LLVM API Documentation

Operator.h
Go to the documentation of this file.
00001 //===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file defines various classes for working with Instructions and
00011 // ConstantExprs.
00012 //
00013 //===----------------------------------------------------------------------===//
00014 
00015 #ifndef LLVM_IR_OPERATOR_H
00016 #define LLVM_IR_OPERATOR_H
00017 
00018 #include "llvm/IR/Constants.h"
00019 #include "llvm/IR/DataLayout.h"
00020 #include "llvm/IR/DerivedTypes.h"
00021 #include "llvm/IR/GetElementPtrTypeIterator.h"
00022 #include "llvm/IR/Instruction.h"
00023 #include "llvm/IR/Type.h"
00024 
00025 namespace llvm {
00026 
00027 class GetElementPtrInst;
00028 class BinaryOperator;
00029 class ConstantExpr;
00030 
00031 /// Operator - This is a utility class that provides an abstraction for the
00032 /// common functionality between Instructions and ConstantExprs.
00033 ///
00034 class Operator : public User {
00035 private:
00036   // The Operator class is intended to be used as a utility, and is never itself
00037   // instantiated.
00038   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
00039   void *operator new(size_t s) LLVM_DELETED_FUNCTION;
00040   Operator() LLVM_DELETED_FUNCTION;
00041 
00042 protected:
00043   // NOTE: Cannot use LLVM_DELETED_FUNCTION because it's not legal to delete
00044   // an overridden method that's not deleted in the base class. Cannot leave
00045   // this unimplemented because that leads to an ODR-violation.
00046   ~Operator();
00047 
00048 public:
00049   /// getOpcode - Return the opcode for this Instruction or ConstantExpr.
00050   ///
00051   unsigned getOpcode() const {
00052     if (const Instruction *I = dyn_cast<Instruction>(this))
00053       return I->getOpcode();
00054     return cast<ConstantExpr>(this)->getOpcode();
00055   }
00056 
00057   /// getOpcode - If V is an Instruction or ConstantExpr, return its
00058   /// opcode. Otherwise return UserOp1.
00059   ///
00060   static unsigned getOpcode(const Value *V) {
00061     if (const Instruction *I = dyn_cast<Instruction>(V))
00062       return I->getOpcode();
00063     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
00064       return CE->getOpcode();
00065     return Instruction::UserOp1;
00066   }
00067 
00068   static inline bool classof(const Instruction *) { return true; }
00069   static inline bool classof(const ConstantExpr *) { return true; }
00070   static inline bool classof(const Value *V) {
00071     return isa<Instruction>(V) || isa<ConstantExpr>(V);
00072   }
00073 };
00074 
00075 /// OverflowingBinaryOperator - Utility class for integer arithmetic operators
00076 /// which may exhibit overflow - Add, Sub, and Mul. It does not include SDiv,
00077 /// despite that operator having the potential for overflow.
00078 ///
00079 class OverflowingBinaryOperator : public Operator {
00080 public:
00081   enum {
00082     NoUnsignedWrap = (1 << 0),
00083     NoSignedWrap   = (1 << 1)
00084   };
00085 
00086 private:
00087   friend class BinaryOperator;
00088   friend class ConstantExpr;
00089   void setHasNoUnsignedWrap(bool B) {
00090     SubclassOptionalData =
00091       (SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
00092   }
00093   void setHasNoSignedWrap(bool B) {
00094     SubclassOptionalData =
00095       (SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
00096   }
00097 
00098 public:
00099   /// hasNoUnsignedWrap - Test whether this operation is known to never
00100   /// undergo unsigned overflow, aka the nuw property.
00101   bool hasNoUnsignedWrap() const {
00102     return SubclassOptionalData & NoUnsignedWrap;
00103   }
00104 
00105   /// hasNoSignedWrap - Test whether this operation is known to never
00106   /// undergo signed overflow, aka the nsw property.
00107   bool hasNoSignedWrap() const {
00108     return (SubclassOptionalData & NoSignedWrap) != 0;
00109   }
00110 
00111   static inline bool classof(const Instruction *I) {
00112     return I->getOpcode() == Instruction::Add ||
00113            I->getOpcode() == Instruction::Sub ||
00114            I->getOpcode() == Instruction::Mul ||
00115            I->getOpcode() == Instruction::Shl;
00116   }
00117   static inline bool classof(const ConstantExpr *CE) {
00118     return CE->getOpcode() == Instruction::Add ||
00119            CE->getOpcode() == Instruction::Sub ||
00120            CE->getOpcode() == Instruction::Mul ||
00121            CE->getOpcode() == Instruction::Shl;
00122   }
00123   static inline bool classof(const Value *V) {
00124     return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
00125            (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
00126   }
00127 };
00128 
00129 /// PossiblyExactOperator - A udiv or sdiv instruction, which can be marked as
00130 /// "exact", indicating that no bits are destroyed.
