is not used, 00082 /// so it is filled in as an empty string. 00083 void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const { 00084 return Context.getMDKindNames(Result); 00085 } 00086 00087 00088 //===----------------------------------------------------------------------===// 00089 // Methods for easy access to the functions in the module. 00090 // 00091 00092 // getOrInsertFunction - Look up the specified function in the module symbol 00093 // table. If it does not exist, add a prototype for the function and return 00094 // it. This is nice because it allows most passes to get away with not handling 00095 // the symbol table directly for this common task. 00096 // 00097 Constant *Module::getOrInsertFunction(StringRef Name, 00098 FunctionType *Ty, 00099 AttributeSet AttributeList) { 00100 // See if we have a definition for the specified function already. 00101 GlobalValue *F = getNamedValue(Name); 00102 if (!F) { 00103 // Nope, add it 00104 Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, Name); 00105 if (!New->isIntrinsic()) // Intrinsics get attrs set on construction 00106 New->setAttributes(AttributeList); 00107 FunctionList.push_back(New); 00108 return New; // Return the new prototype. 00109 } 00110 00111 // If the function exists but has the wrong type, return a bitcast to the 00112 // right type. 00113 if (F->getType() != PointerType::getUnqual(Ty)) 00114 return ConstantExpr::getBitCast(F, PointerType::getUnqual(Ty)); 00115 00116 // Otherwise, we just found the existing function or a prototype. 00117 return F; 00118 } 00119 00120 Constant *Module::getOrInsertFunction(StringRef Name, 00121 FunctionType *Ty) { 00122 return getOrInsertFunction(Name, Ty, AttributeSet()); 00123 } 00124 00125 // getOrInsertFunction - Look up the specified function in the module symbol 00126 // table. If it does not exist, add a prototype for the function and return it. 00127 // This version of the method takes a null terminated list of function 00128 // arguments, which makes it easier for clients to use. 00129 // 00130 Constant *Module::getOrInsertFunction(StringRef Name, 00131 AttributeSet AttributeList, 00132 Type *RetTy, ...) { 00133 va_list Args; 00134 va_start(Args, RetTy); 00135 00136 // Build the list of argument types... 00137 std::vector<Type*> ArgTys; 00138 while (Type *ArgTy = va_arg(Args, Type*)) 00139 ArgTys.push_back(ArgTy); 00140 00141 va_end(Args); 00142 00143 // Build the function type and chain to the other getOrInsertFunction... 00144 return getOrInsertFunction(Name, 00145 FunctionType::get(RetTy, ArgTys, false), 00146 AttributeList); 00147 } 00148 00149 Constant *Module::getOrInsertFunction(StringRef Name, 00150 Type *RetTy, ...) { 00151 va_list Args; 00152 va_start(Args, RetTy); 00153 00154 // Build the list of argument types... 00155 std::vector<Type*> ArgTys; 00156 while (Type *ArgTy = va_arg(Args, Type*)) 00157 ArgTys.push_back(ArgTy); 00158 00159 va_end(Args); 00160 00161 // Build the function type and chain to the other getOrInsertFunction... 00162 return getOrInsertFunction(Name, 00163 FunctionType::get(RetTy, ArgTys, false), 00164 AttributeSet()); 00165 } 00166 00167 // getFunction - Look up the specified function in the module symbol table. 00168 // If it does not exist, return null. 00169 // 00170 Function *Module::getFunction(StringRef Name) const { 00171 return dyn_cast_or_null<Function>(getNamedValue(Name)); 00172 } 00173 00174 //===----------------------------------------------------------------------===// 00175 // Methods for easy access to the global variables in the module. 00176 // 00177 00178 /// getGlobalVariable - Look up the specified global variable in the module 00179 /// symbol table. If it does not exist, return null. The type argument 00180 /// should be the underlying type of the global, i.e., it should not have 00181 /// the top-level PointerType, which represents the address of the global. 00182 /// If AllowLocal is set to true, this function will return types that 00183 /// have an local. By default, these types are not returned. 00184 /// 00185 GlobalVariable *Module::getGlobalVariable(StringRef Name, bool AllowLocal) { 00186 if (GlobalVariable *Result = 00187 dyn_cast_or_null<GlobalVariable>(getNamedValue(Name))) 00188 if (AllowLocal || !Result->hasLocalLinkage()) 00189 return Result; 00190 return nullptr; 00191 } 00192 00193 /// getOrInsertGlobal - Look up the specified global in the module symbol table. 00194 /// 1. If it does not exist, add a declaration of the global and return it. 00195 /// 2. Else, the global exists but has the wrong type: return the function 00196 /// with a constantexpr cast to the right type. 00197 /// 3. Finally, if the existing global is the correct declaration, return the 00198 /// existing global. 00199 Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) { 00200 // See if we have a definition for the specified global already. 