LLVM API Documentation

SparseMultiSet.h
Go to the documentation of this file.
00001 //===--- llvm/ADT/SparseMultiSet.h - Sparse multiset ------------*- C++ -*-===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file defines the SparseMultiSet class, which adds multiset behavior to
00011 // the SparseSet.
00012 //
00013 // A sparse multiset holds a small number of objects identified by integer keys
00014 // from a moderately sized universe. The sparse multiset uses more memory than
00015 // other containers in order to provide faster operations. Any key can map to
00016 // multiple values. A SparseMultiSetNode class is provided, which serves as a
00017 // convenient base class for the contents of a SparseMultiSet.
00018 //
00019 //===----------------------------------------------------------------------===//
00020 
00021 #ifndef LLVM_ADT_SPARSEMULTISET_H
00022 #define LLVM_ADT_SPARSEMULTISET_H
00023 
00024 #include "llvm/ADT/SparseSet.h"
00025 
00026 namespace llvm {
00027 
00028 /// Fast multiset implementation for objects that can be identified by small
00029 /// unsigned keys.
00030 ///
00031 /// SparseMultiSet allocates memory proportional to the size of the key
00032 /// universe, so it is not recommended for building composite data structures.
00033 /// It is useful for algorithms that require a single set with fast operations.
00034 ///
00035 /// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
00036 /// fast clear() as fast as a vector.  The find(), insert(), and erase()
00037 /// operations are all constant time, and typically faster than a hash table.
00038 /// The iteration order doesn't depend on numerical key values, it only depends
00039 /// on the order of insert() and erase() operations.  Iteration order is the
00040 /// insertion order. Iteration is only provided over elements of equivalent
00041 /// keys, but iterators are bidirectional.
00042 ///
00043 /// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
00044 /// offers constant-time clear() and size() operations as well as fast iteration
00045 /// independent on the size of the universe.
00046 ///
00047 /// SparseMultiSet contains a dense vector holding all the objects and a sparse
00048 /// array holding indexes into the dense vector.  Most of the memory is used by
00049 /// the sparse array which is the size of the key universe. The SparseT template
00050 /// parameter provides a space/speed tradeoff for sets holding many elements.
00051 ///
00052 /// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
00053 /// sparse array uses 4 x Universe bytes.
00054 ///
00055 /// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
00056 /// lines, but the sparse array is 4x smaller.  N is the number of elements in
00057 /// the set.
00058 ///
00059 /// For sets that may grow to thousands of elements, SparseT should be set to
00060 /// uint16_t or uint32_t.
00061 ///
00062 /// Multiset behavior is provided by providing doubly linked lists for values
00063 /// that are inlined in the dense vector. SparseMultiSet is a good choice when
00064 /// one desires a growable number of entries per key, as it will retain the
00065 /// SparseSet algorithmic properties despite being growable. Thus, it is often a
00066 /// better choice than a SparseSet of growable containers or a vector of
00067 /// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
00068 /// the iterators don't point to the element erased), allowing for more
00069 /// intuitive and fast removal.
00070 ///
00071 /// @tparam ValueT      The type of objects in the set.
00072 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
00073 /// @tparam SparseT     An unsigned integer type. See above.
00074 ///
00075 template<typename ValueT,
00076          typename KeyFunctorT = llvm::identity<unsigned>,
00077          typename SparseT = uint8_t>
00078 class SparseMultiSet {
00079   static_assert(std::numeric_limits<SparseT>::is_integer &&
00080                 !std::numeric_limits<SparseT>::is_signed,
00081                 "SparseT must be an unsigned integer type");
00082 
00083   /// The actual data that's stored, as a doubly-linked list implemented via
00084   /// indices into the DenseVector.  The doubly linked list is implemented
00085   /// circular in Prev indices, and INVALID-terminated in Next indices. This
00086   /// provides efficient access to list tails. These nodes can also be
00087   /// tombstones, in which case they are actually nodes in a single-linked
00088   /// freelist of recyclable slots.
