LLVM API Documentation
00001 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file promotes memory references to be register references. It promotes 00011 // alloca instructions which only have loads and stores as uses. An alloca is 00012 // transformed by using iterated dominator frontiers to place PHI nodes, then 00013 // traversing the function in depth-first order to rewrite loads and stores as 00014 // appropriate. 00015 // 00016 // The algorithm used here is based on: 00017 // 00018 // Sreedhar and Gao. A linear time algorithm for placing phi-nodes. 00019 // In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of 00020 // Programming Languages 00021 // POPL '95. ACM, New York, NY, 62-73. 00022 // 00023 // It has been modified to not explicitly use the DJ graph data structure and to 00024 // directly compute pruned SSA using per-variable liveness information. 00025 // 00026 //===----------------------------------------------------------------------===// 00027 00028 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 00029 #include "llvm/ADT/ArrayRef.h" 00030 #include "llvm/ADT/DenseMap.h" 00031 #include "llvm/ADT/STLExtras.h" 00032 #include "llvm/ADT/SmallPtrSet.h" 00033 #include "llvm/ADT/SmallVector.h" 00034 #include "llvm/ADT/Statistic.h" 00035 #include "llvm/Analysis/AliasSetTracker.h" 00036 #include "llvm/Analysis/InstructionSimplify.h" 00037 #include "llvm/Analysis/ValueTracking.h" 00038 #include "llvm/IR/CFG.h" 00039 #include "llvm/IR/Constants.h" 00040 #include "llvm/IR/DIBuilder.h" 00041 #include "llvm/IR/DebugInfo.h" 00042 #include "llvm/IR/DerivedTypes.h" 00043 #include "llvm/IR/Dominators.h" 00044 #include "llvm/IR/Function.h" 00045 #include "llvm/IR/Instructions.h" 00046 #include "llvm/IR/IntrinsicInst.h" 00047 #include "llvm/IR/Metadata.h" 00048 #include "llvm/Transforms/Utils/Local.h" 00049 #include <algorithm> 00050 #include <queue> 00051 using namespace llvm; 00052 00053 #define DEBUG_TYPE "mem2reg" 00054 00055 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 00056 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 00057 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 00058 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 00059 00060 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 00061 // FIXME: If the memory unit is of pointer or integer type, we can permit 00062 // assignments to subsections of the memory unit. 00063 unsigned AS = AI->getType()->getAddressSpace(); 00064 00065 // Only allow direct and non-volatile loads and stores... 00066 for (const User *U : AI->users()) { 00067 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 00068 // Note that atomic loads can be transformed; atomic semantics do 00069 // not have any meaning for a local alloca. 00070 if (LI->isVolatile()) 00071 return false; 00072 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 00073 if (SI->getOperand(0) == AI) 00074 return false; // Don't allow a store OF the AI, only INTO the AI. 00075 // Note that atomic stores can be transformed; atomic semantics do 00076 // not have any meaning for a local alloca. 00077 if (SI->isVolatile()) 00078 return false; 00079 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 00080 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 00081 II->getIntrinsicID() != Intrinsic::lifetime_end) 00082 return false; 00083 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 00084 if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 00085 return false; 00086 if (!onlyUsedByLifetimeMarkers(BCI)) 00087 return false; 00088 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 00089 if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 00090 return false; 00091 if (!GEPI->hasAllZeroIndices()) 00092 return false; 00093 if (!onlyUsedByLifetimeMarkers(GEPI)) 00094 return false; 00095 } else { 00096 return false; 00097 } 00098 } 00099 00100 return true; 00101 } 00102 00103 namespace { 00104 00105 struct AllocaInfo { 00106 SmallVector<BasicBlock *, 32> DefiningBlocks; 00107 SmallVector<BasicBlock *, 32> UsingBlocks; 00108 00109 StoreInst *OnlyStore; 00110 BasicBlock *OnlyBlock; 00111 bool OnlyUsedInOneBlock; 00112 00113 Value *AllocaPointerVal; 00114 DbgDeclareInst *DbgDeclare; 00115 00116 void clear() { 00117 DefiningBlocks.clear(); 00118 UsingBlocks.clear(); 00119 OnlyStore = nullptr; 00120 OnlyBlock = nullptr; 00121 OnlyUsedInOneBlock = true; 00122 AllocaPointerVal = nullptr; 00123 DbgDeclare = nullptr; 00124 } 00125 00126 /// Scan the uses of the specified alloca, filling in the AllocaInfo used 00127 /// by the rest of the pass to reason about the uses of this alloca. 00128 void AnalyzeAlloca(AllocaInst *AI) { 00129 clear(); 00130 00131 // As we scan the uses of the alloca instruction, keep track of stores, 00132 // and decide whether all of the loads and stores to the alloca are within 00133 // the same basic block. 00134 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 00135 Instruction *User = cast<Instruction>(*UI++); 00136 00137 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 00138 // Remember the basic blocks which define new values for the alloca 00139 DefiningBlocks.push_back(SI->getParent()); 00140 AllocaPointerVal = SI->getOperand(0); 00141 OnlyStore = SI; 00142 } else { 00143 LoadInst *LI = cast<LoadInst>(User); 00144 // Otherwise it must be a load instruction, keep track of variable 00145 // reads. 