00131 class PossiblyExactOperator : public Operator {
00132 public:
00133   enum {
00134     IsExact = (1 << 0)
00135   };
00136 
00137 private:
00138   friend class BinaryOperator;
00139   friend class ConstantExpr;
00140   void setIsExact(bool B) {
00141     SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
00142   }
00143 
00144 public:
00145   /// isExact - Test whether this division is known to be exact, with
00146   /// zero remainder.
00147   bool isExact() const {
00148     return SubclassOptionalData & IsExact;
00149   }
00150 
00151   static bool isPossiblyExactOpcode(unsigned OpC) {
00152     return OpC == Instruction::SDiv ||
00153            OpC == Instruction::UDiv ||
00154            OpC == Instruction::AShr ||
00155            OpC == Instruction::LShr;
00156   }
00157   static inline bool classof(const ConstantExpr *CE) {
00158     return isPossiblyExactOpcode(CE->getOpcode());
00159   }
00160   static inline bool classof(const Instruction *I) {
00161     return isPossiblyExactOpcode(I->getOpcode());
00162   }
00163   static inline bool classof(const Value *V) {
00164     return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
00165            (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
00166   }
00167 };
00168 
00169 /// Convenience struct for specifying and reasoning about fast-math flags.
00170 class FastMathFlags {
00171 private:
00172   friend class FPMathOperator;
00173   unsigned Flags;
00174   FastMathFlags(unsigned F) : Flags(F) { }
00175 
00176 public:
00177   enum {
00178     UnsafeAlgebra   = (1 << 0),
00179     NoNaNs          = (1 << 1),
00180     NoInfs          = (1 << 2),
00181     NoSignedZeros   = (1 << 3),
00182     AllowReciprocal = (1 << 4)
00183   };
00184 
00185   FastMathFlags() : Flags(0)
00186   { }
00187 
00188   /// Whether any flag is set
00189   bool any() { return Flags != 0; }
00190 
00191   /// Set all the flags to false
00192   void clear() { Flags = 0; }
00193 
00194   /// Flag queries
00195   bool noNaNs()          { return 0 != (Flags & NoNaNs); }
00196   bool noInfs()          { return 0 != (Flags & NoInfs); }
00197   bool noSignedZeros()   { return 0 != (Flags & NoSignedZeros); }
00198   bool allowReciprocal() { return 0 != (Flags & AllowReciprocal); }
00199   bool unsafeAlgebra()   { return 0 != (Flags & UnsafeAlgebra); }
00200 
00201   /// Flag setters
00202   void setNoNaNs()          { Flags |= NoNaNs; }
00203   void setNoInfs()          { Flags |= NoInfs; }
00204   void setNoSignedZeros()   { Flags |= NoSignedZeros; }
00205   void setAllowReciprocal() { Flags |= AllowReciprocal; }
00206   void setUnsafeAlgebra() {
00207     Flags |= UnsafeAlgebra;
00208     setNoNaNs();
00209     setNoInfs();
00210     setNoSignedZeros();
00211     setAllowReciprocal();
00212   }
00213 
00214   void operator&=(const FastMathFlags &OtherFlags) {
00215     Flags &= OtherFlags.Flags;
00216   }
00217 };
00218 
00219 
00220 /// FPMathOperator - Utility class for floating point operations which can have
00221 /// information about relaxed accuracy requirements attached to them.
00222 class FPMathOperator : public Operator {
00223 private:
00224   friend class Instruction;
00225 
00226   void setHasUnsafeAlgebra(bool B) {
00227     SubclassOptionalData =
00228       (SubclassOptionalData & ~FastMathFlags::UnsafeAlgebra) |
00229       (B * FastMathFlags::UnsafeAlgebra);
00230 
00231     // Unsafe algebra implies all the others
00232     if (B) {
00233       setHasNoNaNs(true);
00234       setHasNoInfs(true);
00235       setHasNoSignedZeros(true);
00236       setHasAllowReciprocal(true);
00237     }
00238   }
00239   void setHasNoNaNs(bool B) {
00240     SubclassOptionalData =
00241       (SubclassOptionalData & ~FastMathFlags::NoNaNs) |
00242       (B * FastMathFlags::NoNaNs);
00243   }
00244   void setHasNoInfs(bool B) {
00245     SubclassOptionalData =
00246       (SubclassOptionalData & ~FastMathFlags::NoInfs) |
00247       (B * FastMathFlags::NoInfs);
00248   }
00249   void setHasNoSignedZeros(bool B) {
00250     SubclassOptionalData =
00251       (SubclassOptionalData & ~FastMathFlags::NoSignedZeros) |
00252       (B * FastMathFlags::NoSignedZeros);
00253   }
00254   void setHasAllowReciprocal(bool B) {
00255     SubclassOptionalData =
00256       (SubclassOptionalData & ~FastMathFlags::AllowReciprocal) |
00257       (B * FastMathFlags::AllowReciprocal);
00258   }
00259 
00260   /// Convenience function for setting multiple fast-math flags.
