LLVM API Documentation
00001 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the PHITransAddr class. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "llvm/Analysis/PHITransAddr.h" 00015 #include "llvm/Analysis/InstructionSimplify.h" 00016 #include "llvm/Analysis/ValueTracking.h" 00017 #include "llvm/IR/Constants.h" 00018 #include "llvm/IR/Dominators.h" 00019 #include "llvm/IR/Instructions.h" 00020 #include "llvm/Support/Debug.h" 00021 #include "llvm/Support/ErrorHandling.h" 00022 #include "llvm/Support/raw_ostream.h" 00023 using namespace llvm; 00024 00025 static bool CanPHITrans(Instruction *Inst) { 00026 if (isa<PHINode>(Inst) || 00027 isa<GetElementPtrInst>(Inst)) 00028 return true; 00029 00030 if (isa<CastInst>(Inst) && 00031 isSafeToSpeculativelyExecute(Inst)) 00032 return true; 00033 00034 if (Inst->getOpcode() == Instruction::Add && 00035 isa<ConstantInt>(Inst->getOperand(1))) 00036 return true; 00037 00038 // cerr << "MEMDEP: Could not PHI translate: " << *Pointer; 00039 // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst)) 00040 // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0); 00041 return false; 00042 } 00043 00044 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 00045 void PHITransAddr::dump() const { 00046 if (!Addr) { 00047 dbgs() << "PHITransAddr: null\n"; 00048 return; 00049 } 00050 dbgs() << "PHITransAddr: " << *Addr << "\n"; 00051 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) 00052 dbgs() << " Input #" << i << " is " << *InstInputs[i] << "\n"; 00053 } 00054 #endif 00055 00056 00057 static bool VerifySubExpr(Value *Expr, 00058 SmallVectorImpl<Instruction*> &InstInputs) { 00059 // If this is a non-instruction value, there is nothing to do. 00060 Instruction *I = dyn_cast<Instruction>(Expr); 00061 if (!I) return true; 00062 00063 // If it's an instruction, it is either in Tmp or its operands recursively 00064 // are. 00065 SmallVectorImpl<Instruction*>::iterator Entry = 00066 std::find(InstInputs.begin(), InstInputs.end(), I); 00067 if (Entry != InstInputs.end()) { 00068 InstInputs.erase(Entry); 00069 return true; 00070 } 00071 00072 // If it isn't in the InstInputs list it is a subexpr incorporated into the 00073 // address. Sanity check that it is phi translatable. 00074 if (!CanPHITrans(I)) { 00075 errs() << "Instruction in PHITransAddr is not phi-translatable:\n"; 00076 errs() << *I << '\n'; 00077 llvm_unreachable("Either something is missing from InstInputs or " 00078 "CanPHITrans is wrong."); 00079 } 00080 00081 // Validate the operands of the instruction. 00082 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 00083 if (!VerifySubExpr(I->getOperand(i), InstInputs)) 00084 return false; 00085 00086 return true; 00087 } 00088 00089 /// Verify - Check internal consistency of this data structure. If the 00090 /// structure is valid, it returns true. If invalid, it prints errors and 00091 /// returns false. 00092 bool PHITransAddr::Verify() const { 00093 if (!Addr) return true; 00094 00095 SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end()); 00096 00097 if (!VerifySubExpr(Addr, Tmp)) 00098 return false; 00099 00100 if (!Tmp.empty()) { 00101 errs() << "PHITransAddr contains extra instructions:\n"; 00102 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) 00103 errs() << " InstInput #" << i << " is " << *InstInputs[i] << "\n"; 00104 llvm_unreachable("This is unexpected."); 00105 } 00106 00107 // a-ok. 00108 return true; 00109 } 00110 00111 00112 /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true 00113 /// if we have some hope of doing it. This should be used as a filter to 00114 /// avoid calling PHITranslateValue in hopeless situations. 