00146 UsingBlocks.push_back(LI->getParent()); 00147 AllocaPointerVal = LI; 00148 } 00149 00150 if (OnlyUsedInOneBlock) { 00151 if (!OnlyBlock) 00152 OnlyBlock = User->getParent(); 00153 else if (OnlyBlock != User->getParent()) 00154 OnlyUsedInOneBlock = false; 00155 } 00156 } 00157 00158 DbgDeclare = FindAllocaDbgDeclare(AI); 00159 } 00160 }; 00161 00162 // Data package used by RenamePass() 00163 class RenamePassData { 00164 public: 00165 typedef std::vector<Value *> ValVector; 00166 00167 RenamePassData() : BB(nullptr), Pred(nullptr), Values() {} 00168 RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V) 00169 : BB(B), Pred(P), Values(V) {} 00170 BasicBlock *BB; 00171 BasicBlock *Pred; 00172 ValVector Values; 00173 00174 void swap(RenamePassData &RHS) { 00175 std::swap(BB, RHS.BB); 00176 std::swap(Pred, RHS.Pred); 00177 Values.swap(RHS.Values); 00178 } 00179 }; 00180 00181 /// \brief This assigns and keeps a per-bb relative ordering of load/store 00182 /// instructions in the block that directly load or store an alloca. 00183 /// 00184 /// This functionality is important because it avoids scanning large basic 00185 /// blocks multiple times when promoting many allocas in the same block. 00186 class LargeBlockInfo { 00187 /// \brief For each instruction that we track, keep the index of the 00188 /// instruction. 00189 /// 00190 /// The index starts out as the number of the instruction from the start of 00191 /// the block. 00192 DenseMap<const Instruction *, unsigned> InstNumbers; 00193 00194 public: 00195 00196 /// This code only looks at accesses to allocas. 00197 static bool isInterestingInstruction(const Instruction *I) { 00198 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 00199 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 00200 } 00201 00202 /// Get or calculate the index of the specified instruction. 00203 unsigned getInstructionIndex(const Instruction *I) { 00204 assert(isInterestingInstruction(I) && 00205 "Not a load/store to/from an alloca?"); 00206 00207 // If we already have this instruction number, return it. 00208 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 00209 if (It != InstNumbers.end()) 00210 return It->second; 00211 00212 // Scan the whole block to get the instruction. This accumulates 00213 // information for every interesting instruction in the block, in order to 00214 // avoid gratuitus rescans. 00215 const BasicBlock *BB = I->getParent(); 00216 unsigned InstNo = 0; 00217 for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); BBI != E; 00218 ++BBI) 00219 if (isInterestingInstruction(BBI)) 00220 InstNumbers[BBI] = InstNo++; 00221 It = InstNumbers.find(I); 00222 00223 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 00224 return It->second; 00225 } 00226 00227 void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 00228 00229 void clear() { InstNumbers.clear(); } 00230 }; 00231 00232 struct PromoteMem2Reg { 00233 /// The alloca instructions being promoted. 00234 std::vector<AllocaInst *> Allocas; 00235 DominatorTree &DT; 00236 DIBuilder DIB; 00237 00238 /// An AliasSetTracker object to update. If null, don't update it. 00239 AliasSetTracker *AST; 00240 00241 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 00242 AssumptionTracker *AT; 00243 00244 /// Reverse mapping of Allocas. 00245 DenseMap<AllocaInst *, unsigned> AllocaLookup; 00246 00247 /// \brief The PhiNodes we're adding. 00248 /// 00249 /// That map is used to simplify some Phi nodes as we iterate over it, so 00250 /// it should have deterministic iterators. We could use a MapVector, but 00251 /// since we already maintain a map from BasicBlock* to a stable numbering 00252 /// (BBNumbers), the DenseMap is more efficient (also supports removal). 00253 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 00254 00255 /// For each PHI node, keep track of which entry in Allocas it corresponds 00256 /// to. 00257 DenseMap<PHINode *, unsigned> PhiToAllocaMap; 00258 00259 /// If we are updating an AliasSetTracker, then for each alloca that is of 00260 /// pointer type, we keep track of what to copyValue to the inserted PHI 00261 /// nodes here. 00262 std::vector<Value *> PointerAllocaValues; 00263 00264 /// For each alloca, we keep track of the dbg.declare intrinsic that 00265 /// describes it, if any, so that we can convert it to a dbg.value 00266 /// intrinsic if the alloca gets promoted. 00267 SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares; 00268 00269 /// The set of basic blocks the renamer has already visited. 00270 /// 00271 SmallPtrSet<BasicBlock *, 16> Visited; 00272 00273 /// Contains a stable numbering of basic blocks to avoid non-determinstic 00274 /// behavior. 