LLVM API Documentation

ScalarEvolutionNormalization.cpp
Go to the documentation of this file.
00001 //===- ScalarEvolutionNormalization.cpp - See below -------------*- C++ -*-===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file implements utilities for working with "normalized" expressions.
00011 // See the comments at the top of ScalarEvolutionNormalization.h for details.
00012 //
00013 //===----------------------------------------------------------------------===//
00014 
00015 #include "llvm/IR/Dominators.h"
00016 #include "llvm/Analysis/LoopInfo.h"
00017 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
00018 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
00019 using namespace llvm;
00020 
00021 /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
00022 /// and now we need to decide whether the user should use the preinc or post-inc
00023 /// value.  If this user should use the post-inc version of the IV, return true.
00024 ///
00025 /// Choosing wrong here can break dominance properties (if we choose to use the
00026 /// post-inc value when we cannot) or it can end up adding extra live-ranges to
00027 /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
00028 /// should use the post-inc value).
00029 static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand,
00030                                        const Loop *L, DominatorTree *DT) {
00031   // If the user is in the loop, use the preinc value.
00032   if (L->contains(User)) return false;
00033 
00034   BasicBlock *LatchBlock = L->getLoopLatch();
00035   if (!LatchBlock)
00036     return false;
00037 
00038   // Ok, the user is outside of the loop.  If it is dominated by the latch
00039   // block, use the post-inc value.
00040   if (DT->dominates(LatchBlock, User->getParent()))
00041     return true;
00042 
00043   // There is one case we have to be careful of: PHI nodes.  These little guys
00044   // can live in blocks that are not dominated by the latch block, but (since
00045   // their uses occur in the predecessor block, not the block the PHI lives in)
00046   // should still use the post-inc value.  Check for this case now.
00047   PHINode *PN = dyn_cast<PHINode>(User);
00048   if (!PN || !Operand) return false; // not a phi, not dominated by latch block.
00049 
00050   // Look at all of the uses of Operand by the PHI node.  If any use corresponds
00051   // to a block that is not dominated by the latch block, give up and use the
00052   // preincremented value.
00053   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
00054     if (PN->getIncomingValue(i) == Operand &&
00055         !DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
00056       return false;
00057 
00058   // Okay, all uses of Operand by PN are in predecessor blocks that really are
00059   // dominated by the latch block.  Use the post-incremented value.
00060   return true;
00061 }
00062 
00063 namespace {
00064 
00065 /// Hold the state used during post-inc expression transformation, including a
00066 /// map of transformed expressions.
00067 class PostIncTransform {
00068   TransformKind Kind;
00069   PostIncLoopSet &Loops;
00070   ScalarEvolution &SE;
00071   DominatorTree &DT;
00072 
00073   DenseMap<const SCEV*, const SCEV*> Transformed;
00074 
00075 public:
00076   PostIncTransform(TransformKind kind, PostIncLoopSet &loops,
00077                    ScalarEvolution &se, DominatorTree &dt):
00078     Kind(kind), Loops(loops), SE(se), DT(dt) {}
00079 
00080   const SCEV *TransformSubExpr(const SCEV *S, Instruction *User,
00081                                Value *OperandValToReplace);
00082 
00083 protected:
00084   const SCEV *TransformImpl(const SCEV *S, Instruction *User,
00085                             Value *OperandValToReplace);
00086 };
00087 
00088 } // namespace
00089 
00090 /// Implement post-inc transformation for all valid expression types.
00091 const SCEV *PostIncTransform::
00092 TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
00093 
00094   if (const SCEVCastExpr *X = dyn_cast<SCEVCastExpr>(S)) {
00095     const SCEV *O = X->getOperand();
00096     const SCEV *N = TransformSubExpr(O, User, OperandValToReplace);
00097     if (O != N)
00098       switch (S->getSCEVType()) {
00099       case scZeroExtend: return SE.getZeroExtendExpr(N, S->getType());
00100       case scSignExtend: return SE.getSignExtendExpr(N, S->getType());
00101       case scTruncate: return SE.getTruncateExpr(N, S->getType());
00102       default: llvm_unreachable("Unexpected SCEVCastExpr kind!");
00103       }
00104     return S;
00105   }
00106 
00107   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
00108     // An addrec. This is the interesting part.
00109     SmallVector<const SCEV *, 8> Operands;
00110     const Loop *L = AR->getLoop();
00111     // The addrec conceptually uses its operands at loop entry.
00112     Instruction *LUser = L->getHeader()->begin();
00113     // Transform each operand.
00114     for (SCEVNAryExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
00115          I != E; ++I) {
00116       Operands.push_back(TransformSubExpr(*I, LUser, nullptr));
00117     }
00118     // Conservatively use AnyWrap until/unless we need FlagNW.
00119     const SCEV *Result = SE.getAddRecExpr(Operands, L, SCEV::FlagAnyWrap);
00120     switch (Kind) {
00121     case NormalizeAutodetect:
00122       // Normalize this SCEV by subtracting the expression for the final step.
00123       // We only allow affine AddRecs to be normalized, otherwise we would not
00124       // be able to correctly denormalize.
