LLVM API Documentation
00001 //===-- StringRef.cpp - Lightweight String References ---------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 00010 #include "llvm/ADT/StringRef.h" 00011 #include "llvm/ADT/APInt.h" 00012 #include "llvm/ADT/Hashing.h" 00013 #include "llvm/ADT/edit_distance.h" 00014 #include <bitset> 00015 00016 using namespace llvm; 00017 00018 // MSVC emits references to this into the translation units which reference it. 00019 #ifndef _MSC_VER 00020 const size_t StringRef::npos; 00021 #endif 00022 00023 static char ascii_tolower(char x) { 00024 if (x >= 'A' && x <= 'Z') 00025 return x - 'A' + 'a'; 00026 return x; 00027 } 00028 00029 static char ascii_toupper(char x) { 00030 if (x >= 'a' && x <= 'z') 00031 return x - 'a' + 'A'; 00032 return x; 00033 } 00034 00035 static bool ascii_isdigit(char x) { 00036 return x >= '0' && x <= '9'; 00037 } 00038 00039 // strncasecmp() is not available on non-POSIX systems, so define an 00040 // alternative function here. 00041 static int ascii_strncasecmp(const char *LHS, const char *RHS, size_t Length) { 00042 for (size_t I = 0; I < Length; ++I) { 00043 unsigned char LHC = ascii_tolower(LHS[I]); 00044 unsigned char RHC = ascii_tolower(RHS[I]); 00045 if (LHC != RHC) 00046 return LHC < RHC ? -1 : 1; 00047 } 00048 return 0; 00049 } 00050 00051 /// compare_lower - Compare strings, ignoring case. 00052 int StringRef::compare_lower(StringRef RHS) const { 00053 if (int Res = ascii_strncasecmp(Data, RHS.Data, std::min(Length, RHS.Length))) 00054 return Res; 00055 if (Length == RHS.Length) 00056 return 0; 00057 return Length < RHS.Length ? -1 : 1; 00058 } 00059 00060 /// Check if this string starts with the given \p Prefix, ignoring case. 00061 bool StringRef::startswith_lower(StringRef Prefix) const { 00062 return Length >= Prefix.Length && 00063 ascii_strncasecmp(Data, Prefix.Data, Prefix.Length) == 0; 00064 } 00065 00066 /// Check if this string ends with the given \p Suffix, ignoring case. 00067 bool StringRef::endswith_lower(StringRef Suffix) const { 00068 return Length >= Suffix.Length && 00069 ascii_strncasecmp(end() - Suffix.Length, Suffix.Data, Suffix.Length) == 0; 00070 } 00071 00072 /// compare_numeric - Compare strings, handle embedded numbers. 00073 int StringRef::compare_numeric(StringRef RHS) const { 00074 for (size_t I = 0, E = std::min(Length, RHS.Length); I != E; ++I) { 00075 // Check for sequences of digits. 00076 if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) { 00077 // The longer sequence of numbers is considered larger. 00078 // This doesn't really handle prefixed zeros well. 00079 size_t J; 00080 for (J = I + 1; J != E + 1; ++J) { 00081 bool ld = J < Length && ascii_isdigit(Data[J]); 00082 bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]); 00083 if (ld != rd) 00084 return rd ? -1 : 1; 00085 if (!rd) 00086 break; 00087 } 00088 // The two number sequences have the same length (J-I), just memcmp them. 00089 if (int Res = compareMemory(Data + I, RHS.Data + I, J - I)) 00090 return Res < 0 ? -1 : 1; 00091 // Identical number sequences, continue search after the numbers. 00092 I = J - 1; 00093 continue; 00094 } 00095 if (Data[I] != RHS.Data[I]) 00096 return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1; 00097 } 00098 if (Length == RHS.Length) 00099 return 0; 00100 return Length < RHS.Length ? -1 : 1; 00101 } 00102 00103 // Compute the edit distance between the two given strings. 