LLVM API Documentation
00001 //===- NVPTXLowerAggrCopies.cpp - ------------------------------*- C++ -*--===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // Lower aggregate copies, memset, memcpy, memmov intrinsics into loops when 00010 // the size is large or is not a compile-time constant. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "NVPTXLowerAggrCopies.h" 00015 #include "llvm/IR/Constants.h" 00016 #include "llvm/IR/DataLayout.h" 00017 #include "llvm/IR/Function.h" 00018 #include "llvm/IR/IRBuilder.h" 00019 #include "llvm/IR/InstIterator.h" 00020 #include "llvm/IR/Instructions.h" 00021 #include "llvm/IR/IntrinsicInst.h" 00022 #include "llvm/IR/Intrinsics.h" 00023 #include "llvm/IR/LLVMContext.h" 00024 #include "llvm/IR/Module.h" 00025 00026 using namespace llvm; 00027 00028 namespace llvm { FunctionPass *createLowerAggrCopies(); } 00029 00030 char NVPTXLowerAggrCopies::ID = 0; 00031 00032 // Lower MemTransferInst or load-store pair to loop 00033 static void convertTransferToLoop( 00034 Instruction *splitAt, Value *srcAddr, Value *dstAddr, Value *len, 00035 //unsigned numLoads, 00036 bool srcVolatile, bool dstVolatile, LLVMContext &Context, Function &F) { 00037 Type *indType = len->getType(); 00038 00039 BasicBlock *origBB = splitAt->getParent(); 00040 BasicBlock *newBB = splitAt->getParent()->splitBasicBlock(splitAt, "split"); 00041 BasicBlock *loopBB = BasicBlock::Create(Context, "loadstoreloop", &F, newBB); 00042 00043 origBB->getTerminator()->setSuccessor(0, loopBB); 00044 IRBuilder<> builder(origBB, origBB->getTerminator()); 00045 00046 // srcAddr and dstAddr are expected to be pointer types, 00047 // so no check is made here. 00048 unsigned srcAS = dyn_cast<PointerType>(srcAddr->getType())->getAddressSpace(); 00049 unsigned dstAS = dyn_cast<PointerType>(dstAddr->getType())->getAddressSpace(); 00050 00051 // Cast pointers to (char *) 00052 srcAddr = builder.CreateBitCast(srcAddr, Type::getInt8PtrTy(Context, srcAS)); 00053 dstAddr = builder.CreateBitCast(dstAddr, Type::getInt8PtrTy(Context, dstAS)); 00054 00055 IRBuilder<> loop(loopBB); 00056 // The loop index (ind) is a phi node. 00057 PHINode *ind = loop.CreatePHI(indType, 0); 00058 // Incoming value for ind is 0 00059 ind->addIncoming(ConstantInt::get(indType, 0), origBB); 00060 00061 // load from srcAddr+ind 00062 Value *val = loop.CreateLoad(loop.CreateGEP(srcAddr, ind), srcVolatile); 00063 // store at dstAddr+ind 00064 loop.CreateStore(val, loop.CreateGEP(dstAddr, ind), dstVolatile); 00065 00066 // The value for ind coming from backedge is (ind + 1) 00067 Value *newind = loop.CreateAdd(ind, ConstantInt::get(indType, 1)); 00068 ind->addIncoming(newind, loopBB); 00069 00070 loop.CreateCondBr(loop.CreateICmpULT(newind, len), loopBB, newBB); 00071 } 00072 00073 // Lower MemSetInst to loop 00074 static void convertMemSetToLoop(Instruction *splitAt, Value *dstAddr, 00075 Value *len, Value *val, LLVMContext &Context, 00076 Function &F) { 00077 BasicBlock *origBB = splitAt->getParent(); 00078 BasicBlock *newBB = splitAt->getParent()->splitBasicBlock(splitAt, "split"); 00079 BasicBlock *loopBB = BasicBlock::Create(Context, "loadstoreloop", &F, newBB); 00080 00081 origBB->getTerminator()->setSuccessor(0, loopBB); 00082 IRBuilder<> builder(origBB, origBB->getTerminator()); 00083 00084 unsigned dstAS = dyn_cast<PointerType>(dstAddr->getType())->getAddressSpace(); 00085 00086 // Cast pointer to the type of value getting stored 00087 dstAddr = 00088 builder.CreateBitCast(dstAddr, PointerType::get(val->getType(), dstAS)); 00089 00090 IRBuilder<> loop(loopBB); 00091 PHINode *ind = loop.CreatePHI(len->getType(), 0); 00092 ind->addIncoming(ConstantInt::get(len->getType(), 0), origBB); 00093 00094 loop.CreateStore(val, loop.CreateGEP(dstAddr, ind), false); 00095 00096 Value *newind = loop.CreateAdd(ind, ConstantInt::get(len->getType(), 1)); 00097 ind->addIncoming(newind, loopBB); 00098 00099 loop.CreateCondBr(loop.CreateICmpULT(newind, len), loopBB, newBB); 00100 } 00101 00102 bool NVPTXLowerAggrCopies::runOnFunction(Function &F) { 00103 SmallVector<LoadInst *, 4> aggrLoads; 00104 SmallVector<MemTransferInst *, 4> aggrMemcpys; 00105 SmallVector<MemSetInst *, 4> aggrMemsets; 00106 00107 const DataLayout *DL = &getAnalysis<DataLayoutPass>().getDataLayout(); 00108 LLVMContext &Context = F.getParent()->getContext(); 00109 00110 // 00111 // Collect all the aggrLoads, aggrMemcpys and addrMemsets. 