LLVM API Documentation
00001 //==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // Implementation of some scaled number algorithms. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "llvm/Support/ScaledNumber.h" 00015 00016 #include "llvm/ADT/APFloat.h" 00017 #include "llvm/Support/Debug.h" 00018 00019 using namespace llvm; 00020 using namespace llvm::ScaledNumbers; 00021 00022 std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS, 00023 uint64_t RHS) { 00024 // Separate into two 32-bit digits (U.L). 00025 auto getU = [](uint64_t N) { return N >> 32; }; 00026 auto getL = [](uint64_t N) { return N & UINT32_MAX; }; 00027 uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS); 00028 00029 // Compute cross products. 00030 uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR; 00031 00032 // Sum into two 64-bit digits. 00033 uint64_t Upper = P1, Lower = P4; 00034 auto addWithCarry = [&](uint64_t N) { 00035 uint64_t NewLower = Lower + (getL(N) << 32); 00036 Upper += getU(N) + (NewLower < Lower); 00037 Lower = NewLower; 00038 }; 00039 addWithCarry(P2); 00040 addWithCarry(P3); 00041 00042 // Check whether the upper digit is empty. 00043 if (!Upper) 00044 return std::make_pair(Lower, 0); 00045 00046 // Shift as little as possible to maximize precision. 00047 unsigned LeadingZeros = countLeadingZeros(Upper); 00048 int Shift = 64 - LeadingZeros; 00049 if (LeadingZeros) 00050 Upper = Upper << LeadingZeros | Lower >> Shift; 00051 return getRounded(Upper, Shift, 00052 Shift && (Lower & UINT64_C(1) << (Shift - 1))); 00053 } 00054 00055 static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); } 00056 00057 std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend, 00058 uint32_t Divisor) { 00059 assert(Dividend && "expected non-zero dividend"); 00060 assert(Divisor && "expected non-zero divisor"); 00061 00062 // Use 64-bit math and canonicalize the dividend to gain precision. 00063 uint64_t Dividend64 = Dividend; 00064 int Shift = 0; 00065 if (int Zeros = countLeadingZeros(Dividend64)) { 00066 Shift -= Zeros; 00067 Dividend64 <<= Zeros; 00068 } 00069 uint64_t Quotient = Dividend64 / Divisor; 00070 uint64_t Remainder = Dividend64 % Divisor; 00071 00072 // If Quotient needs to be shifted, leave the rounding to getAdjusted(). 00073 if (Quotient > UINT32_MAX) 00074 return getAdjusted<uint32_t>(Quotient, Shift); 00075 00076 // Round based on the value of the next bit. 00077 return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor)); 00078 } 00079 00080 std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend, 00081 uint64_t Divisor) { 00082 assert(Dividend && "expected non-zero dividend"); 00083 assert(Divisor && "expected non-zero divisor"); 00084 00085 // Minimize size of divisor. 00086 int Shift = 0; 00087 if (int Zeros = countTrailingZeros(Divisor)) { 00088 Shift -= Zeros; 00089 Divisor >>= Zeros; 00090 } 00091 00092 // Check for powers of two. 00093 if (Divisor == 1) 00094 return std::make_pair(Dividend, Shift); 00095 00096 // Maximize size of dividend. 00097 if (int Zeros = countLeadingZeros(Dividend)) { 00098 Shift -= Zeros; 00099 Dividend <<= Zeros; 00100 } 00101 00102 // Start with the result of a divide. 00103 uint64_t Quotient = Dividend / Divisor; 00104 Dividend %= Divisor; 00105 00106 // Continue building the quotient with long division. 00107 while (!(Quotient >> 63) && Dividend) { 00108 // Shift Dividend and check for overflow. 00109 bool IsOverflow = Dividend >> 63; 00110 Dividend <<= 1; 00111 --Shift; 00112 00113 // Get the next bit of Quotient. 00114 Quotient <<= 1; 00115 if (IsOverflow || Divisor <= Dividend) { 00116 Quotient |= 1; 00117 Dividend -= Divisor; 00118 } 00119 } 00120 00121 return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor)); 00122 } 00123 00124 int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) { 00125 assert(ScaleDiff >= 0 && "wrong argument order"); 00126 assert(ScaleDiff < 64 && "numbers too far apart"); 00127 00128 uint64_t L_adjusted = L >> ScaleDiff; 00129 if (L_adjusted < R) 00130 return -1; 00131 if (L_adjusted > R) 00132 return 1; 00133 00134 return L > L_adjusted << ScaleDiff ? 1 : 0; 00135 } 00136 00137 static void appendDigit(std::string &Str, unsigned D) { 00138 assert(D < 10); 00139 Str += '0' + D % 10; 00140 } 00141 00142 static void appendNumber(std::string &Str, uint64_t N) { 00143 while (N) { 00144 appendDigit(Str, N % 10); 00145 N /= 10; 00146 } 00147 } 00148 00149 static bool doesRoundUp(char Digit) { 00150 switch (Digit) { 00151 case '5': 00152 case '6': 00153 case '7': 00154 case '8': 00155 case '9': 00156 return true; 00157 default: 00158 return false; 00159 } 00160 } 00161 00162 static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) { 00163 assert(E >= ScaledNumbers::MinScale); 00164 assert(E <= ScaledNumbers::MaxScale); 00165 00166 // Find a new E, but don't let it increase past MaxScale. 