00089   struct SMSNode {
00090     static const unsigned INVALID = ~0U;
00091 
00092     ValueT Data;
00093     unsigned Prev;
00094     unsigned Next;
00095 
00096     SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) { }
00097 
00098     /// List tails have invalid Nexts.
00099     bool isTail() const {
00100       return Next == INVALID;
00101     }
00102 
00103     /// Whether this node is a tombstone node, and thus is in our freelist.
00104     bool isTombstone() const {
00105       return Prev == INVALID;
00106     }
00107 
00108     /// Since the list is circular in Prev, all non-tombstone nodes have a valid
00109     /// Prev.
00110     bool isValid() const { return Prev != INVALID; }
00111   };
00112 
00113   typedef typename KeyFunctorT::argument_type KeyT;
00114   typedef SmallVector<SMSNode, 8> DenseT;
00115   DenseT Dense;
00116   SparseT *Sparse;
00117   unsigned Universe;
00118   KeyFunctorT KeyIndexOf;
00119   SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
00120 
00121   /// We have a built-in recycler for reusing tombstone slots. This recycler
00122   /// puts a singly-linked free list into tombstone slots, allowing us quick
00123   /// erasure, iterator preservation, and dense size.
00124   unsigned FreelistIdx;
00125   unsigned NumFree;
00126 
00127   unsigned sparseIndex(const ValueT &Val) const {
00128     assert(ValIndexOf(Val) < Universe &&
00129            "Invalid key in set. Did object mutate?");
00130     return ValIndexOf(Val);
00131   }
00132   unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
00133 
00134   // Disable copy construction and assignment.
00135   // This data structure is not meant to be used that way.
00136   SparseMultiSet(const SparseMultiSet&) LLVM_DELETED_FUNCTION;
00137   SparseMultiSet &operator=(const SparseMultiSet&) LLVM_DELETED_FUNCTION;
00138 
00139   /// Whether the given entry is the head of the list. List heads's previous
00140   /// pointers are to the tail of the list, allowing for efficient access to the
00141   /// list tail. D must be a valid entry node.
00142   bool isHead(const SMSNode &D) const {
00143     assert(D.isValid() && "Invalid node for head");
00144     return Dense[D.Prev].isTail();
00145   }
00146 
00147   /// Whether the given entry is a singleton entry, i.e. the only entry with
00148   /// that key.
00149   bool isSingleton(const SMSNode &N) const {
00150     assert(N.isValid() && "Invalid node for singleton");
00151     // Is N its own predecessor?
00152     return &Dense[N.Prev] == &N;
00153   }
00154 
00155   /// Add in the given SMSNode. Uses a free entry in our freelist if
00156   /// available. Returns the index of the added node.
00157   unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
00158     if (NumFree == 0) {
00159       Dense.push_back(SMSNode(V, Prev, Next));
00160       return Dense.size() - 1;
00161     }
00162 
00163     // Peel off a free slot
00164     unsigned Idx = FreelistIdx;
00165     unsigned NextFree = Dense[Idx].Next;
00166     assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
00167 
00168     Dense[Idx] = SMSNode(V, Prev, Next);
00169     FreelistIdx = NextFree;
00170     --NumFree;
00171     return Idx;
00172   }
00173 
00174   /// Make the current index a new tombstone. Pushes it onto the freelist.
00175   void makeTombstone(unsigned Idx) {
00176     Dense[Idx].Prev = SMSNode::INVALID;
00177     Dense[Idx].Next = FreelistIdx;
00178     FreelistIdx = Idx;
00179     ++NumFree;
00180   }
00181 
00182 public:
00183   typedef ValueT value_type;
00184   typedef ValueT &reference;
00185   typedef const ValueT &const_reference;
00186   typedef ValueT *pointer;
00187   typedef const ValueT *const_pointer;
00188   typedef unsigned size_type;
00189 
00190   SparseMultiSet()
00191     : Sparse(nullptr), Universe(0), FreelistIdx(SMSNode::INVALID), NumFree(0) {}
00192 
00193   ~SparseMultiSet() { free(Sparse); }
00194 
00195   /// Set the universe size which determines the largest key the set can hold.