00201 GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)); 00202 if (!GV) { 00203 // Nope, add it 00204 GlobalVariable *New = 00205 new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage, 00206 nullptr, Name); 00207 return New; // Return the new declaration. 00208 } 00209 00210 // If the variable exists but has the wrong type, return a bitcast to the 00211 // right type. 00212 Type *GVTy = GV->getType(); 00213 PointerType *PTy = PointerType::get(Ty, GVTy->getPointerAddressSpace()); 00214 if (GVTy != PTy) 00215 return ConstantExpr::getBitCast(GV, PTy); 00216 00217 // Otherwise, we just found the existing function or a prototype. 00218 return GV; 00219 } 00220 00221 //===----------------------------------------------------------------------===// 00222 // Methods for easy access to the global variables in the module. 00223 // 00224 00225 // getNamedAlias - Look up the specified global in the module symbol table. 00226 // If it does not exist, return null. 00227 // 00228 GlobalAlias *Module::getNamedAlias(StringRef Name) const { 00229 return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name)); 00230 } 00231 00232 /// getNamedMetadata - Return the first NamedMDNode in the module with the 00233 /// specified name. This method returns null if a NamedMDNode with the 00234 /// specified name is not found. 00235 NamedMDNode *Module::getNamedMetadata(const Twine &Name) const { 00236 SmallString<256> NameData; 00237 StringRef NameRef = Name.toStringRef(NameData); 00238 return static_cast<StringMap<NamedMDNode*> *>(NamedMDSymTab)->lookup(NameRef); 00239 } 00240 00241 /// getOrInsertNamedMetadata - Return the first named MDNode in the module 00242 /// with the specified name. This method returns a new NamedMDNode if a 00243 /// NamedMDNode with the specified name is not found. 00244 NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) { 00245 NamedMDNode *&NMD = 00246 (*static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab))[Name]; 00247 if (!NMD) { 00248 NMD = new NamedMDNode(Name); 00249 NMD->setParent(this); 00250 NamedMDList.push_back(NMD); 00251 } 00252 return NMD; 00253 } 00254 00255 /// eraseNamedMetadata - Remove the given NamedMDNode from this module and 00256 /// delete it. 00257 void Module::eraseNamedMetadata(NamedMDNode *NMD) { 00258 static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab)->erase(NMD->getName()); 00259 NamedMDList.erase(NMD); 00260 } 00261 00262 bool Module::isValidModFlagBehavior(Value *V, ModFlagBehavior &MFB) { 00263 if (ConstantInt *Behavior = dyn_cast<ConstantInt>(V)) { 00264 uint64_t Val = Behavior->getLimitedValue(); 00265 if (Val >= ModFlagBehaviorFirstVal && Val <= ModFlagBehaviorLastVal) { 00266 MFB = static_cast<ModFlagBehavior>(Val); 00267 return true; 00268 } 00269 } 00270 return false; 00271 } 00272 00273 /// getModuleFlagsMetadata - Returns the module flags in the provided vector. 00274 void Module:: 00275 getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const { 00276 const NamedMDNode *ModFlags = getModuleFlagsMetadata(); 00277 if (!ModFlags) return; 00278 00279 for (const MDNode *Flag : ModFlags->operands()) { 00280 ModFlagBehavior MFB; 00281 if (Flag->getNumOperands() >= 3 && 00282 isValidModFlagBehavior(Flag->getOperand(0), MFB) && 00283 isa<MDString>(Flag->getOperand(1))) { 00284 // Check the operands of the MDNode before accessing the operands. 00285 // The verifier will actually catch these failures. 00286 MDString *Key = cast<MDString>(Flag->getOperand(1)); 00287 Value *Val = Flag->getOperand(2); 00288 Flags.push_back(ModuleFlagEntry(MFB, Key, Val)); 00289 } 00290 } 00291 } 00292 00293 /// Return the corresponding value if Key appears in module flags, otherwise 00294 /// return null. 00295 Value *Module::getModuleFlag(StringRef Key) const { 00296 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 00297 getModuleFlagsMetadata(ModuleFlags); 00298 for (const ModuleFlagEntry &MFE : ModuleFlags) { 00299 if (Key == MFE.Key->getString()) 00300 return MFE.Val; 00301 } 00302 return nullptr; 00303 } 00304 00305 /// getModuleFlagsMetadata - Returns the NamedMDNode in the module that 00306 /// represents module-level flags. This method returns null if there are no 00307 /// module-level flags. 00308 NamedMDNode *Module::getModuleFlagsMetadata() const { 00309 return getNamedMetadata("llvm.module.flags"); 00310 } 00311 00312 /// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that 00313 /// represents module-level flags. If module-level flags aren't found, it 00314 /// creates the named metadata that contains them. 00315 NamedMDNode *Module::getOrInsertModuleFlagsMetadata() { 00316 return getOrInsertNamedMetadata("llvm.module.flags"); 00317 } 00318 00319 /// addModuleFlag - Add a module-level flag to the module-level flags 00320 /// metadata. It will create the module-level flags named metadata if it doesn't 00321 /// already exist. 