00275 DenseMap<BasicBlock *, unsigned> BBNumbers; 00276 00277 /// Maps DomTreeNodes to their level in the dominator tree. 00278 DenseMap<DomTreeNode *, unsigned> DomLevels; 00279 00280 /// Lazily compute the number of predecessors a block has. 00281 DenseMap<const BasicBlock *, unsigned> BBNumPreds; 00282 00283 public: 00284 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 00285 AliasSetTracker *AST, AssumptionTracker *AT) 00286 : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 00287 DIB(*DT.getRoot()->getParent()->getParent()), AST(AST), AT(AT) {} 00288 00289 void run(); 00290 00291 private: 00292 void RemoveFromAllocasList(unsigned &AllocaIdx) { 00293 Allocas[AllocaIdx] = Allocas.back(); 00294 Allocas.pop_back(); 00295 --AllocaIdx; 00296 } 00297 00298 unsigned getNumPreds(const BasicBlock *BB) { 00299 unsigned &NP = BBNumPreds[BB]; 00300 if (NP == 0) 00301 NP = std::distance(pred_begin(BB), pred_end(BB)) + 1; 00302 return NP - 1; 00303 } 00304 00305 void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, 00306 AllocaInfo &Info); 00307 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 00308 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 00309 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 00310 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 00311 RenamePassData::ValVector &IncVals, 00312 std::vector<RenamePassData> &Worklist); 00313 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 00314 }; 00315 00316 } // end of anonymous namespace 00317 00318 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) { 00319 // Knowing that this alloca is promotable, we know that it's safe to kill all 00320 // instructions except for load and store. 00321 00322 for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) { 00323 Instruction *I = cast<Instruction>(*UI); 00324 ++UI; 00325 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 00326 continue; 00327 00328 if (!I->getType()->isVoidTy()) { 00329 // The only users of this bitcast/GEP instruction are lifetime intrinsics. 00330 // Follow the use/def chain to erase them now instead of leaving it for 00331 // dead code elimination later. 00332 for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) { 00333 Instruction *Inst = cast<Instruction>(*UUI); 00334 ++UUI; 00335 Inst->eraseFromParent(); 00336 } 00337 } 00338 I->eraseFromParent(); 00339 } 00340 } 00341 00342 /// \brief Rewrite as many loads as possible given a single store. 00343 /// 00344 /// When there is only a single store, we can use the domtree to trivially 00345 /// replace all of the dominated loads with the stored value. Do so, and return 00346 /// true if this has successfully promoted the alloca entirely. If this returns 00347 /// false there were some loads which were not dominated by the single store 00348 /// and thus must be phi-ed with undef. We fall back to the standard alloca 00349 /// promotion algorithm in that case. 00350 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, 00351 LargeBlockInfo &LBI, 00352 DominatorTree &DT, 00353 AliasSetTracker *AST) { 00354 StoreInst *OnlyStore = Info.OnlyStore; 00355 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); 00356 BasicBlock *StoreBB = OnlyStore->getParent(); 00357 int StoreIndex = -1; 00358 00359 // Clear out UsingBlocks. We will reconstruct it here if needed. 00360 Info.UsingBlocks.clear(); 00361 00362 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 00363 Instruction *UserInst = cast<Instruction>(*UI++); 00364 if (!isa<LoadInst>(UserInst)) { 00365 assert(UserInst == OnlyStore && "Should only have load/stores"); 00366 continue; 00367 } 00368 LoadInst *LI = cast<LoadInst>(UserInst); 00369 00370 // Okay, if we have a load from the alloca, we want to replace it with the 00371 // only value stored to the alloca. We can do this if the value is 00372 // dominated by the store. If not, we use the rest of the mem2reg machinery 00373 // to insert the phi nodes as needed. 00374 if (!StoringGlobalVal) { // Non-instructions are always dominated. 00375 if (LI->getParent() == StoreBB) { 00376 // If we have a use that is in the same block as the store, compare the 00377 // indices of the two instructions to see which one came first. If the 00378 // load came before the store, we can't handle it. 00379 if (StoreIndex == -1) 00380 StoreIndex = LBI.getInstructionIndex(OnlyStore); 00381 00382 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 00383 // Can't handle this load, bail out. 00384 Info.UsingBlocks.push_back(StoreBB); 00385 continue; 00386 } 00387 00388 } else if (LI->getParent() != StoreBB && 00389 !DT.dominates(StoreBB, LI->getParent())) { 00390 // If the load and store are in different blocks, use BB dominance to 00391 // check their relationships. If the store doesn't dom the use, bail 00392 // out. 00393 Info.UsingBlocks.push_back(LI->getParent()); 00394 continue; 00395 } 00396 } 00397 00398 // Otherwise, we *can* safely rewrite this load. 00399 Value *ReplVal = OnlyStore->getOperand(0); 00400 // If the replacement value is the load, this must occur in unreachable 00401 // code. 00402 if (ReplVal == LI) 00403 ReplVal = UndefValue::get(LI->getType()); 00404 LI->replaceAllUsesWith(ReplVal); 00405 if (AST && LI->getType()->isPointerTy()) 00406 AST->deleteValue(LI); 00407 LI->eraseFromParent(); 00408 LBI.deleteValue(LI); 00409 } 00410 00411 // Finally, after the scan, check to see if the store is all that is left. 00412 if (!Info.UsingBlocks.empty()) 00413 return false; // If not, we'll have to fall back for the remainder. 