00104 unsigned StringRef::edit_distance(llvm::StringRef Other, 00105 bool AllowReplacements, 00106 unsigned MaxEditDistance) const { 00107 return llvm::ComputeEditDistance( 00108 makeArrayRef(data(), size()), 00109 makeArrayRef(Other.data(), Other.size()), 00110 AllowReplacements, MaxEditDistance); 00111 } 00112 00113 //===----------------------------------------------------------------------===// 00114 // String Operations 00115 //===----------------------------------------------------------------------===// 00116 00117 std::string StringRef::lower() const { 00118 std::string Result(size(), char()); 00119 for (size_type i = 0, e = size(); i != e; ++i) { 00120 Result[i] = ascii_tolower(Data[i]); 00121 } 00122 return Result; 00123 } 00124 00125 std::string StringRef::upper() const { 00126 std::string Result(size(), char()); 00127 for (size_type i = 0, e = size(); i != e; ++i) { 00128 Result[i] = ascii_toupper(Data[i]); 00129 } 00130 return Result; 00131 } 00132 00133 //===----------------------------------------------------------------------===// 00134 // String Searching 00135 //===----------------------------------------------------------------------===// 00136 00137 00138 /// find - Search for the first string \arg Str in the string. 00139 /// 00140 /// \return - The index of the first occurrence of \arg Str, or npos if not 00141 /// found. 00142 size_t StringRef::find(StringRef Str, size_t From) const { 00143 size_t N = Str.size(); 00144 if (N > Length) 00145 return npos; 00146 00147 // For short haystacks or unsupported needles fall back to the naive algorithm 00148 if (Length < 16 || N > 255 || N == 0) { 00149 for (size_t e = Length - N + 1, i = std::min(From, e); i != e; ++i) 00150 if (substr(i, N).equals(Str)) 00151 return i; 00152 return npos; 00153 } 00154 00155 if (From >= Length) 00156 return npos; 00157 00158 // Build the bad char heuristic table, with uint8_t to reduce cache thrashing. 00159 uint8_t BadCharSkip[256]; 00160 std::memset(BadCharSkip, N, 256); 00161 for (unsigned i = 0; i != N-1; ++i) 00162 BadCharSkip[(uint8_t)Str[i]] = N-1-i; 00163 00164 unsigned Len = Length-From, Pos = From; 00165 while (Len >= N) { 00166 if (substr(Pos, N).equals(Str)) // See if this is the correct substring. 00167 return Pos; 00168 00169 // Otherwise skip the appropriate number of bytes. 00170 uint8_t Skip = BadCharSkip[(uint8_t)(*this)[Pos+N-1]]; 00171 Len -= Skip; 00172 Pos += Skip; 00173 } 00174 00175 return npos; 00176 } 00177 00178 /// rfind - Search for the last string \arg Str in the string. 00179 /// 00180 /// \return - The index of the last occurrence of \arg Str, or npos if not 00181 /// found. 00182 size_t StringRef::rfind(StringRef Str) const { 00183 size_t N = Str.size(); 00184 if (N > Length) 00185 return npos; 00186 for (size_t i = Length - N + 1, e = 0; i != e;) { 00187 --i; 00188 if (substr(i, N).equals(Str)) 00189 return i; 00190 } 00191 return npos; 00192 } 00193 00194 /// find_first_of - Find the first character in the string that is in \arg 00195 /// Chars, or npos if not found. 00196 /// 00197 /// Note: O(size() + Chars.size()) 00198 StringRef::size_type StringRef::find_first_of(StringRef Chars, 00199 size_t From) const { 00200 std::bitset<1 << CHAR_BIT> CharBits; 00201 for (size_type i = 0; i != Chars.size(); ++i) 00202 CharBits.set((unsigned char)Chars[i]); 00203 00204 for (size_type i = std::min(From, Length), e = Length; i != e; ++i) 00205 if (CharBits.test((unsigned char)Data[i])) 00206 return i; 00207 return npos; 00208 } 00209 00210 /// find_first_not_of - Find the first character in the string that is not 00211 /// \arg C or npos if not found. 00212 StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const { 00213 for (size_type i = std::min(From, Length), e = Length; i != e; ++i) 00214 if (Data[i] != C) 00215 return i; 00216 return npos; 00217 } 00218 00219 /// find_first_not_of - Find the first character in the string that is not 00220 /// in the string \arg Chars, or npos if not found. 00221 /// 00222 /// Note: O(size() + Chars.size()) 00223 StringRef::size_type StringRef::find_first_not_of(StringRef Chars, 00224 size_t From) const { 00225 std::bitset<1 << CHAR_BIT> CharBits; 00226 for (size_type i = 0; i != Chars.size(); ++i) 00227 CharBits.set((unsigned char)Chars[i]); 00228 00229 for (size_type i = std::min(From, Length), e = Length; i != e; ++i) 00230 if (!CharBits.test((unsigned char)Data[i])) 00231 return i; 00232 return npos; 00233 } 00234 00235 /// find_last_of - Find the last character in the string that is in \arg C, 00236 /// or npos if not found. 