00167 int LeadingZeros = ScaledNumberBase::countLeadingZeros64(D); 00168 int NewE = std::min(ScaledNumbers::MaxScale, E + 63 - LeadingZeros); 00169 int Shift = 63 - (NewE - E); 00170 assert(Shift <= LeadingZeros); 00171 assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale); 00172 D <<= Shift; 00173 E = NewE; 00174 00175 // Check for a denormal. 00176 unsigned AdjustedE = E + 16383; 00177 if (!(D >> 63)) { 00178 assert(E == ScaledNumbers::MaxScale); 00179 AdjustedE = 0; 00180 } 00181 00182 // Build the float and print it. 00183 uint64_t RawBits[2] = {D, AdjustedE}; 00184 APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits)); 00185 SmallVector<char, 24> Chars; 00186 Float.toString(Chars, Precision, 0); 00187 return std::string(Chars.begin(), Chars.end()); 00188 } 00189 00190 static std::string stripTrailingZeros(const std::string &Float) { 00191 size_t NonZero = Float.find_last_not_of('0'); 00192 assert(NonZero != std::string::npos && "no . in floating point string"); 00193 00194 if (Float[NonZero] == '.') 00195 ++NonZero; 00196 00197 return Float.substr(0, NonZero + 1); 00198 } 00199 00200 std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width, 00201 unsigned Precision) { 00202 if (!D) 00203 return "0.0"; 00204 00205 // Canonicalize exponent and digits. 00206 uint64_t Above0 = 0; 00207 uint64_t Below0 = 0; 00208 uint64_t Extra = 0; 00209 int ExtraShift = 0; 00210 if (E == 0) { 00211 Above0 = D; 00212 } else if (E > 0) { 00213 if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) { 00214 D <<= Shift; 00215 E -= Shift; 00216 00217 if (!E) 00218 Above0 = D; 00219 } 00220 } else if (E > -64) { 00221 Above0 = D >> -E; 00222 Below0 = D << (64 + E); 00223 } else if (E == -64) { 00224 // Special case: shift by 64 bits is undefined behavior. 00225 Below0 = D; 00226 } else if (E > -120) { 00227 Below0 = D >> (-E - 64); 00228 Extra = D << (128 + E); 00229 ExtraShift = -64 - E; 00230 } 00231 00232 // Fall back on APFloat for very small and very large numbers. 00233 if (!Above0 && !Below0) 00234 return toStringAPFloat(D, E, Precision); 00235 00236 // Append the digits before the decimal. 00237 std::string Str; 00238 size_t DigitsOut = 0; 00239 if (Above0) { 00240 appendNumber(Str, Above0); 00241 DigitsOut = Str.size(); 00242 } else 00243 appendDigit(Str, 0); 00244 std::reverse(Str.begin(), Str.end()); 00245 00246 // Return early if there's nothing after the decimal. 00247 if (!Below0) 00248 return Str + ".0"; 00249 00250 // Append the decimal and beyond. 00251 Str += '.'; 00252 uint64_t Error = UINT64_C(1) << (64 - Width); 00253 00254 // We need to shift Below0 to the right to make space for calculating 00255 // digits. Save the precision we're losing in Extra. 00256 Extra = (Below0 & 0xf) << 56 | (Extra >> 8); 00257 Below0 >>= 4; 00258 size_t SinceDot = 0; 00259 size_t AfterDot = Str.size(); 00260 do { 00261 if (ExtraShift) { 00262 --ExtraShift; 00263 Error *= 5; 00264 } else 00265 Error *= 10; 00266 00267 Below0 *= 10; 00268 Extra *= 10; 00269 Below0 += (Extra >> 60); 00270 Extra = Extra & (UINT64_MAX >> 4); 00271 appendDigit(Str, Below0 >> 60); 00272 Below0 = Below0 & (UINT64_MAX >> 4); 00273 if (DigitsOut || Str.back() != '0') 00274 ++DigitsOut; 00275 ++SinceDot; 00276 } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 && 00277 (!Precision || DigitsOut <= Precision || SinceDot < 2)); 00278 00279 // Return early for maximum precision. 00280 if (!Precision || DigitsOut <= Precision) 00281 return stripTrailingZeros(Str); 00282 00283 // Find where to truncate. 00284 size_t Truncate = 00285 std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1); 00286 00287 // Check if there's anything to truncate. 00288 if (Truncate >= Str.size()) 00289 return stripTrailingZeros(Str); 00290 00291 bool Carry = doesRoundUp(Str[Truncate]); 00292 if (!Carry) 00293 return stripTrailingZeros(Str.substr(0, Truncate)); 00294 00295 // Round with the first truncated digit. 00296 for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend(); 00297 I != E; ++I) { 00298 if (*I == '.') 00299 continue; 00300 if (*I == '9') { 00301 *I = '0'; 00302 continue; 00303 } 00304 00305 ++*I; 00306 Carry = false; 00307 break; 00308 } 00309 00310 // Add "1" in front if we still need to carry. 00311 return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate)); 00312 } 00313 00314 raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E, 00315 int Width, unsigned Precision) { 00316 return OS << toString(D, E, Width, Precision); 00317 } 00318 00319 void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) { 00320 print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E 00321 << "]"; 00322 }