00196   /// The universe must be sized before any elements can be added.
00197   ///
00198   /// @param U Universe size. All object keys must be less than U.
00199   ///
00200   void setUniverse(unsigned U) {
00201     // It's not hard to resize the universe on a non-empty set, but it doesn't
00202     // seem like a likely use case, so we can add that code when we need it.
00203     assert(empty() && "Can only resize universe on an empty map");
00204     // Hysteresis prevents needless reallocations.
00205     if (U >= Universe/4 && U <= Universe)
00206       return;
00207     free(Sparse);
00208     // The Sparse array doesn't actually need to be initialized, so malloc
00209     // would be enough here, but that will cause tools like valgrind to
00210     // complain about branching on uninitialized data.
00211     Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT)));
00212     Universe = U;
00213   }
00214 
00215   /// Our iterators are iterators over the collection of objects that share a
00216   /// key.
00217   template<typename SMSPtrTy>
00218   class iterator_base : public std::iterator<std::bidirectional_iterator_tag,
00219                                              ValueT> {
00220     friend class SparseMultiSet;
00221     SMSPtrTy SMS;
00222     unsigned Idx;
00223     unsigned SparseIdx;
00224 
00225     iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
00226       : SMS(P), Idx(I), SparseIdx(SI) { }
00227 
00228     /// Whether our iterator has fallen outside our dense vector.
00229     bool isEnd() const {
00230       if (Idx == SMSNode::INVALID)
00231         return true;
00232 
00233       assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
00234       return false;
00235     }
00236 
00237     /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
00238     bool isKeyed() const { return SparseIdx < SMS->Universe; }
00239 
00240     unsigned Prev() const { return SMS->Dense[Idx].Prev; }
00241     unsigned Next() const { return SMS->Dense[Idx].Next; }
00242 
00243     void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
00244     void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
00245 
00246   public:
00247     typedef std::iterator<std::bidirectional_iterator_tag, ValueT> super;
00248     typedef typename super::value_type value_type;
00249     typedef typename super::difference_type difference_type;
00250     typedef typename super::pointer pointer;
00251     typedef typename super::reference reference;
00252 
00253     reference operator*() const {
00254       assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
00255              "Dereferencing iterator of invalid key or index");
00256 
00257       return SMS->Dense[Idx].Data;
00258     }
00259     pointer operator->() const { return &operator*(); }
00260 
00261     /// Comparison operators
00262     bool operator==(const iterator_base &RHS) const {
00263       // end compares equal
00264       if (SMS == RHS.SMS && Idx == RHS.Idx) {
00265         assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
00266                "Same dense entry, but different keys?");
00267         return true;
00268       }
00269 
00270       return false;
00271     }
00272 
00273     bool operator!=(const iterator_base &RHS) const {
00274       return !operator==(RHS);
00275     }
00276 
00277     /// Increment and decrement operators
00278     iterator_base &operator--() { // predecrement - Back up
00279       assert(isKeyed() && "Decrementing an invalid iterator");
00280       assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
00281              "Decrementing head of list");
00282 
00283       // If we're at the end, then issue a new find()
00284       if (isEnd())
00285         Idx = SMS->findIndex(SparseIdx).Prev();
00286       else
00287         Idx = Prev();
00288 
00289       return *this;
00290     }
00291     iterator_base &operator++() { // preincrement - Advance
00292       assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
00293       Idx = Next();
00294       return *this;
00295     }
00296     iterator_base operator--(int) { // postdecrement
00297       iterator_base I(*this);
00298       --*this;
00299       return I;
00300     }
00301     iterator_base operator++(int) { // postincrement
00302       iterator_base I(*this);
00303       ++*this;
00304       return I;
00305     }
00306   };
00307   typedef iterator_base<SparseMultiSet *> iterator;
00308   typedef iterator_base<const SparseMultiSet *> const_iterator;
00309 
00310   // Convenience types
00311   typedef std::pair<iterator, iterator> RangePair;
00312 
00313   /// Returns an iterator past this container. Note that such an iterator cannot
00314   /// be decremented, but will compare equal to other end iterators.