00237 /// 00238 /// Note: O(size() + Chars.size()) 00239 StringRef::size_type StringRef::find_last_of(StringRef Chars, 00240 size_t From) const { 00241 std::bitset<1 << CHAR_BIT> CharBits; 00242 for (size_type i = 0; i != Chars.size(); ++i) 00243 CharBits.set((unsigned char)Chars[i]); 00244 00245 for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i) 00246 if (CharBits.test((unsigned char)Data[i])) 00247 return i; 00248 return npos; 00249 } 00250 00251 /// find_last_not_of - Find the last character in the string that is not 00252 /// \arg C, or npos if not found. 00253 StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const { 00254 for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i) 00255 if (Data[i] != C) 00256 return i; 00257 return npos; 00258 } 00259 00260 /// find_last_not_of - Find the last character in the string that is not in 00261 /// \arg Chars, or npos if not found. 00262 /// 00263 /// Note: O(size() + Chars.size()) 00264 StringRef::size_type StringRef::find_last_not_of(StringRef Chars, 00265 size_t From) const { 00266 std::bitset<1 << CHAR_BIT> CharBits; 00267 for (size_type i = 0, e = Chars.size(); i != e; ++i) 00268 CharBits.set((unsigned char)Chars[i]); 00269 00270 for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i) 00271 if (!CharBits.test((unsigned char)Data[i])) 00272 return i; 00273 return npos; 00274 } 00275 00276 void StringRef::split(SmallVectorImpl<StringRef> &A, 00277 StringRef Separators, int MaxSplit, 00278 bool KeepEmpty) const { 00279 StringRef rest = *this; 00280 00281 // rest.data() is used to distinguish cases like "a," that splits into 00282 // "a" + "" and "a" that splits into "a" + 0. 00283 for (int splits = 0; 00284 rest.data() != nullptr && (MaxSplit < 0 || splits < MaxSplit); 00285 ++splits) { 00286 std::pair<StringRef, StringRef> p = rest.split(Separators); 00287 00288 if (KeepEmpty || p.first.size() != 0) 00289 A.push_back(p.first); 00290 rest = p.second; 00291 } 00292 // If we have a tail left, add it. 00293 if (rest.data() != nullptr && (rest.size() != 0 || KeepEmpty)) 00294 A.push_back(rest); 00295 } 00296 00297 //===----------------------------------------------------------------------===// 00298 // Helpful Algorithms 00299 //===----------------------------------------------------------------------===// 00300 00301 /// count - Return the number of non-overlapped occurrences of \arg Str in 00302 /// the string. 00303 size_t StringRef::count(StringRef Str) const { 00304 size_t Count = 0; 00305 size_t N = Str.size(); 00306 if (N > Length) 00307 return 0; 00308 for (size_t i = 0, e = Length - N + 1; i != e; ++i) 00309 if (substr(i, N).equals(Str)) 00310 ++Count; 00311 return Count; 00312 } 00313 00314 static unsigned GetAutoSenseRadix(StringRef &Str) { 00315 if (Str.startswith("0x")) { 00316 Str = Str.substr(2); 00317 return 16; 00318 } 00319 00320 if (Str.startswith("0b")) { 00321 Str = Str.substr(2); 00322 return 2; 00323 } 00324 00325 if (Str.startswith("0o")) { 00326 Str = Str.substr(2); 00327 return 8; 00328 } 00329 00330 if (Str.startswith("0")) 00331 return 8; 00332 00333 return 10; 00334 } 00335 00336 00337 /// GetAsUnsignedInteger - Workhorse method that converts a integer character 00338 /// sequence of radix up to 36 to an unsigned long long value. 00339 bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix, 00340 unsigned long long &Result) { 00341 // Autosense radix if not specified. 00342 if (Radix == 0) 00343 Radix = GetAutoSenseRadix(Str); 00344 00345 // Empty strings (after the radix autosense) are invalid. 00346 if (Str.empty()) return true; 00347 00348 // Parse all the bytes of the string given this radix. Watch for overflow. 