LLVM API Documentation
00001 //===-- llvm/Target/TargetFrameLowering.h ---------------------------*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // Interface to describe the layout of a stack frame on the target machine. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #ifndef LLVM_TARGET_TARGETFRAMELOWERING_H 00015 #define LLVM_TARGET_TARGETFRAMELOWERING_H 00016 00017 #include "llvm/CodeGen/MachineBasicBlock.h" 00018 #include <utility> 00019 #include <vector> 00020 00021 namespace llvm { 00022 class CalleeSavedInfo; 00023 class MachineFunction; 00024 class RegScavenger; 00025 00026 /// Information about stack frame layout on the target. It holds the direction 00027 /// of stack growth, the known stack alignment on entry to each function, and 00028 /// the offset to the locals area. 00029 /// 00030 /// The offset to the local area is the offset from the stack pointer on 00031 /// function entry to the first location where function data (local variables, 00032 /// spill locations) can be stored. 00033 class TargetFrameLowering { 00034 public: 00035 enum StackDirection { 00036 StackGrowsUp, // Adding to the stack increases the stack address 00037 StackGrowsDown // Adding to the stack decreases the stack address 00038 }; 00039 00040 // Maps a callee saved register to a stack slot with a fixed offset. 00041 struct SpillSlot { 00042 unsigned Reg; 00043 int Offset; // Offset relative to stack pointer on function entry. 00044 }; 00045 private: 00046 StackDirection StackDir; 00047 unsigned StackAlignment; 00048 unsigned TransientStackAlignment; 00049 int LocalAreaOffset; 00050 bool StackRealignable; 00051 public: 00052 TargetFrameLowering(StackDirection D, unsigned StackAl, int LAO, 00053 unsigned TransAl = 1, bool StackReal = true) 00054 : StackDir(D), StackAlignment(StackAl), TransientStackAlignment(TransAl), 00055 LocalAreaOffset(LAO), StackRealignable(StackReal) {} 00056 00057 virtual ~TargetFrameLowering(); 00058 00059 // These methods return information that describes the abstract stack layout 00060 // of the target machine. 00061 00062 /// getStackGrowthDirection - Return the direction the stack grows 00063 /// 00064 StackDirection getStackGrowthDirection() const { return StackDir; } 00065 00066 /// getStackAlignment - This method returns the number of bytes to which the 00067 /// stack pointer must be aligned on entry to a function. Typically, this 00068 /// is the largest alignment for any data object in the target. 00069 /// 00070 unsigned getStackAlignment() const { return StackAlignment; } 00071 00072 /// getTransientStackAlignment - This method returns the number of bytes to 00073 /// which the stack pointer must be aligned at all times, even between 00074 /// calls. 00075 /// 00076 unsigned getTransientStackAlignment() const { 00077 return TransientStackAlignment; 00078 } 00079 00080 /// isStackRealignable - This method returns whether the stack can be 00081 /// realigned. 00082 bool isStackRealignable() const { 00083 return StackRealignable; 00084 } 00085 00086 /// getOffsetOfLocalArea - This method returns the offset of the local area 00087 /// from the stack pointer on entrance to a function. 00088 /// 00089 int getOffsetOfLocalArea() const { return LocalAreaOffset; } 00090 00091 /// isFPCloseToIncomingSP - Return true if the frame pointer is close to 00092 /// the incoming stack pointer, false if it is close to the post-prologue 00093 /// stack pointer. 00094 virtual bool isFPCloseToIncomingSP() const { return true; } 00095 00096 /// assignCalleeSavedSpillSlots - Allows target to override spill slot 00097 /// assignment logic. If implemented, assignCalleeSavedSpillSlots() should 00098 /// assign frame slots to all CSI entries and return true. If this method 00099 /// returns false, spill slots will be assigned using generic implementation. 00100 /// assignCalleeSavedSpillSlots() may add, delete or rearrange elements of 00101 /// CSI. 00102 virtual bool 00103 assignCalleeSavedSpillSlots(MachineFunction &MF, 00104 const TargetRegisterInfo *TRI, 00105 std::vector<CalleeSavedInfo> &CSI) const { 00106 return false; 00107 } 00108 00109 /// getCalleeSavedSpillSlots - This method returns a pointer to an array of 00110 /// pairs, that contains an entry for each callee saved register that must be 00111 /// spilled to a particular stack location if it is spilled. 00112 /// 00113 /// Each entry in this array contains a <register,offset> pair, indicating the 00114 /// fixed offset from the incoming stack pointer that each register should be 00115 /// spilled at. If a register is not listed here, the code generator is 00116 /// allowed to spill it anywhere it chooses. 00117 /// 00118 virtual const SpillSlot * 00119 getCalleeSavedSpillSlots(unsigned &NumEntries) const { 00120 NumEntries = 0; 00121 return nullptr; 00122 } 00123 00124 /// targetHandlesStackFrameRounding - Returns true if the target is 00125 /// responsible for rounding up the stack frame (probably at emitPrologue 00126 /// time). 00127 virtual bool targetHandlesStackFrameRounding() const { 00128 return false; 00129 } 00130 00131 /// emitProlog/emitEpilog - These methods insert prolog and epilog code into 00132 /// the function. 