00315   iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
00316   const_iterator end() const {
00317     return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
00318   }
00319 
00320   /// Returns true if the set is empty.
00321   ///
00322   /// This is not the same as BitVector::empty().
00323   ///
00324   bool empty() const { return size() == 0; }
00325 
00326   /// Returns the number of elements in the set.
00327   ///
00328   /// This is not the same as BitVector::size() which returns the size of the
00329   /// universe.
00330   ///
00331   size_type size() const {
00332     assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
00333     return Dense.size() - NumFree;
00334   }
00335 
00336   /// Clears the set.  This is a very fast constant time operation.
00337   ///
00338   void clear() {
00339     // Sparse does not need to be cleared, see find().
00340     Dense.clear();
00341     NumFree = 0;
00342     FreelistIdx = SMSNode::INVALID;
00343   }
00344 
00345   /// Find an element by its index.
00346   ///
00347   /// @param   Idx A valid index to find.
00348   /// @returns An iterator to the element identified by key, or end().
00349   ///
00350   iterator findIndex(unsigned Idx) {
00351     assert(Idx < Universe && "Key out of range");
00352     const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
00353     for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
00354       const unsigned FoundIdx = sparseIndex(Dense[i]);
00355       // Check that we're pointing at the correct entry and that it is the head
00356       // of a valid list.
00357       if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
00358         return iterator(this, i, Idx);
00359       // Stride is 0 when SparseT >= unsigned.  We don't need to loop.
00360       if (!Stride)
00361         break;
00362     }
00363     return end();
00364   }
00365 
00366   /// Find an element by its key.
00367   ///
00368   /// @param   Key A valid key to find.
00369   /// @returns An iterator to the element identified by key, or end().
00370   ///
00371   iterator find(const KeyT &Key) {
00372     return findIndex(KeyIndexOf(Key));
00373   }
00374 
00375   const_iterator find(const KeyT &Key) const {
00376     iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
00377     return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
00378   }
00379 
00380   /// Returns the number of elements identified by Key. This will be linear in
00381   /// the number of elements of that key.
00382   size_type count(const KeyT &Key) const {
00383     unsigned Ret = 0;
00384     for (const_iterator It = find(Key); It != end(); ++It)
00385       ++Ret;
00386 
00387     return Ret;
00388   }
00389 
00390   /// Returns true if this set contains an element identified by Key.
00391   bool contains(const KeyT &Key) const {
00392     return find(Key) != end();
00393   }
00394 
00395   /// Return the head and tail of the subset's list, otherwise returns end().
00396   iterator getHead(const KeyT &Key) { return find(Key); }
00397   iterator getTail(const KeyT &Key) {
00398     iterator I = find(Key);
00399     if (I != end())
00400       I = iterator(this, I.Prev(), KeyIndexOf(Key));
00401     return I;
00402   }
00403 
00404   /// The bounds of the range of items sharing Key K. First member is the head
00405   /// of the list, and the second member is a decrementable end iterator for
00406   /// that key.
00407   RangePair equal_range(const KeyT &K) {
00408     iterator B = find(K);
00409     iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
00410     return make_pair(B, E);
00411   }
00412 
00413   /// Insert a new element at the tail of the subset list. Returns an iterator
00414   /// to the newly added entry.