00349 Result = 0; 00350 while (!Str.empty()) { 00351 unsigned CharVal; 00352 if (Str[0] >= '0' && Str[0] <= '9') 00353 CharVal = Str[0]-'0'; 00354 else if (Str[0] >= 'a' && Str[0] <= 'z') 00355 CharVal = Str[0]-'a'+10; 00356 else if (Str[0] >= 'A' && Str[0] <= 'Z') 00357 CharVal = Str[0]-'A'+10; 00358 else 00359 return true; 00360 00361 // If the parsed value is larger than the integer radix, the string is 00362 // invalid. 00363 if (CharVal >= Radix) 00364 return true; 00365 00366 // Add in this character. 00367 unsigned long long PrevResult = Result; 00368 Result = Result*Radix+CharVal; 00369 00370 // Check for overflow by shifting back and seeing if bits were lost. 00371 if (Result/Radix < PrevResult) 00372 return true; 00373 00374 Str = Str.substr(1); 00375 } 00376 00377 return false; 00378 } 00379 00380 bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix, 00381 long long &Result) { 00382 unsigned long long ULLVal; 00383 00384 // Handle positive strings first. 00385 if (Str.empty() || Str.front() != '-') { 00386 if (getAsUnsignedInteger(Str, Radix, ULLVal) || 00387 // Check for value so large it overflows a signed value. 00388 (long long)ULLVal < 0) 00389 return true; 00390 Result = ULLVal; 00391 return false; 00392 } 00393 00394 // Get the positive part of the value. 00395 if (getAsUnsignedInteger(Str.substr(1), Radix, ULLVal) || 00396 // Reject values so large they'd overflow as negative signed, but allow 00397 // "-0". This negates the unsigned so that the negative isn't undefined 00398 // on signed overflow. 00399 (long long)-ULLVal > 0) 00400 return true; 00401 00402 Result = -ULLVal; 00403 return false; 00404 } 00405 00406 bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const { 00407 StringRef Str = *this; 00408 00409 // Autosense radix if not specified. 00410 if (Radix == 0) 00411 Radix = GetAutoSenseRadix(Str); 00412 00413 assert(Radix > 1 && Radix <= 36); 00414 00415 // Empty strings (after the radix autosense) are invalid. 00416 if (Str.empty()) return true; 00417 00418 // Skip leading zeroes. This can be a significant improvement if 00419 // it means we don't need > 64 bits. 00420 while (!Str.empty() && Str.front() == '0') 00421 Str = Str.substr(1); 00422 00423 // If it was nothing but zeroes.... 00424 if (Str.empty()) { 00425 Result = APInt(64, 0); 00426 return false; 00427 } 00428 00429 // (Over-)estimate the required number of bits. 00430 unsigned Log2Radix = 0; 00431 while ((1U << Log2Radix) < Radix) Log2Radix++; 00432 bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix); 00433 00434 unsigned BitWidth = Log2Radix * Str.size(); 00435 if (BitWidth < Result.getBitWidth()) 00436 BitWidth = Result.getBitWidth(); // don't shrink the result 00437 else if (BitWidth > Result.getBitWidth()) 00438 Result = Result.zext(BitWidth); 00439 00440 APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix 00441 if (!IsPowerOf2Radix) { 00442 // These must have the same bit-width as Result. 00443 RadixAP = APInt(BitWidth, Radix); 00444 CharAP = APInt(BitWidth, 0); 00445 } 00446 00447 // Parse all the bytes of the string given this radix. 00448 Result = 0; 00449 while (!Str.empty()) { 00450 unsigned CharVal; 00451 if (Str[0] >= '0' && Str[0] <= '9') 00452 CharVal = Str[0]-'0'; 00453 else if (Str[0] >= 'a' && Str[0] <= 'z') 00454 CharVal = Str[0]-'a'+10; 00455 else if (Str[0] >= 'A' && Str[0] <= 'Z') 00456 CharVal = Str[0]-'A'+10; 00457 else 00458 return true; 00459 00460 // If the parsed value is larger than the integer radix, the string is 00461 // invalid. 00462 if (CharVal >= Radix) 00463 return true; 00464 00465 // Add in this character. 00466 if (IsPowerOf2Radix) { 00467 Result <<= Log2Radix; 00468 Result |= CharVal; 00469 } else { 00470 Result *= RadixAP; 00471 CharAP = CharVal; 00472 Result += CharAP; 00473 } 00474 00475 Str = Str.substr(1); 00476 } 00477 00478 return false; 00479 } 00480 00481 00482 // Implementation of StringRef hashing. 00483 hash_code llvm::hash_value(StringRef S) { 00484 return hash_combine_range(S.begin(), S.end()); 00485 }