00261   /// FMF is a mask of the bits to set.
00262   void setFastMathFlags(FastMathFlags FMF) {
00263     SubclassOptionalData |= FMF.Flags;
00264   }
00265 
00266   /// Convenience function for copying all fast-math flags.
00267   /// All values in FMF are transferred to this operator.
00268   void copyFastMathFlags(FastMathFlags FMF) {
00269     SubclassOptionalData = FMF.Flags;
00270   }
00271 
00272 public:
00273   /// Test whether this operation is permitted to be
00274   /// algebraically transformed, aka the 'A' fast-math property.
00275   bool hasUnsafeAlgebra() const {
00276     return (SubclassOptionalData & FastMathFlags::UnsafeAlgebra) != 0;
00277   }
00278 
00279   /// Test whether this operation's arguments and results are to be
00280   /// treated as non-NaN, aka the 'N' fast-math property.
00281   bool hasNoNaNs() const {
00282     return (SubclassOptionalData & FastMathFlags::NoNaNs) != 0;
00283   }
00284 
00285   /// Test whether this operation's arguments and results are to be
00286   /// treated as NoN-Inf, aka the 'I' fast-math property.
00287   bool hasNoInfs() const {
00288     return (SubclassOptionalData & FastMathFlags::NoInfs) != 0;
00289   }
00290 
00291   /// Test whether this operation can treat the sign of zero
00292   /// as insignificant, aka the 'S' fast-math property.
00293   bool hasNoSignedZeros() const {
00294     return (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0;
00295   }
00296 
00297   /// Test whether this operation is permitted to use
00298   /// reciprocal instead of division, aka the 'R' fast-math property.
00299   bool hasAllowReciprocal() const {
00300     return (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0;
00301   }
00302 
00303   /// Convenience function for getting all the fast-math flags
00304   FastMathFlags getFastMathFlags() const {
00305     return FastMathFlags(SubclassOptionalData);
00306   }
00307 
00308   /// \brief Get the maximum error permitted by this operation in ULPs.  An
00309   /// accuracy of 0.0 means that the operation should be performed with the
00310   /// default precision.
00311   float getFPAccuracy() const;
00312 
00313   static inline bool classof(const Instruction *I) {
00314     return I->getType()->isFPOrFPVectorTy();
00315   }
00316   static inline bool classof(const Value *V) {
00317     return isa<Instruction>(V) && classof(cast<Instruction>(V));
00318   }
00319 };
00320 
00321 
00322 /// ConcreteOperator - A helper template for defining operators for individual
00323 /// opcodes.
00324 template<typename SuperClass, unsigned Opc>
00325 class ConcreteOperator : public SuperClass {
00326 public:
00327   static inline bool classof(const Instruction *I) {
00328     return I->getOpcode() == Opc;
00329   }
00330   static inline bool classof(const ConstantExpr *CE) {
00331     return CE->getOpcode() == Opc;
00332   }
00333   static inline bool classof(const Value *V) {
00334     return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
00335            (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
00336   }
00337 };
00338 
00339 class AddOperator
00340   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> {
00341 };
00342 class SubOperator
00343   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> {
00344 };
00345 class MulOperator
00346   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> {
00347 };
00348 class ShlOperator
00349   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> {
00350 };
00351 
00352 
00353 class SDivOperator
00354   : public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> {
00355 };
00356 class UDivOperator
00357   : public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> {
00358 };
00359 class AShrOperator
00360   : public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> {
00361 };
00362 class LShrOperator
00363   : public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> {
00364 };
00365 
00366 
00367 
00368 class GEPOperator
00369   : public ConcreteOperator<Operator, Instruction::GetElementPtr> {
00370   enum {
00371     IsInBounds = (1 << 0)
00372   };
00373 
00374   friend class GetElementPtrInst;
00375   friend class ConstantExpr;
00376   void setIsInBounds(bool B) {
00377     SubclassOptionalData =
00378       (SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
00379   }
00380 
00381 public:
00382   /// isInBounds - Test whether this is an inbounds GEP, as defined
00383   /// by LangRef.html.