00414 00415 // Record debuginfo for the store and remove the declaration's 00416 // debuginfo. 00417 if (DbgDeclareInst *DDI = Info.DbgDeclare) { 00418 DIBuilder DIB(*AI->getParent()->getParent()->getParent()); 00419 ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB); 00420 DDI->eraseFromParent(); 00421 LBI.deleteValue(DDI); 00422 } 00423 // Remove the (now dead) store and alloca. 00424 Info.OnlyStore->eraseFromParent(); 00425 LBI.deleteValue(Info.OnlyStore); 00426 00427 if (AST) 00428 AST->deleteValue(AI); 00429 AI->eraseFromParent(); 00430 LBI.deleteValue(AI); 00431 return true; 00432 } 00433 00434 /// Many allocas are only used within a single basic block. If this is the 00435 /// case, avoid traversing the CFG and inserting a lot of potentially useless 00436 /// PHI nodes by just performing a single linear pass over the basic block 00437 /// using the Alloca. 00438 /// 00439 /// If we cannot promote this alloca (because it is read before it is written), 00440 /// return true. This is necessary in cases where, due to control flow, the 00441 /// alloca is potentially undefined on some control flow paths. e.g. code like 00442 /// this is potentially correct: 00443 /// 00444 /// for (...) { if (c) { A = undef; undef = B; } } 00445 /// 00446 /// ... so long as A is not used before undef is set. 00447 static void promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 00448 LargeBlockInfo &LBI, 00449 AliasSetTracker *AST) { 00450 // The trickiest case to handle is when we have large blocks. Because of this, 00451 // this code is optimized assuming that large blocks happen. This does not 00452 // significantly pessimize the small block case. This uses LargeBlockInfo to 00453 // make it efficient to get the index of various operations in the block. 00454 00455 // Walk the use-def list of the alloca, getting the locations of all stores. 00456 typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy; 00457 StoresByIndexTy StoresByIndex; 00458 00459 for (User *U : AI->users()) 00460 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 00461 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 00462 00463 // Sort the stores by their index, making it efficient to do a lookup with a 00464 // binary search. 00465 std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first()); 00466 00467 // Walk all of the loads from this alloca, replacing them with the nearest 00468 // store above them, if any. 00469 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 00470 LoadInst *LI = dyn_cast<LoadInst>(*UI++); 00471 if (!LI) 00472 continue; 00473 00474 unsigned LoadIdx = LBI.getInstructionIndex(LI); 00475 00476 // Find the nearest store that has a lower index than this load. 00477 StoresByIndexTy::iterator I = 00478 std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(), 00479 std::make_pair(LoadIdx, 00480 static_cast<StoreInst *>(nullptr)), 00481 less_first()); 00482 00483 if (I == StoresByIndex.begin()) 00484 // If there is no store before this load, the load takes the undef value. 00485 LI->replaceAllUsesWith(UndefValue::get(LI->getType())); 00486 else 00487 // Otherwise, there was a store before this load, the load takes its value. 00488 LI->replaceAllUsesWith(std::prev(I)->second->getOperand(0)); 00489 00490 if (AST && LI->getType()->isPointerTy()) 00491 AST->deleteValue(LI); 00492 LI->eraseFromParent(); 00493 LBI.deleteValue(LI); 00494 } 00495 00496 // Remove the (now dead) stores and alloca. 00497 while (!AI->use_empty()) { 00498 StoreInst *SI = cast<StoreInst>(AI->user_back()); 00499 // Record debuginfo for the store before removing it. 00500 if (DbgDeclareInst *DDI = Info.DbgDeclare) { 00501 DIBuilder DIB(*AI->getParent()->getParent()->getParent()); 00502 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 00503 } 00504 SI->eraseFromParent(); 00505 LBI.deleteValue(SI); 00506 } 00507 00508 if (AST) 00509 AST->deleteValue(AI); 00510 AI->eraseFromParent(); 00511 LBI.deleteValue(AI); 00512 00513 // The alloca's debuginfo can be removed as well. 00514 if (DbgDeclareInst *DDI = Info.DbgDeclare) { 00515 DDI->eraseFromParent(); 00516 LBI.deleteValue(DDI); 00517 } 00518 00519 ++NumLocalPromoted; 00520 } 00521 00522 void PromoteMem2Reg::run() { 00523 Function &F = *DT.getRoot()->getParent(); 00524 00525 if (AST) 00526 PointerAllocaValues.resize(Allocas.size()); 00527 AllocaDbgDeclares.resize(Allocas.size()); 00528 00529 AllocaInfo Info; 00530 LargeBlockInfo LBI; 00531 00532 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 00533 AllocaInst *AI = Allocas[AllocaNum]; 00534 00535 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 00536 assert(AI->getParent()->getParent() == &F && 00537 "All allocas should be in the same function, which is same as DF!"); 00538 00539 removeLifetimeIntrinsicUsers(AI); 00540 00541 if (AI->use_empty()) { 00542 // If there are no uses of the alloca, just delete it now. 00543 if (AST) 00544 AST->deleteValue(AI); 00545 AI->eraseFromParent(); 00546 00547 // Remove the alloca from the Allocas list, since it has been processed 00548 RemoveFromAllocasList(AllocaNum); 00549 ++NumDeadAlloca; 00550 continue; 00551 } 00552 00553 // Calculate the set of read and write-locations for each alloca. This is 00554 // analogous to finding the 'uses' and 'definitions' of each variable. 