00112 // 00113 //const BasicBlock *firstBB = &F.front(); // first BB in F 00114 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { 00115 //BasicBlock *bb = BI; 00116 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; 00117 ++II) { 00118 if (LoadInst *load = dyn_cast<LoadInst>(II)) { 00119 00120 if (load->hasOneUse() == false) 00121 continue; 00122 00123 if (DL->getTypeStoreSize(load->getType()) < MaxAggrCopySize) 00124 continue; 00125 00126 User *use = load->user_back(); 00127 if (StoreInst *store = dyn_cast<StoreInst>(use)) { 00128 if (store->getOperand(0) != load) //getValueOperand 00129 continue; 00130 aggrLoads.push_back(load); 00131 } 00132 } else if (MemTransferInst *intr = dyn_cast<MemTransferInst>(II)) { 00133 Value *len = intr->getLength(); 00134 // If the number of elements being copied is greater 00135 // than MaxAggrCopySize, lower it to a loop 00136 if (ConstantInt *len_int = dyn_cast<ConstantInt>(len)) { 00137 if (len_int->getZExtValue() >= MaxAggrCopySize) { 00138 aggrMemcpys.push_back(intr); 00139 } 00140 } else { 00141 // turn variable length memcpy/memmov into loop 00142 aggrMemcpys.push_back(intr); 00143 } 00144 } else if (MemSetInst *memsetintr = dyn_cast<MemSetInst>(II)) { 00145 Value *len = memsetintr->getLength(); 00146 if (ConstantInt *len_int = dyn_cast<ConstantInt>(len)) { 00147 if (len_int->getZExtValue() >= MaxAggrCopySize) { 00148 aggrMemsets.push_back(memsetintr); 00149 } 00150 } else { 00151 // turn variable length memset into loop 00152 aggrMemsets.push_back(memsetintr); 00153 } 00154 } 00155 } 00156 } 00157 if ((aggrLoads.size() == 0) && (aggrMemcpys.size() == 0) && 00158 (aggrMemsets.size() == 0)) 00159 return false; 00160 00161 // 00162 // Do the transformation of an aggr load/copy/set to a loop 00163 // 00164 for (unsigned i = 0, e = aggrLoads.size(); i != e; ++i) { 00165 LoadInst *load = aggrLoads[i]; 00166 StoreInst *store = dyn_cast<StoreInst>(*load->user_begin()); 00167 Value *srcAddr = load->getOperand(0); 00168 Value *dstAddr = store->getOperand(1); 00169 unsigned numLoads = DL->getTypeStoreSize(load->getType()); 00170 Value *len = ConstantInt::get(Type::getInt32Ty(Context), numLoads); 00171 00172 convertTransferToLoop(store, srcAddr, dstAddr, len, load->isVolatile(), 00173 store->isVolatile(), Context, F); 00174 00175 store->eraseFromParent(); 00176 load->eraseFromParent(); 00177 } 00178 00179 for (unsigned i = 0, e = aggrMemcpys.size(); i != e; ++i) { 00180 MemTransferInst *cpy = aggrMemcpys[i]; 00181 Value *len = cpy->getLength(); 00182 // llvm 2.7 version of memcpy does not have volatile 00183 // operand yet. So always making it non-volatile 00184 // optimistically, so that we don't see unnecessary 00185 // st.volatile in ptx 00186 convertTransferToLoop(cpy, cpy->getSource(), cpy->getDest(), len, false, 00187 false, Context, F); 00188 cpy->eraseFromParent(); 00189 } 00190 00191 for (unsigned i = 0, e = aggrMemsets.size(); i != e; ++i) { 00192 MemSetInst *memsetinst = aggrMemsets[i]; 00193 Value *len = memsetinst->getLength(); 00194 Value *val = memsetinst->getValue(); 00195 convertMemSetToLoop(memsetinst, memsetinst->getDest(), len, val, Context, 00196 F); 00197 memsetinst->eraseFromParent(); 00198 } 00199 00200 return true; 00201 } 00202 00203 FunctionPass *llvm::createLowerAggrCopies() { 00204 return new NVPTXLowerAggrCopies(); 00205 }