00125       // e.g. {1,+,3,+,2} == {-2,+,1,+,2} + {3,+,2}
00126       // Normalized form:   {-2,+,1,+,2}
00127       // Denormalized form: {1,+,3,+,2}
00128       //
00129       // However, denormalization would use a different step expression than
00130       // normalization (see getPostIncExpr), generating the wrong final
00131       // expression: {-2,+,1,+,2} + {1,+,2} => {-1,+,3,+,2}
00132       if (AR->isAffine() &&
00133           IVUseShouldUsePostIncValue(User, OperandValToReplace, L, &DT)) {
00134         const SCEV *TransformedStep =
00135           TransformSubExpr(AR->getStepRecurrence(SE),
00136                            User, OperandValToReplace);
00137         Result = SE.getMinusSCEV(Result, TransformedStep);
00138         Loops.insert(L);
00139       }
00140 #if 0
00141       // This assert is conceptually correct, but ScalarEvolution currently
00142       // sometimes fails to canonicalize two equal SCEVs to exactly the same
00143       // form. It's possibly a pessimization when this happens, but it isn't a
00144       // correctness problem, so disable this assert for now.
00145       assert(S == TransformSubExpr(Result, User, OperandValToReplace) &&
00146              "SCEV normalization is not invertible!");
00147 #endif
00148       break;
00149     case Normalize:
00150       // We want to normalize step expression, because otherwise we might not be
00151       // able to denormalize to the original expression.
00152       //
00153       // Here is an example what will happen if we don't normalize step:
00154       //  ORIGINAL ISE:
00155       //    {(100 /u {1,+,1}<%bb16>),+,(100 /u {1,+,1}<%bb16>)}<%bb25>
00156       //  NORMALIZED ISE:
00157       //    {((-1 * (100 /u {1,+,1}<%bb16>)) + (100 /u {0,+,1}<%bb16>)),+,
00158       //     (100 /u {0,+,1}<%bb16>)}<%bb25>
00159       //  DENORMALIZED BACK ISE:
00160       //    {((2 * (100 /u {1,+,1}<%bb16>)) + (-1 * (100 /u {2,+,1}<%bb16>))),+,
00161       //     (100 /u {1,+,1}<%bb16>)}<%bb25>
00162       //  Note that the initial value changes after normalization +
00163       //  denormalization, which isn't correct.
00164       if (Loops.count(L)) {
00165         const SCEV *TransformedStep =
00166           TransformSubExpr(AR->getStepRecurrence(SE),
00167                            User, OperandValToReplace);
00168         Result = SE.getMinusSCEV(Result, TransformedStep);
00169       }
00170 #if 0
00171       // See the comment on the assert above.
00172       assert(S == TransformSubExpr(Result, User, OperandValToReplace) &&
00173              "SCEV normalization is not invertible!");
00174 #endif
00175       break;
00176     case Denormalize:
00177       // Here we want to normalize step expressions for the same reasons, as
00178       // stated above.
00179       if (Loops.count(L)) {
00180         const SCEV *TransformedStep =
00181           TransformSubExpr(AR->getStepRecurrence(SE),
00182                            User, OperandValToReplace);
00183         Result = SE.getAddExpr(Result, TransformedStep);
00184       }
00185       break;
00186     }
00187     return Result;
00188   }
00189 
00190   if (const SCEVNAryExpr *X = dyn_cast<SCEVNAryExpr>(S)) {
00191     SmallVector<const SCEV *, 8> Operands;
00192     bool Changed = false;
00193     // Transform each operand.
00194     for (SCEVNAryExpr::op_iterator I = X->op_begin(), E = X->op_end();
00195          I != E; ++I) {
00196       const SCEV *O = *I;
00197       const SCEV *N = TransformSubExpr(O, User, OperandValToReplace);
00198       Changed |= N != O;
00199       Operands.push_back(N);
00200     }
00201     // If any operand actually changed, return a transformed result.
00202     if (Changed)
00203       switch (S->getSCEVType()) {
00204       case scAddExpr: return SE.getAddExpr(Operands);
00205       case scMulExpr: return SE.getMulExpr(Operands);
00206       case scSMaxExpr: return SE.getSMaxExpr(Operands);
00207       case scUMaxExpr: return SE.getUMaxExpr(Operands);
00208       default: llvm_unreachable("Unexpected SCEVNAryExpr kind!");
00209       }
00210     return S;
00211   }
00212 
00213   if (const SCEVUDivExpr *X = dyn_cast<SCEVUDivExpr>(S)) {
00214     const SCEV *LO = X->getLHS();
00215     const SCEV *RO = X->getRHS();
00216     const SCEV *LN = TransformSubExpr(LO, User, OperandValToReplace);
00217     const SCEV *RN = TransformSubExpr(RO, User, OperandValToReplace);
00218     if (LO != LN || RO != RN)
00219       return SE.getUDivExpr(LN, RN);
00220     return S;
00221   }
00222 
00223   llvm_unreachable("Unexpected SCEV kind!");
00224 }
00225 
00226 /// Manage recursive transformation across an expression DAG. Revisiting
00227 /// expressions would lead to exponential recursion.
00228 const SCEV *PostIncTransform::
00229 TransformSubExpr(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
00230 
00231   if (isa<SCEVConstant>(S) || isa<SCEVUnknown>(S))
00232     return S;
00233 
00234   const SCEV *Result = Transformed.lookup(S);
00235   if (Result)
00236     return Result;
00237 
00238   Result = TransformImpl(S, User, OperandValToReplace);
00239   Transformed[S] = Result;
00240   return Result;
00241 }
00242 
00243 /// Top level driver for transforming an expression DAG into its requested
00244 /// post-inc form (either "Normalized" or "Denormalized").
00245 const SCEV *llvm::TransformForPostIncUse(TransformKind Kind,
00246                                          const SCEV *S,
00247                                          Instruction *User,
00248                                          Value *OperandValToReplace,
00249                                          PostIncLoopSet &Loops,
00250                                          ScalarEvolution &SE,
00251                                          DominatorTree &DT) {
00252   PostIncTransform Transform(Kind, Loops, SE, DT);
00253   return Transform.TransformSubExpr(S, User, OperandValToReplace);
00254 }