00555 Info.AnalyzeAlloca(AI); 00556 00557 // If there is only a single store to this value, replace any loads of 00558 // it that are directly dominated by the definition with the value stored. 00559 if (Info.DefiningBlocks.size() == 1) { 00560 if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) { 00561 // The alloca has been processed, move on. 00562 RemoveFromAllocasList(AllocaNum); 00563 ++NumSingleStore; 00564 continue; 00565 } 00566 } 00567 00568 // If the alloca is only read and written in one basic block, just perform a 00569 // linear sweep over the block to eliminate it. 00570 if (Info.OnlyUsedInOneBlock) { 00571 promoteSingleBlockAlloca(AI, Info, LBI, AST); 00572 00573 // The alloca has been processed, move on. 00574 RemoveFromAllocasList(AllocaNum); 00575 continue; 00576 } 00577 00578 // If we haven't computed dominator tree levels, do so now. 00579 if (DomLevels.empty()) { 00580 SmallVector<DomTreeNode *, 32> Worklist; 00581 00582 DomTreeNode *Root = DT.getRootNode(); 00583 DomLevels[Root] = 0; 00584 Worklist.push_back(Root); 00585 00586 while (!Worklist.empty()) { 00587 DomTreeNode *Node = Worklist.pop_back_val(); 00588 unsigned ChildLevel = DomLevels[Node] + 1; 00589 for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); 00590 CI != CE; ++CI) { 00591 DomLevels[*CI] = ChildLevel; 00592 Worklist.push_back(*CI); 00593 } 00594 } 00595 } 00596 00597 // If we haven't computed a numbering for the BB's in the function, do so 00598 // now. 00599 if (BBNumbers.empty()) { 00600 unsigned ID = 0; 00601 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) 00602 BBNumbers[I] = ID++; 00603 } 00604 00605 // If we have an AST to keep updated, remember some pointer value that is 00606 // stored into the alloca. 00607 if (AST) 00608 PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal; 00609 00610 // Remember the dbg.declare intrinsic describing this alloca, if any. 00611 if (Info.DbgDeclare) 00612 AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare; 00613 00614 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 00615 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 00616 00617 // At this point, we're committed to promoting the alloca using IDF's, and 00618 // the standard SSA construction algorithm. Determine which blocks need PHI 00619 // nodes and see if we can optimize out some work by avoiding insertion of 00620 // dead phi nodes. 00621 DetermineInsertionPoint(AI, AllocaNum, Info); 00622 } 00623 00624 if (Allocas.empty()) 00625 return; // All of the allocas must have been trivial! 00626 00627 LBI.clear(); 00628 00629 // Set the incoming values for the basic block to be null values for all of 00630 // the alloca's. We do this in case there is a load of a value that has not 00631 // been stored yet. In this case, it will get this null value. 00632 // 00633 RenamePassData::ValVector Values(Allocas.size()); 00634 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 00635 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 00636 00637 // Walks all basic blocks in the function performing the SSA rename algorithm 00638 // and inserting the phi nodes we marked as necessary 00639 // 00640 std::vector<RenamePassData> RenamePassWorkList; 00641 RenamePassWorkList.push_back(RenamePassData(F.begin(), nullptr, Values)); 00642 do { 00643 RenamePassData RPD; 00644 RPD.swap(RenamePassWorkList.back()); 00645 RenamePassWorkList.pop_back(); 00646 // RenamePass may add new worklist entries. 00647 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList); 00648 } while (!RenamePassWorkList.empty()); 00649 00650 // The renamer uses the Visited set to avoid infinite loops. Clear it now. 00651 Visited.clear(); 00652 00653 // Remove the allocas themselves from the function. 00654 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) { 00655 Instruction *A = Allocas[i]; 00656 00657 // If there are any uses of the alloca instructions left, they must be in 00658 // unreachable basic blocks that were not processed by walking the dominator 00659 // tree. Just delete the users now. 00660 if (!A->use_empty()) 00661 A->replaceAllUsesWith(UndefValue::get(A->getType())); 00662 if (AST) 00663 AST->deleteValue(A); 00664 A->eraseFromParent(); 00665 } 00666 00667 // Remove alloca's dbg.declare instrinsics from the function. 00668 for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i) 00669 if (DbgDeclareInst *DDI = AllocaDbgDeclares[i]) 00670 DDI->eraseFromParent(); 00671 00672 // Loop over all of the PHI nodes and see if there are any that we can get 00673 // rid of because they merge all of the same incoming values. This can 00674 // happen due to undef values coming into the PHI nodes. This process is 00675 // iterative, because eliminating one PHI node can cause others to be removed. 