00384   bool isInBounds() const {
00385     return SubclassOptionalData & IsInBounds;
00386   }
00387 
00388   inline op_iterator       idx_begin()       { return op_begin()+1; }
00389   inline const_op_iterator idx_begin() const { return op_begin()+1; }
00390   inline op_iterator       idx_end()         { return op_end(); }
00391   inline const_op_iterator idx_end()   const { return op_end(); }
00392 
00393   Value *getPointerOperand() {
00394     return getOperand(0);
00395   }
00396   const Value *getPointerOperand() const {
00397     return getOperand(0);
00398   }
00399   static unsigned getPointerOperandIndex() {
00400     return 0U;                      // get index for modifying correct operand
00401   }
00402 
00403   /// getPointerOperandType - Method to return the pointer operand as a
00404   /// PointerType.
00405   Type *getPointerOperandType() const {
00406     return getPointerOperand()->getType();
00407   }
00408 
00409   /// getPointerAddressSpace - Method to return the address space of the
00410   /// pointer operand.
00411   unsigned getPointerAddressSpace() const {
00412     return getPointerOperandType()->getPointerAddressSpace();
00413   }
00414 
00415   unsigned getNumIndices() const {  // Note: always non-negative
00416     return getNumOperands() - 1;
00417   }
00418 
00419   bool hasIndices() const {
00420     return getNumOperands() > 1;
00421   }
00422 
00423   /// hasAllZeroIndices - Return true if all of the indices of this GEP are
00424   /// zeros.  If so, the result pointer and the first operand have the same
00425   /// value, just potentially different types.
00426   bool hasAllZeroIndices() const {
00427     for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
00428       if (ConstantInt *C = dyn_cast<ConstantInt>(I))
00429         if (C->isZero())
00430           continue;
00431       return false;
00432     }
00433     return true;
00434   }
00435 
00436   /// hasAllConstantIndices - Return true if all of the indices of this GEP are
00437   /// constant integers.  If so, the result pointer and the first operand have
00438   /// a constant offset between them.
00439   bool hasAllConstantIndices() const {
00440     for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
00441       if (!isa<ConstantInt>(I))
00442         return false;
00443     }
00444     return true;
00445   }
00446 
00447   /// \brief Accumulate the constant address offset of this GEP if possible.
00448   ///
00449   /// This routine accepts an APInt into which it will accumulate the constant
00450   /// offset of this GEP if the GEP is in fact constant. If the GEP is not
00451   /// all-constant, it returns false and the value of the offset APInt is
00452   /// undefined (it is *not* preserved!). The APInt passed into this routine
00453   /// must be at exactly as wide as the IntPtr type for the address space of the
00454   /// base GEP pointer.
00455   bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const {
00456     assert(Offset.getBitWidth() ==
00457            DL.getPointerSizeInBits(getPointerAddressSpace()) &&
00458            "The offset must have exactly as many bits as our pointer.");
00459 
00460     for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this);
00461          GTI != GTE; ++GTI) {
00462       ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
00463       if (!OpC)
00464         return false;
00465       if (OpC->isZero())
00466         continue;
00467 
00468       // Handle a struct index, which adds its field offset to the pointer.
00469       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
00470         unsigned ElementIdx = OpC->getZExtValue();
00471         const StructLayout *SL = DL.getStructLayout(STy);
00472         Offset += APInt(Offset.getBitWidth(),
00473                         SL->getElementOffset(ElementIdx));
00474         continue;
00475       }
00476 
00477       // For array or vector indices, scale the index by the size of the type.
00478       APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
00479       Offset += Index * APInt(Offset.getBitWidth(),
00480                               DL.getTypeAllocSize(GTI.getIndexedType()));
00481     }
00482     return true;
00483   }
00484 
00485 };
00486 
00487 class PtrToIntOperator
00488     : public ConcreteOperator<Operator, Instruction::PtrToInt> {
00489   friend class PtrToInt;
00490   friend class ConstantExpr;
00491 
00492 public:
00493   Value *getPointerOperand() {
00494     return getOperand(0);
00495   }
00496   const Value *getPointerOperand() const {
00497     return getOperand(0);
00498   }
00499   static unsigned getPointerOperandIndex() {
00500     return 0U;                      // get index for modifying correct operand
00501   }
00502 
00503   /// getPointerOperandType - Method to return the pointer operand as a
00504   /// PointerType.
00505   Type *getPointerOperandType() const {
00506     return getPointerOperand()->getType();
00507   }
00508 
00509   /// getPointerAddressSpace - Method to return the address space of the
00510   /// pointer operand.
00511   unsigned getPointerAddressSpace() const {
00512     return cast<PointerType>(getPointerOperandType())->getAddressSpace();
00513   }
00514 };
00515 
00516 
00517 } // End llvm namespace
00518 
00519 #endif