00115 bool PHITransAddr::IsPotentiallyPHITranslatable() const { 00116 // If the input value is not an instruction, or if it is not defined in CurBB, 00117 // then we don't need to phi translate it. 00118 Instruction *Inst = dyn_cast<Instruction>(Addr); 00119 return !Inst || CanPHITrans(Inst); 00120 } 00121 00122 00123 static void RemoveInstInputs(Value *V, 00124 SmallVectorImpl<Instruction*> &InstInputs) { 00125 Instruction *I = dyn_cast<Instruction>(V); 00126 if (!I) return; 00127 00128 // If the instruction is in the InstInputs list, remove it. 00129 SmallVectorImpl<Instruction*>::iterator Entry = 00130 std::find(InstInputs.begin(), InstInputs.end(), I); 00131 if (Entry != InstInputs.end()) { 00132 InstInputs.erase(Entry); 00133 return; 00134 } 00135 00136 assert(!isa<PHINode>(I) && "Error, removing something that isn't an input"); 00137 00138 // Otherwise, it must have instruction inputs itself. Zap them recursively. 00139 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 00140 if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i))) 00141 RemoveInstInputs(Op, InstInputs); 00142 } 00143 } 00144 00145 Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB, 00146 BasicBlock *PredBB, 00147 const DominatorTree *DT) { 00148 // If this is a non-instruction value, it can't require PHI translation. 00149 Instruction *Inst = dyn_cast<Instruction>(V); 00150 if (!Inst) return V; 00151 00152 // Determine whether 'Inst' is an input to our PHI translatable expression. 00153 bool isInput = std::count(InstInputs.begin(), InstInputs.end(), Inst); 00154 00155 // Handle inputs instructions if needed. 00156 if (isInput) { 00157 if (Inst->getParent() != CurBB) { 00158 // If it is an input defined in a different block, then it remains an 00159 // input. 00160 return Inst; 00161 } 00162 00163 // If 'Inst' is defined in this block and is an input that needs to be phi 00164 // translated, we need to incorporate the value into the expression or fail. 00165 00166 // In either case, the instruction itself isn't an input any longer. 00167 InstInputs.erase(std::find(InstInputs.begin(), InstInputs.end(), Inst)); 00168 00169 // If this is a PHI, go ahead and translate it. 00170 if (PHINode *PN = dyn_cast<PHINode>(Inst)) 00171 return AddAsInput(PN->getIncomingValueForBlock(PredBB)); 00172 00173 // If this is a non-phi value, and it is analyzable, we can incorporate it 00174 // into the expression by making all instruction operands be inputs. 00175 if (!CanPHITrans(Inst)) 00176 return nullptr; 00177 00178 // All instruction operands are now inputs (and of course, they may also be 00179 // defined in this block, so they may need to be phi translated themselves. 00180 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 00181 if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i))) 00182 InstInputs.push_back(Op); 00183 } 00184 00185 // Ok, it must be an intermediate result (either because it started that way 00186 // or because we just incorporated it into the expression). See if its 00187 // operands need to be phi translated, and if so, reconstruct it. 00188 00189 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { 00190 if (!isSafeToSpeculativelyExecute(Cast)) return nullptr; 00191 Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT); 00192 if (!PHIIn) return nullptr; 00193 if (PHIIn == Cast->getOperand(0)) 00194 return Cast; 00195 00196 // Find an available version of this cast. 00197 00198 // Constants are trivial to find. 00199 if (Constant *C = dyn_cast<Constant>(PHIIn)) 00200 return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(), 00201 C, Cast->getType())); 00202 00203 // Otherwise we have to see if a casted version of the incoming pointer 00204 // is available. If so, we can use it, otherwise we have to fail. 00205 for (User *U : PHIIn->users()) { 00206 if (CastInst *CastI = dyn_cast<CastInst>(U)) 00207 if (CastI->getOpcode() == Cast->getOpcode() && 00208 CastI->getType() == Cast->getType() && 00209 (!DT || DT->dominates(CastI->getParent(), PredBB))) 00210 return CastI; 00211 } 00212 return nullptr; 00213 } 00214 00215 // Handle getelementptr with at least one PHI translatable operand. 