00676 bool EliminatedAPHI = true; 00677 while (EliminatedAPHI) { 00678 EliminatedAPHI = false; 00679 00680 // Iterating over NewPhiNodes is deterministic, so it is safe to try to 00681 // simplify and RAUW them as we go. If it was not, we could add uses to 00682 // the values we replace with in a non-deterministic order, thus creating 00683 // non-deterministic def->use chains. 00684 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 00685 I = NewPhiNodes.begin(), 00686 E = NewPhiNodes.end(); 00687 I != E;) { 00688 PHINode *PN = I->second; 00689 00690 // If this PHI node merges one value and/or undefs, get the value. 00691 if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, &DT, AT)) { 00692 if (AST && PN->getType()->isPointerTy()) 00693 AST->deleteValue(PN); 00694 PN->replaceAllUsesWith(V); 00695 PN->eraseFromParent(); 00696 NewPhiNodes.erase(I++); 00697 EliminatedAPHI = true; 00698 continue; 00699 } 00700 ++I; 00701 } 00702 } 00703 00704 // At this point, the renamer has added entries to PHI nodes for all reachable 00705 // code. Unfortunately, there may be unreachable blocks which the renamer 00706 // hasn't traversed. If this is the case, the PHI nodes may not 00707 // have incoming values for all predecessors. Loop over all PHI nodes we have 00708 // created, inserting undef values if they are missing any incoming values. 00709 // 00710 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 00711 I = NewPhiNodes.begin(), 00712 E = NewPhiNodes.end(); 00713 I != E; ++I) { 00714 // We want to do this once per basic block. As such, only process a block 00715 // when we find the PHI that is the first entry in the block. 00716 PHINode *SomePHI = I->second; 00717 BasicBlock *BB = SomePHI->getParent(); 00718 if (&BB->front() != SomePHI) 00719 continue; 00720 00721 // Only do work here if there the PHI nodes are missing incoming values. We 00722 // know that all PHI nodes that were inserted in a block will have the same 00723 // number of incoming values, so we can just check any of them. 00724 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 00725 continue; 00726 00727 // Get the preds for BB. 00728 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 00729 00730 // Ok, now we know that all of the PHI nodes are missing entries for some 00731 // basic blocks. Start by sorting the incoming predecessors for efficient 00732 // access. 00733 std::sort(Preds.begin(), Preds.end()); 00734 00735 // Now we loop through all BB's which have entries in SomePHI and remove 00736 // them from the Preds list. 00737 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 00738 // Do a log(n) search of the Preds list for the entry we want. 00739 SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound( 00740 Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i)); 00741 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 00742 "PHI node has entry for a block which is not a predecessor!"); 00743 00744 // Remove the entry 00745 Preds.erase(EntIt); 00746 } 00747 00748 // At this point, the blocks left in the preds list must have dummy 00749 // entries inserted into every PHI nodes for the block. Update all the phi 00750 // nodes in this block that we are inserting (there could be phis before 00751 // mem2reg runs). 00752 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 00753 BasicBlock::iterator BBI = BB->begin(); 00754 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 00755 SomePHI->getNumIncomingValues() == NumBadPreds) { 00756 Value *UndefVal = UndefValue::get(SomePHI->getType()); 00757 for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred) 00758 SomePHI->addIncoming(UndefVal, Preds[pred]); 00759 } 00760 } 00761 00762 NewPhiNodes.clear(); 00763 } 00764 00765 /// \brief Determine which blocks the value is live in. 00766 /// 00767 /// These are blocks which lead to uses. Knowing this allows us to avoid 00768 /// inserting PHI nodes into blocks which don't lead to uses (thus, the 00769 /// inserted phi nodes would be dead). 00770 void PromoteMem2Reg::ComputeLiveInBlocks( 00771 AllocaInst *AI, AllocaInfo &Info, 00772 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 00773 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 00774 00775 // To determine liveness, we must iterate through the predecessors of blocks 00776 // where the def is live. Blocks are added to the worklist if we need to 00777 // check their predecessors. Start with all the using blocks. 00778 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 00779 Info.UsingBlocks.end()); 00780 00781 // If any of the using blocks is also a definition block, check to see if the 00782 // definition occurs before or after the use. If it happens before the use, 00783 // the value isn't really live-in. 00784 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 00785 BasicBlock *BB = LiveInBlockWorklist[i]; 00786 if (!DefBlocks.count(BB)) 00787 continue; 00788 00789 // Okay, this is a block that both uses and defines the value. If the first 00790 // reference to the alloca is a def (store), then we know it isn't live-in. 00791 for (BasicBlock::iterator I = BB->begin();; ++I) { 00792 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 00793 if (SI->getOperand(1) != AI) 00794 continue; 00795 00796 // We found a store to the alloca before a load. The alloca is not 00797 // actually live-in here. 00798 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 00799 LiveInBlockWorklist.pop_back(); 00800 --i, --e; 00801 break; 00802 } 00803 00804 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 00805 if (LI->getOperand(0) != AI) 00806 continue; 00807 00808 // Okay, we found a load before a store to the alloca. It is actually 00809 // live into this block. 