00322 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 00323 Value *Val) { 00324 Type *Int32Ty = Type::getInt32Ty(Context); 00325 Value *Ops[3] = { 00326 ConstantInt::get(Int32Ty, Behavior), MDString::get(Context, Key), Val 00327 }; 00328 getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops)); 00329 } 00330 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 00331 uint32_t Val) { 00332 Type *Int32Ty = Type::getInt32Ty(Context); 00333 addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val)); 00334 } 00335 void Module::addModuleFlag(MDNode *Node) { 00336 assert(Node->getNumOperands() == 3 && 00337 "Invalid number of operands for module flag!"); 00338 assert(isa<ConstantInt>(Node->getOperand(0)) && 00339 isa<MDString>(Node->getOperand(1)) && 00340 "Invalid operand types for module flag!"); 00341 getOrInsertModuleFlagsMetadata()->addOperand(Node); 00342 } 00343 00344 void Module::setDataLayout(StringRef Desc) { 00345 DL.reset(Desc); 00346 00347 if (Desc.empty()) { 00348 DataLayoutStr = ""; 00349 } else { 00350 DataLayoutStr = DL.getStringRepresentation(); 00351 // DataLayoutStr is now equivalent to Desc, but since the representation 00352 // is not unique, they may not be identical. 00353 } 00354 } 00355 00356 void Module::setDataLayout(const DataLayout *Other) { 00357 if (!Other) { 00358 DataLayoutStr = ""; 00359 DL.reset(""); 00360 } else { 00361 DL = *Other; 00362 DataLayoutStr = DL.getStringRepresentation(); 00363 } 00364 } 00365 00366 const DataLayout *Module::getDataLayout() const { 00367 if (DataLayoutStr.empty()) 00368 return nullptr; 00369 return &DL; 00370 } 00371 00372 // We want reproducible builds, but ModuleID may be a full path so we just use 00373 // the filename to salt the RNG (although it is not guaranteed to be unique). 00374 RandomNumberGenerator &Module::getRNG() const { 00375 if (RNG == nullptr) { 00376 StringRef Salt = sys::path::filename(ModuleID); 00377 RNG = new RandomNumberGenerator(Salt); 00378 } 00379 return *RNG; 00380 } 00381 00382 //===----------------------------------------------------------------------===// 00383 // Methods to control the materialization of GlobalValues in the Module. 00384 // 00385 void Module::setMaterializer(GVMaterializer *GVM) { 00386 assert(!Materializer && 00387 "Module already has a GVMaterializer. Call MaterializeAllPermanently" 00388 " to clear it out before setting another one."); 00389 Materializer.reset(GVM); 00390 } 00391 00392 bool Module::isMaterializable(const GlobalValue *GV) const { 00393 if (Materializer) 00394 return Materializer->isMaterializable(GV); 00395 return false; 00396 } 00397 00398 bool Module::isDematerializable(const GlobalValue *GV) const { 00399 if (Materializer) 00400 return Materializer->isDematerializable(GV); 00401 return false; 00402 } 00403 00404 bool Module::Materialize(GlobalValue *GV, std::string *ErrInfo) { 00405 if (!Materializer) 00406 return false; 00407 00408 std::error_code EC = Materializer->Materialize(GV); 00409 if (!EC) 00410 return false; 00411 if (ErrInfo) 00412 *ErrInfo = EC.message(); 00413 return true; 00414 } 00415 00416 void Module::Dematerialize(GlobalValue *GV) { 00417 if (Materializer) 00418 return Materializer->Dematerialize(GV); 00419 } 00420 00421 std::error_code Module::materializeAll() { 00422 if (!Materializer) 00423 return std::error_code(); 00424 return Materializer->MaterializeModule(this); 00425 } 00426 00427 std::error_code Module::materializeAllPermanently() { 00428 if (std::error_code EC = materializeAll()) 00429 return EC; 00430 00431 Materializer.reset(); 00432 return std::error_code(); 00433 } 00434 00435 //===----------------------------------------------------------------------===// 00436 // Other module related stuff. 00437 // 00438 00439 00440 // dropAllReferences() - This function causes all the subelements to "let go" 00441 // of all references that they are maintaining. This allows one to 'delete' a 00442 // whole module at a time, even though there may be circular references... first 00443 // all references are dropped, and all use counts go to zero. Then everything 00444 // is deleted for real. Note that no operations are valid on an object that 00445 // has "dropped all references", except operator delete. 00446 // 00447 void Module::dropAllReferences() { 00448 for (Function &F : *this) 00449 F.dropAllReferences(); 00450 00451 for (GlobalVariable &GV : globals()) 00452 GV.dropAllReferences(); 00453 00454 for (GlobalAlias &GA : aliases()) 00455 GA.dropAllReferences(); 00456 } 00457 00458 unsigned Module::getDwarfVersion() const { 00459 Value *Val = getModuleFlag("Dwarf Version"); 00460 if (!Val) 00461 return dwarf::DWARF_VERSION; 00462 return cast<ConstantInt>(Val)->getZExtValue(); 00463 } 00464 00465 Comdat *Module::getOrInsertComdat(StringRef Name) { 00466 Comdat C; 00467 StringMapEntry<Comdat> &Entry = 00468 ComdatSymTab.GetOrCreateValue(Name, std::move(C)); 00469 Entry.second.Name = &Entry; 00470 return &Entry.second; 00471 }