LLVM API Documentation
00001 //===-- Sink.cpp - Code Sinking -------------------------------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This pass moves instructions into successor blocks, when possible, so that 00011 // they aren't executed on paths where their results aren't needed. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #include "llvm/Transforms/Scalar.h" 00016 #include "llvm/ADT/Statistic.h" 00017 #include "llvm/Analysis/AliasAnalysis.h" 00018 #include "llvm/Analysis/LoopInfo.h" 00019 #include "llvm/Analysis/ValueTracking.h" 00020 #include "llvm/IR/CFG.h" 00021 #include "llvm/IR/DataLayout.h" 00022 #include "llvm/IR/Dominators.h" 00023 #include "llvm/IR/IntrinsicInst.h" 00024 #include "llvm/Support/Debug.h" 00025 #include "llvm/Support/raw_ostream.h" 00026 using namespace llvm; 00027 00028 #define DEBUG_TYPE "sink" 00029 00030 STATISTIC(NumSunk, "Number of instructions sunk"); 00031 STATISTIC(NumSinkIter, "Number of sinking iterations"); 00032 00033 namespace { 00034 class Sinking : public FunctionPass { 00035 DominatorTree *DT; 00036 LoopInfo *LI; 00037 AliasAnalysis *AA; 00038 const DataLayout *DL; 00039 00040 public: 00041 static char ID; // Pass identification 00042 Sinking() : FunctionPass(ID) { 00043 initializeSinkingPass(*PassRegistry::getPassRegistry()); 00044 } 00045 00046 bool runOnFunction(Function &F) override; 00047 00048 void getAnalysisUsage(AnalysisUsage &AU) const override { 00049 AU.setPreservesCFG(); 00050 FunctionPass::getAnalysisUsage(AU); 00051 AU.addRequired<AliasAnalysis>(); 00052 AU.addRequired<DominatorTreeWrapperPass>(); 00053 AU.addRequired<LoopInfo>(); 00054 AU.addPreserved<DominatorTreeWrapperPass>(); 00055 AU.addPreserved<LoopInfo>(); 00056 } 00057 private: 00058 bool ProcessBlock(BasicBlock &BB); 00059 bool SinkInstruction(Instruction *I, SmallPtrSetImpl<Instruction*> &Stores); 00060 bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const; 00061 bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo) const; 00062 }; 00063 } // end anonymous namespace 00064 00065 char Sinking::ID = 0; 00066 INITIALIZE_PASS_BEGIN(Sinking, "sink", "Code sinking", false, false) 00067 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 00068 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 00069 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 00070 INITIALIZE_PASS_END(Sinking, "sink", "Code sinking", false, false) 00071 00072 FunctionPass *llvm::createSinkingPass() { return new Sinking(); } 00073 00074 /// AllUsesDominatedByBlock - Return true if all uses of the specified value 00075 /// occur in blocks dominated by the specified block. 00076 bool Sinking::AllUsesDominatedByBlock(Instruction *Inst, 00077 BasicBlock *BB) const { 00078 // Ignoring debug uses is necessary so debug info doesn't affect the code. 00079 // This may leave a referencing dbg_value in the original block, before 00080 // the definition of the vreg. Dwarf generator handles this although the 00081 // user might not get the right info at runtime. 00082 for (Use &U : Inst->uses()) { 00083 // Determine the block of the use. 00084 Instruction *UseInst = cast<Instruction>(U.getUser()); 00085 BasicBlock *UseBlock = UseInst->getParent(); 00086 if (PHINode *PN = dyn_cast<PHINode>(UseInst)) { 00087 // PHI nodes use the operand in the predecessor block, not the block with 00088 // the PHI. 00089 unsigned Num = PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 00090 UseBlock = PN->getIncomingBlock(Num); 00091 } 00092 // Check that it dominates. 00093 if (!DT->dominates(BB, UseBlock)) 00094 return false; 00095 } 00096 return true; 00097 } 00098 00099 bool Sinking::runOnFunction(Function &F) { 00100 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 00101 LI = &getAnalysis<LoopInfo>(); 00102 AA = &getAnalysis<AliasAnalysis>(); 00103 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 00104 DL = DLP ? &DLP->getDataLayout() : nullptr; 00105 00106 bool MadeChange, EverMadeChange = false; 00107 00108 do { 00109 MadeChange = false; 00110 DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n"); 00111 // Process all basic blocks. 00112 for (Function::iterator I = F.begin(), E = F.end(); 00113 I != E; ++I) 00114 MadeChange |= ProcessBlock(*I); 00115 EverMadeChange |= MadeChange; 00116 NumSinkIter++; 00117 } while (MadeChange); 00118 00119 return EverMadeChange; 00120 } 00121 00122 bool Sinking::ProcessBlock(BasicBlock &BB) { 00123 // Can't sink anything out of a block that has less than two successors. 00124 if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false; 00125 00126 // Don't bother sinking code out of unreachable blocks. In addition to being 00127 // unprofitable, it can also lead to infinite looping, because in an 00128 // unreachable loop there may be nowhere to stop. 00129 if (!DT->isReachableFromEntry(&BB)) return false; 00130 00131 bool MadeChange = false; 00132 00133 // Walk the basic block bottom-up. Remember if we saw a store. 00134 BasicBlock::iterator I = BB.end(); 00135 --I; 00136 bool ProcessedBegin = false; 00137 SmallPtrSet<Instruction *, 8> Stores; 00138 do { 00139 Instruction *Inst = I; // The instruction to sink. 00140 00141 // Predecrement I (if it's not begin) so that it isn't invalidated by 00142 // sinking. 