00810 break; 00811 } 00812 } 00813 } 00814 00815 // Now that we have a set of blocks where the phi is live-in, recursively add 00816 // their predecessors until we find the full region the value is live. 00817 while (!LiveInBlockWorklist.empty()) { 00818 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 00819 00820 // The block really is live in here, insert it into the set. If already in 00821 // the set, then it has already been processed. 00822 if (!LiveInBlocks.insert(BB)) 00823 continue; 00824 00825 // Since the value is live into BB, it is either defined in a predecessor or 00826 // live into it to. Add the preds to the worklist unless they are a 00827 // defining block. 00828 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 00829 BasicBlock *P = *PI; 00830 00831 // The value is not live into a predecessor if it defines the value. 00832 if (DefBlocks.count(P)) 00833 continue; 00834 00835 // Otherwise it is, add to the worklist. 00836 LiveInBlockWorklist.push_back(P); 00837 } 00838 } 00839 } 00840 00841 /// At this point, we're committed to promoting the alloca using IDF's, and the 00842 /// standard SSA construction algorithm. Determine which blocks need phi nodes 00843 /// and see if we can optimize out some work by avoiding insertion of dead phi 00844 /// nodes. 00845 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, 00846 AllocaInfo &Info) { 00847 // Unique the set of defining blocks for efficient lookup. 00848 SmallPtrSet<BasicBlock *, 32> DefBlocks; 00849 DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); 00850 00851 // Determine which blocks the value is live in. These are blocks which lead 00852 // to uses. 00853 SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 00854 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 00855 00856 // Use a priority queue keyed on dominator tree level so that inserted nodes 00857 // are handled from the bottom of the dominator tree upwards. 00858 typedef std::pair<DomTreeNode *, unsigned> DomTreeNodePair; 00859 typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>, 00860 less_second> IDFPriorityQueue; 00861 IDFPriorityQueue PQ; 00862 00863 for (BasicBlock *BB : DefBlocks) { 00864 if (DomTreeNode *Node = DT.getNode(BB)) 00865 PQ.push(std::make_pair(Node, DomLevels[Node])); 00866 } 00867 00868 SmallVector<std::pair<unsigned, BasicBlock *>, 32> DFBlocks; 00869 SmallPtrSet<DomTreeNode *, 32> Visited; 00870 SmallVector<DomTreeNode *, 32> Worklist; 00871 while (!PQ.empty()) { 00872 DomTreeNodePair RootPair = PQ.top(); 00873 PQ.pop(); 00874 DomTreeNode *Root = RootPair.first; 00875 unsigned RootLevel = RootPair.second; 00876 00877 // Walk all dominator tree children of Root, inspecting their CFG edges with 00878 // targets elsewhere on the dominator tree. Only targets whose level is at 00879 // most Root's level are added to the iterated dominance frontier of the 00880 // definition set. 00881 00882 Worklist.clear(); 00883 Worklist.push_back(Root); 00884 00885 while (!Worklist.empty()) { 00886 DomTreeNode *Node = Worklist.pop_back_val(); 00887 BasicBlock *BB = Node->getBlock(); 00888 00889 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; 00890 ++SI) { 00891 DomTreeNode *SuccNode = DT.getNode(*SI); 00892 00893 // Quickly skip all CFG edges that are also dominator tree edges instead 00894 // of catching them below. 00895 if (SuccNode->getIDom() == Node) 00896 continue; 00897 00898 unsigned SuccLevel = DomLevels[SuccNode]; 00899 if (SuccLevel > RootLevel) 00900 continue; 00901 00902 if (!Visited.insert(SuccNode)) 00903 continue; 00904 00905 BasicBlock *SuccBB = SuccNode->getBlock(); 00906 if (!LiveInBlocks.count(SuccBB)) 00907 continue; 00908 00909 DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB)); 00910 if (!DefBlocks.count(SuccBB)) 00911 PQ.push(std::make_pair(SuccNode, SuccLevel)); 00912 } 00913 00914 for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE; 00915 ++CI) { 00916 if (!Visited.count(*CI)) 00917 Worklist.push_back(*CI); 00918 } 00919 } 00920 } 00921 00922 if (DFBlocks.size() > 1) 00923 std::sort(DFBlocks.begin(), DFBlocks.end()); 00924 00925 unsigned CurrentVersion = 0; 00926 for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) 00927 QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion); 00928 } 00929 00930 /// \brief Queue a phi-node to be added to a basic-block for a specific Alloca. 00931 /// 00932 /// Returns true if there wasn't already a phi-node for that variable 00933 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 00934 unsigned &Version) { 00935 // Look up the basic-block in question. 