00216 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 00217 SmallVector<Value*, 8> GEPOps; 00218 bool AnyChanged = false; 00219 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { 00220 Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT); 00221 if (!GEPOp) return nullptr; 00222 00223 AnyChanged |= GEPOp != GEP->getOperand(i); 00224 GEPOps.push_back(GEPOp); 00225 } 00226 00227 if (!AnyChanged) 00228 return GEP; 00229 00230 // Simplify the GEP to handle 'gep x, 0' -> x etc. 00231 if (Value *V = SimplifyGEPInst(GEPOps, DL, TLI, DT, AT)) { 00232 for (unsigned i = 0, e = GEPOps.size(); i != e; ++i) 00233 RemoveInstInputs(GEPOps[i], InstInputs); 00234 00235 return AddAsInput(V); 00236 } 00237 00238 // Scan to see if we have this GEP available. 00239 Value *APHIOp = GEPOps[0]; 00240 for (User *U : APHIOp->users()) { 00241 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) 00242 if (GEPI->getType() == GEP->getType() && 00243 GEPI->getNumOperands() == GEPOps.size() && 00244 GEPI->getParent()->getParent() == CurBB->getParent() && 00245 (!DT || DT->dominates(GEPI->getParent(), PredBB))) { 00246 bool Mismatch = false; 00247 for (unsigned i = 0, e = GEPOps.size(); i != e; ++i) 00248 if (GEPI->getOperand(i) != GEPOps[i]) { 00249 Mismatch = true; 00250 break; 00251 } 00252 if (!Mismatch) 00253 return GEPI; 00254 } 00255 } 00256 return nullptr; 00257 } 00258 00259 // Handle add with a constant RHS. 00260 if (Inst->getOpcode() == Instruction::Add && 00261 isa<ConstantInt>(Inst->getOperand(1))) { 00262 // PHI translate the LHS. 00263 Constant *RHS = cast<ConstantInt>(Inst->getOperand(1)); 00264 bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap(); 00265 bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap(); 00266 00267 Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT); 00268 if (!LHS) return nullptr; 00269 00270 // If the PHI translated LHS is an add of a constant, fold the immediates. 00271 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS)) 00272 if (BOp->getOpcode() == Instruction::Add) 00273 if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 00274 LHS = BOp->getOperand(0); 00275 RHS = ConstantExpr::getAdd(RHS, CI); 00276 isNSW = isNUW = false; 00277 00278 // If the old 'LHS' was an input, add the new 'LHS' as an input. 00279 if (std::count(InstInputs.begin(), InstInputs.end(), BOp)) { 00280 RemoveInstInputs(BOp, InstInputs); 00281 AddAsInput(LHS); 00282 } 00283 } 00284 00285 // See if the add simplifies away. 00286 if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, DL, TLI, DT, AT)) { 00287 // If we simplified the operands, the LHS is no longer an input, but Res 00288 // is. 00289 RemoveInstInputs(LHS, InstInputs); 00290 return AddAsInput(Res); 00291 } 00292 00293 // If we didn't modify the add, just return it. 00294 if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1)) 00295 return Inst; 00296 00297 // Otherwise, see if we have this add available somewhere. 00298 for (User *U : LHS->users()) { 00299 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) 00300 if (BO->getOpcode() == Instruction::Add && 00301 BO->getOperand(0) == LHS && BO->getOperand(1) == RHS && 00302 BO->getParent()->getParent() == CurBB->getParent() && 00303 (!DT || DT->dominates(BO->getParent(), PredBB))) 00304 return BO; 00305 } 00306 00307 return nullptr; 00308 } 00309 00310 // Otherwise, we failed. 00311 return nullptr; 00312 } 00313 00314 00315 /// PHITranslateValue - PHI translate the current address up the CFG from 00316 /// CurBB to Pred, updating our state to reflect any needed changes. If the 00317 /// dominator tree DT is non-null, the translated value must dominate 00318 /// PredBB. This returns true on failure and sets Addr to null. 00319 bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB, 00320 const DominatorTree *DT) { 00321 assert(Verify() && "Invalid PHITransAddr!"); 00322 Addr = PHITranslateSubExpr(Addr, CurBB, PredBB, DT); 00323 assert(Verify() && "Invalid PHITransAddr!"); 00324 00325 if (DT) { 00326 // Make sure the value is live in the predecessor. 00327 if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr)) 00328 if (!DT->dominates(Inst->getParent(), PredBB)) 00329 Addr = nullptr; 00330 } 00331 00332 return Addr == nullptr; 00333 } 00334 00335 /// PHITranslateWithInsertion - PHI translate this value into the specified 00336 /// predecessor block, inserting a computation of the value if it is 00337 /// unavailable. 