00143 ProcessedBegin = I == BB.begin(); 00144 if (!ProcessedBegin) 00145 --I; 00146 00147 if (isa<DbgInfoIntrinsic>(Inst)) 00148 continue; 00149 00150 if (SinkInstruction(Inst, Stores)) 00151 ++NumSunk, MadeChange = true; 00152 00153 // If we just processed the first instruction in the block, we're done. 00154 } while (!ProcessedBegin); 00155 00156 return MadeChange; 00157 } 00158 00159 static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA, 00160 SmallPtrSetImpl<Instruction *> &Stores) { 00161 00162 if (Inst->mayWriteToMemory()) { 00163 Stores.insert(Inst); 00164 return false; 00165 } 00166 00167 if (LoadInst *L = dyn_cast<LoadInst>(Inst)) { 00168 AliasAnalysis::Location Loc = AA->getLocation(L); 00169 for (Instruction *S : Stores) 00170 if (AA->getModRefInfo(S, Loc) & AliasAnalysis::Mod) 00171 return false; 00172 } 00173 00174 if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst)) 00175 return false; 00176 00177 return true; 00178 } 00179 00180 /// IsAcceptableTarget - Return true if it is possible to sink the instruction 00181 /// in the specified basic block. 00182 bool Sinking::IsAcceptableTarget(Instruction *Inst, 00183 BasicBlock *SuccToSinkTo) const { 00184 assert(Inst && "Instruction to be sunk is null"); 00185 assert(SuccToSinkTo && "Candidate sink target is null"); 00186 00187 // It is not possible to sink an instruction into its own block. This can 00188 // happen with loops. 00189 if (Inst->getParent() == SuccToSinkTo) 00190 return false; 00191 00192 // If the block has multiple predecessors, this would introduce computation 00193 // on different code paths. We could split the critical edge, but for now we 00194 // just punt. 00195 // FIXME: Split critical edges if not backedges. 00196 if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) { 00197 // We cannot sink a load across a critical edge - there may be stores in 00198 // other code paths. 00199 if (!isSafeToSpeculativelyExecute(Inst, DL)) 00200 return false; 00201 00202 // We don't want to sink across a critical edge if we don't dominate the 00203 // successor. We could be introducing calculations to new code paths. 00204 if (!DT->dominates(Inst->getParent(), SuccToSinkTo)) 00205 return false; 00206 00207 // Don't sink instructions into a loop. 00208 Loop *succ = LI->getLoopFor(SuccToSinkTo); 00209 Loop *cur = LI->getLoopFor(Inst->getParent()); 00210 if (succ != nullptr && succ != cur) 00211 return false; 00212 } 00213 00214 // Finally, check that all the uses of the instruction are actually 00215 // dominated by the candidate 00216 return AllUsesDominatedByBlock(Inst, SuccToSinkTo); 00217 } 00218 00219 /// SinkInstruction - Determine whether it is safe to sink the specified machine 00220 /// instruction out of its current block into a successor. 00221 bool Sinking::SinkInstruction(Instruction *Inst, 00222 SmallPtrSetImpl<Instruction *> &Stores) { 00223 00224 // Don't sink static alloca instructions. CodeGen assumes allocas outside the 00225 // entry block are dynamically sized stack objects. 00226 if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst)) 00227 if (AI->isStaticAlloca()) 00228 return false; 00229 00230 // Check if it's safe to move the instruction. 00231 if (!isSafeToMove(Inst, AA, Stores)) 00232 return false; 00233 00234 // FIXME: This should include support for sinking instructions within the 00235 // block they are currently in to shorten the live ranges. We often get 00236 // instructions sunk into the top of a large block, but it would be better to 00237 // also sink them down before their first use in the block. This xform has to 00238 // be careful not to *increase* register pressure though, e.g. sinking 00239 // "x = y + z" down if it kills y and z would increase the live ranges of y 00240 // and z and only shrink the live range of x. 00241 00242 // SuccToSinkTo - This is the successor to sink this instruction to, once we 00243 // decide. 00244 BasicBlock *SuccToSinkTo = nullptr; 00245 00246 // Instructions can only be sunk if all their uses are in blocks 00247 // dominated by one of the successors. 00248 // Look at all the postdominators and see if we can sink it in one. 00249 DomTreeNode *DTN = DT->getNode(Inst->getParent()); 00250 for (DomTreeNode::iterator I = DTN->begin(), E = DTN->end(); 00251 I != E && SuccToSinkTo == nullptr; ++I) { 00252 BasicBlock *Candidate = (*I)->getBlock(); 00253 if ((*I)->getIDom()->getBlock() == Inst->getParent() && 00254 IsAcceptableTarget(Inst, Candidate)) 00255 SuccToSinkTo = Candidate; 00256 } 00257 00258 // If no suitable postdominator was found, look at all the successors and 00259 // decide which one we should sink to, if any. 00260 for (succ_iterator I = succ_begin(Inst->getParent()), 00261 E = succ_end(Inst->getParent()); I != E && !SuccToSinkTo; ++I) { 00262 if (IsAcceptableTarget(Inst, *I)) 00263 SuccToSinkTo = *I; 00264 } 00265 00266 // If we couldn't find a block to sink to, ignore this instruction. 00267 if (!SuccToSinkTo) 00268 return false; 00269 00270 DEBUG(dbgs() << "Sink" << *Inst << " ("; 00271 Inst->getParent()->printAsOperand(dbgs(), false); 00272 dbgs() << " -> "; 00273 SuccToSinkTo->printAsOperand(dbgs(), false); 00274 dbgs() << ")\n"); 00275 00276 // Move the instruction. 00277 Inst->moveBefore(SuccToSinkTo->getFirstInsertionPt()); 00278 return true; 00279 }