00133 virtual void emitPrologue(MachineFunction &MF) const = 0; 00134 virtual void emitEpilogue(MachineFunction &MF, 00135 MachineBasicBlock &MBB) const = 0; 00136 00137 /// Adjust the prologue to have the function use segmented stacks. This works 00138 /// by adding a check even before the "normal" function prologue. 00139 virtual void adjustForSegmentedStacks(MachineFunction &MF) const { } 00140 00141 /// Adjust the prologue to add Erlang Run-Time System (ERTS) specific code in 00142 /// the assembly prologue to explicitly handle the stack. 00143 virtual void adjustForHiPEPrologue(MachineFunction &MF) const { } 00144 00145 /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee 00146 /// saved registers and returns true if it isn't possible / profitable to do 00147 /// so by issuing a series of store instructions via 00148 /// storeRegToStackSlot(). Returns false otherwise. 00149 virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB, 00150 MachineBasicBlock::iterator MI, 00151 const std::vector<CalleeSavedInfo> &CSI, 00152 const TargetRegisterInfo *TRI) const { 00153 return false; 00154 } 00155 00156 /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee 00157 /// saved registers and returns true if it isn't possible / profitable to do 00158 /// so by issuing a series of load instructions via loadRegToStackSlot(). 00159 /// Returns false otherwise. 00160 virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 00161 MachineBasicBlock::iterator MI, 00162 const std::vector<CalleeSavedInfo> &CSI, 00163 const TargetRegisterInfo *TRI) const { 00164 return false; 00165 } 00166 00167 /// hasFP - Return true if the specified function should have a dedicated 00168 /// frame pointer register. For most targets this is true only if the function 00169 /// has variable sized allocas or if frame pointer elimination is disabled. 00170 virtual bool hasFP(const MachineFunction &MF) const = 0; 00171 00172 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 00173 /// not required, we reserve argument space for call sites in the function 00174 /// immediately on entry to the current function. This eliminates the need for 00175 /// add/sub sp brackets around call sites. Returns true if the call frame is 00176 /// included as part of the stack frame. 00177 virtual bool hasReservedCallFrame(const MachineFunction &MF) const { 00178 return !hasFP(MF); 00179 } 00180 00181 /// canSimplifyCallFramePseudos - When possible, it's best to simplify the 00182 /// call frame pseudo ops before doing frame index elimination. This is 00183 /// possible only when frame index references between the pseudos won't 00184 /// need adjusting for the call frame adjustments. Normally, that's true 00185 /// if the function has a reserved call frame or a frame pointer. Some 00186 /// targets (Thumb2, for example) may have more complicated criteria, 00187 /// however, and can override this behavior. 00188 virtual bool canSimplifyCallFramePseudos(const MachineFunction &MF) const { 00189 return hasReservedCallFrame(MF) || hasFP(MF); 00190 } 00191 00192 /// getFrameIndexOffset - Returns the displacement from the frame register to 00193 /// the stack frame of the specified index. 00194 virtual int getFrameIndexOffset(const MachineFunction &MF, int FI) const; 00195 00196 /// getFrameIndexReference - This method should return the base register 00197 /// and offset used to reference a frame index location. The offset is 00198 /// returned directly, and the base register is returned via FrameReg. 00199 virtual int getFrameIndexReference(const MachineFunction &MF, int FI, 00200 unsigned &FrameReg) const; 00201 00202 /// processFunctionBeforeCalleeSavedScan - This method is called immediately 00203 /// before PrologEpilogInserter scans the physical registers used to determine 00204 /// what callee saved registers should be spilled. This method is optional. 00205 virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF, 00206 RegScavenger *RS = nullptr) const { 00207 00208 } 00209 00210 /// processFunctionBeforeFrameFinalized - This method is called immediately 00211 /// before the specified function's frame layout (MF.getFrameInfo()) is 00212 /// finalized. Once the frame is finalized, MO_FrameIndex operands are 00213 /// replaced with direct constants. This method is optional. 00214 /// 00215 virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF, 00216 RegScavenger *RS = nullptr) const { 00217 } 00218 00219 /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog 00220 /// code insertion to eliminate call frame setup and destroy pseudo 00221 /// instructions (but only if the Target is using them). It is responsible 00222 /// for eliminating these instructions, replacing them with concrete 00223 /// instructions. This method need only be implemented if using call frame 00224 /// setup/destroy pseudo instructions. 00225 /// 00226 virtual void 00227 eliminateCallFramePseudoInstr(MachineFunction &MF, 00228 MachineBasicBlock &MBB, 00229 MachineBasicBlock::iterator MI) const { 00230 llvm_unreachable("Call Frame Pseudo Instructions do not exist on this " 00231 "target!"); 00232 } 00233 }; 00234 00235 } // End llvm namespace 00236 00237 #endif