00338 /// 00339 /// All newly created instructions are added to the NewInsts list. This 00340 /// returns null on failure. 00341 /// 00342 Value *PHITransAddr:: 00343 PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB, 00344 const DominatorTree &DT, 00345 SmallVectorImpl<Instruction*> &NewInsts) { 00346 unsigned NISize = NewInsts.size(); 00347 00348 // Attempt to PHI translate with insertion. 00349 Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts); 00350 00351 // If successful, return the new value. 00352 if (Addr) return Addr; 00353 00354 // If not, destroy any intermediate instructions inserted. 00355 while (NewInsts.size() != NISize) 00356 NewInsts.pop_back_val()->eraseFromParent(); 00357 return nullptr; 00358 } 00359 00360 00361 /// InsertPHITranslatedPointer - Insert a computation of the PHI translated 00362 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB 00363 /// block. All newly created instructions are added to the NewInsts list. 00364 /// This returns null on failure. 00365 /// 00366 Value *PHITransAddr:: 00367 InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB, 00368 BasicBlock *PredBB, const DominatorTree &DT, 00369 SmallVectorImpl<Instruction*> &NewInsts) { 00370 // See if we have a version of this value already available and dominating 00371 // PredBB. If so, there is no need to insert a new instance of it. 00372 PHITransAddr Tmp(InVal, DL, AT); 00373 if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT)) 00374 return Tmp.getAddr(); 00375 00376 // If we don't have an available version of this value, it must be an 00377 // instruction. 00378 Instruction *Inst = cast<Instruction>(InVal); 00379 00380 // Handle cast of PHI translatable value. 00381 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { 00382 if (!isSafeToSpeculativelyExecute(Cast)) return nullptr; 00383 Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0), 00384 CurBB, PredBB, DT, NewInsts); 00385 if (!OpVal) return nullptr; 00386 00387 // Otherwise insert a cast at the end of PredBB. 00388 CastInst *New = CastInst::Create(Cast->getOpcode(), 00389 OpVal, InVal->getType(), 00390 InVal->getName()+".phi.trans.insert", 00391 PredBB->getTerminator()); 00392 NewInsts.push_back(New); 00393 return New; 00394 } 00395 00396 // Handle getelementptr with at least one PHI operand. 00397 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 00398 SmallVector<Value*, 8> GEPOps; 00399 BasicBlock *CurBB = GEP->getParent(); 00400 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { 00401 Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i), 00402 CurBB, PredBB, DT, NewInsts); 00403 if (!OpVal) return nullptr; 00404 GEPOps.push_back(OpVal); 00405 } 00406 00407 GetElementPtrInst *Result = 00408 GetElementPtrInst::Create(GEPOps[0], makeArrayRef(GEPOps).slice(1), 00409 InVal->getName()+".phi.trans.insert", 00410 PredBB->getTerminator()); 00411 Result->setIsInBounds(GEP->isInBounds()); 00412 NewInsts.push_back(Result); 00413 return Result; 00414 } 00415 00416 #if 0 00417 // FIXME: This code works, but it is unclear that we actually want to insert 00418 // a big chain of computation in order to make a value available in a block. 00419 // This needs to be evaluated carefully to consider its cost trade offs. 00420 00421 // Handle add with a constant RHS. 00422 if (Inst->getOpcode() == Instruction::Add && 00423 isa<ConstantInt>(Inst->getOperand(1))) { 00424 // PHI translate the LHS. 00425 Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0), 00426 CurBB, PredBB, DT, NewInsts); 00427 if (OpVal == 0) return 0; 00428 00429 BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1), 00430 InVal->getName()+".phi.trans.insert", 00431 PredBB->getTerminator()); 00432 Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap()); 00433 Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap()); 00434 NewInsts.push_back(Res); 00435 return Res; 00436 } 00437 #endif 00438 00439 return nullptr; 00440 }