00936 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; 00937 00938 // If the BB already has a phi node added for the i'th alloca then we're done! 00939 if (PN) 00940 return false; 00941 00942 // Create a PhiNode using the dereferenced type... and add the phi-node to the 00943 // BasicBlock. 00944 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 00945 Allocas[AllocaNo]->getName() + "." + Twine(Version++), 00946 BB->begin()); 00947 ++NumPHIInsert; 00948 PhiToAllocaMap[PN] = AllocaNo; 00949 00950 if (AST && PN->getType()->isPointerTy()) 00951 AST->copyValue(PointerAllocaValues[AllocaNo], PN); 00952 00953 return true; 00954 } 00955 00956 /// \brief Recursively traverse the CFG of the function, renaming loads and 00957 /// stores to the allocas which we are promoting. 00958 /// 00959 /// IncomingVals indicates what value each Alloca contains on exit from the 00960 /// predecessor block Pred. 00961 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 00962 RenamePassData::ValVector &IncomingVals, 00963 std::vector<RenamePassData> &Worklist) { 00964 NextIteration: 00965 // If we are inserting any phi nodes into this BB, they will already be in the 00966 // block. 00967 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 00968 // If we have PHI nodes to update, compute the number of edges from Pred to 00969 // BB. 00970 if (PhiToAllocaMap.count(APN)) { 00971 // We want to be able to distinguish between PHI nodes being inserted by 00972 // this invocation of mem2reg from those phi nodes that already existed in 00973 // the IR before mem2reg was run. We determine that APN is being inserted 00974 // because it is missing incoming edges. All other PHI nodes being 00975 // inserted by this pass of mem2reg will have the same number of incoming 00976 // operands so far. Remember this count. 00977 unsigned NewPHINumOperands = APN->getNumOperands(); 00978 00979 unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB); 00980 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 00981 00982 // Add entries for all the phis. 00983 BasicBlock::iterator PNI = BB->begin(); 00984 do { 00985 unsigned AllocaNo = PhiToAllocaMap[APN]; 00986 00987 // Add N incoming values to the PHI node. 00988 for (unsigned i = 0; i != NumEdges; ++i) 00989 APN->addIncoming(IncomingVals[AllocaNo], Pred); 00990 00991 // The currently active variable for this block is now the PHI. 00992 IncomingVals[AllocaNo] = APN; 00993 00994 // Get the next phi node. 00995 ++PNI; 00996 APN = dyn_cast<PHINode>(PNI); 00997 if (!APN) 00998 break; 00999 01000 // Verify that it is missing entries. If not, it is not being inserted 01001 // by this mem2reg invocation so we want to ignore it. 01002 } while (APN->getNumOperands() == NewPHINumOperands); 01003 } 01004 } 01005 01006 // Don't revisit blocks. 01007 if (!Visited.insert(BB)) 01008 return; 01009 01010 for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) { 01011 Instruction *I = II++; // get the instruction, increment iterator 01012 01013 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 01014 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 01015 if (!Src) 01016 continue; 01017 01018 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 01019 if (AI == AllocaLookup.end()) 01020 continue; 01021 01022 Value *V = IncomingVals[AI->second]; 01023 01024 // Anything using the load now uses the current value. 01025 LI->replaceAllUsesWith(V); 01026 if (AST && LI->getType()->isPointerTy()) 01027 AST->deleteValue(LI); 01028 BB->getInstList().erase(LI); 01029 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 01030 // Delete this instruction and mark the name as the current holder of the 01031 // value 01032 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 01033 if (!Dest) 01034 continue; 01035 01036 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 01037 if (ai == AllocaLookup.end()) 01038 continue; 01039 01040 // what value were we writing? 01041 IncomingVals[ai->second] = SI->getOperand(0); 01042 // Record debuginfo for the store before removing it. 01043 if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) 01044 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 01045 BB->getInstList().erase(SI); 01046 } 01047 } 01048 01049 // 'Recurse' to our successors. 01050 succ_iterator I = succ_begin(BB), E = succ_end(BB); 01051 if (I == E) 01052 return; 01053 01054 // Keep track of the successors so we don't visit the same successor twice 01055 SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 01056 01057 // Handle the first successor without using the worklist. 01058 VisitedSuccs.insert(*I); 01059 Pred = BB; 01060 BB = *I; 01061 ++I; 01062 01063 for (; I != E; ++I) 01064 if (VisitedSuccs.insert(*I)) 01065 Worklist.push_back(RenamePassData(*I, Pred, IncomingVals)); 01066 01067 goto NextIteration; 01068 } 01069 01070 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 01071 AliasSetTracker *AST, AssumptionTracker *AT) { 01072 // If there is nothing to do, bail out... 01073 if (Allocas.empty()) 01074 return; 01075 01076 PromoteMem2Reg(Allocas, DT, AST, AT).run(); 01077 }