00415   iterator insert(const ValueT &Val) {
00416     unsigned Idx = sparseIndex(Val);
00417     iterator I = findIndex(Idx);
00418 
00419     unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
00420 
00421     if (I == end()) {
00422       // Make a singleton list
00423       Sparse[Idx] = NodeIdx;
00424       Dense[NodeIdx].Prev = NodeIdx;
00425       return iterator(this, NodeIdx, Idx);
00426     }
00427 
00428     // Stick it at the end.
00429     unsigned HeadIdx = I.Idx;
00430     unsigned TailIdx = I.Prev();
00431     Dense[TailIdx].Next = NodeIdx;
00432     Dense[HeadIdx].Prev = NodeIdx;
00433     Dense[NodeIdx].Prev = TailIdx;
00434 
00435     return iterator(this, NodeIdx, Idx);
00436   }
00437 
00438   /// Erases an existing element identified by a valid iterator.
00439   ///
00440   /// This invalidates iterators pointing at the same entry, but erase() returns
00441   /// an iterator pointing to the next element in the subset's list. This makes
00442   /// it possible to erase selected elements while iterating over the subset:
00443   ///
00444   ///   tie(I, E) = Set.equal_range(Key);
00445   ///   while (I != E)
00446   ///     if (test(*I))
00447   ///       I = Set.erase(I);
00448   ///     else
00449   ///       ++I;
00450   ///
00451   /// Note that if the last element in the subset list is erased, this will
00452   /// return an end iterator which can be decremented to get the new tail (if it
00453   /// exists):
00454   ///
00455   ///  tie(B, I) = Set.equal_range(Key);
00456   ///  for (bool isBegin = B == I; !isBegin; /* empty */) {
00457   ///    isBegin = (--I) == B;
00458   ///    if (test(I))
00459   ///      break;
00460   ///    I = erase(I);
00461   ///  }
00462   iterator erase(iterator I) {
00463     assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
00464            "erasing invalid/end/tombstone iterator");
00465 
00466     // First, unlink the node from its list. Then swap the node out with the
00467     // dense vector's last entry
00468     iterator NextI = unlink(Dense[I.Idx]);
00469 
00470     // Put in a tombstone.
00471     makeTombstone(I.Idx);
00472 
00473     return NextI;
00474   }
00475 
00476   /// Erase all elements with the given key. This invalidates all
00477   /// iterators of that key.
00478   void eraseAll(const KeyT &K) {
00479     for (iterator I = find(K); I != end(); /* empty */)
00480       I = erase(I);
00481   }
00482 
00483 private:
00484   /// Unlink the node from its list. Returns the next node in the list.
00485   iterator unlink(const SMSNode &N) {
00486     if (isSingleton(N)) {
00487       // Singleton is already unlinked
00488       assert(N.Next == SMSNode::INVALID && "Singleton has next?");
00489       return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
00490     }
00491 
00492     if (isHead(N)) {
00493       // If we're the head, then update the sparse array and our next.
00494       Sparse[sparseIndex(N)] = N.Next;
00495       Dense[N.Next].Prev = N.Prev;
00496       return iterator(this, N.Next, ValIndexOf(N.Data));
00497     }
00498 
00499     if (N.isTail()) {
00500       // If we're the tail, then update our head and our previous.
00501       findIndex(sparseIndex(N)).setPrev(N.Prev);
00502       Dense[N.Prev].Next = N.Next;
00503 
00504       // Give back an end iterator that can be decremented
00505       iterator I(this, N.Prev, ValIndexOf(N.Data));
00506       return ++I;
00507     }
00508 
00509     // Otherwise, just drop us
00510     Dense[N.Next].Prev = N.Prev;
00511     Dense[N.Prev].Next = N.Next;
00512     return iterator(this, N.Next, ValIndexOf(N.Data));
00513   }
00514 };
00515 
00516 } // end namespace llvm
00517 
00518 #endif