LLVM API Documentation

Verifier.cpp
Go to the documentation of this file.
00001 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file defines the function verifier interface, that can be used for some
00011 // sanity checking of input to the system.
00012 //
00013 // Note that this does not provide full `Java style' security and verifications,
00014 // instead it just tries to ensure that code is well-formed.
00015 //
00016 //  * Both of a binary operator's parameters are of the same type
00017 //  * Verify that the indices of mem access instructions match other operands
00018 //  * Verify that arithmetic and other things are only performed on first-class
00019 //    types.  Verify that shifts & logicals only happen on integrals f.e.
00020 //  * All of the constants in a switch statement are of the correct type
00021 //  * The code is in valid SSA form
00022 //  * It should be illegal to put a label into any other type (like a structure)
00023 //    or to return one. [except constant arrays!]
00024 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
00025 //  * PHI nodes must have an entry for each predecessor, with no extras.
00026 //  * PHI nodes must be the first thing in a basic block, all grouped together
00027 //  * PHI nodes must have at least one entry
00028 //  * All basic blocks should only end with terminator insts, not contain them
00029 //  * The entry node to a function must not have predecessors
00030 //  * All Instructions must be embedded into a basic block
00031 //  * Functions cannot take a void-typed parameter
00032 //  * Verify that a function's argument list agrees with it's declared type.
00033 //  * It is illegal to specify a name for a void value.
00034 //  * It is illegal to have a internal global value with no initializer
00035 //  * It is illegal to have a ret instruction that returns a value that does not
00036 //    agree with the function return value type.
00037 //  * Function call argument types match the function prototype
00038 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
00039 //    only by the unwind edge of an invoke instruction.
00040 //  * A landingpad instruction must be the first non-PHI instruction in the
00041 //    block.
00042 //  * All landingpad instructions must use the same personality function with
00043 //    the same function.
00044 //  * All other things that are tested by asserts spread about the code...
00045 //
00046 //===----------------------------------------------------------------------===//
00047 
00048 #include "llvm/IR/Verifier.h"
00049 #include "llvm/ADT/STLExtras.h"
00050 #include "llvm/ADT/SetVector.h"
00051 #include "llvm/ADT/SmallPtrSet.h"
00052 #include "llvm/ADT/SmallVector.h"
00053 #include "llvm/ADT/StringExtras.h"
00054 #include "llvm/IR/CFG.h"
00055 #include "llvm/IR/CallSite.h"
00056 #include "llvm/IR/CallingConv.h"
00057 #include "llvm/IR/ConstantRange.h"
00058 #include "llvm/IR/Constants.h"
00059 #include "llvm/IR/DataLayout.h"
00060 #include "llvm/IR/DebugInfo.h"
00061 #include "llvm/IR/DerivedTypes.h"
00062 #include "llvm/IR/Dominators.h"
00063 #include "llvm/IR/InlineAsm.h"
00064 #include "llvm/IR/InstIterator.h"
00065 #include "llvm/IR/InstVisitor.h"
00066 #include "llvm/IR/IntrinsicInst.h"
00067 #include "llvm/IR/LLVMContext.h"
00068 #include "llvm/IR/Metadata.h"
00069 #include "llvm/IR/Module.h"
00070 #include "llvm/IR/PassManager.h"
00071 #include "llvm/Pass.h"
00072 #include "llvm/Support/CommandLine.h"
00073 #include "llvm/Support/Debug.h"
00074 #include "llvm/Support/ErrorHandling.h"
00075 #include "llvm/Support/raw_ostream.h"
00076 #include <algorithm>
00077 #include <cstdarg>
00078 using namespace llvm;
00079 
00080 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(false));
00081 
00082 namespace {
00083 struct VerifierSupport {
00084   raw_ostream &OS;
00085   const Module *M;
00086 
00087   /// \brief Track the brokenness of the module while recursively visiting.
00088   bool Broken;
00089 
00090   explicit VerifierSupport(raw_ostream &OS)
00091       : OS(OS), M(nullptr), Broken(false) {}
00092 
00093   void WriteValue(const Value *V) {
00094     if (!V)
00095       return;
00096     if (isa<Instruction>(V)) {
00097       OS << *V << '\n';
00098     } else {
00099       V->printAsOperand(OS, true, M);
00100       OS << '\n';
00101     }
00102   }
00103 
00104   void WriteType(Type *T) {
00105     if (!T)
00106       return;
00107     OS << ' ' << *T;
00108   }
00109 
00110   void WriteComdat(const Comdat *C) {
00111     if (!C)
00112       return;
00113     OS << *C;
00114   }
00115 
00116   // CheckFailed - A check failed, so print out the condition and the message
00117   // that failed.  This provides a nice place to put a breakpoint if you want
00118   // to see why something is not correct.
00119   void CheckFailed(const Twine &Message, const Value *V1 = nullptr,
00120                    const Value *V2 = nullptr, const Value *V3 = nullptr,
00121                    const Value *V4 = nullptr) {
00122     OS << Message.str() << "\n";
00123     WriteValue(V1);
00124     WriteValue(V2);
00125     WriteValue(V3);
00126     WriteValue(V4);
00127     Broken = true;
00128   }
00129 
00130   void CheckFailed(const Twine &Message, const Value *V1, Type *T2,
00131                    const Value *V3 = nullptr) {
00132     OS << Message.str() << "\n";
00133     WriteValue(V1);
00134     WriteType(T2);
00135     WriteValue(V3);
00136     Broken = true;
00137   }
00138 
00139   void CheckFailed(const Twine &Message, Type *T1, Type *T2 = nullptr,
00140                    Type *T3 = nullptr) {
00141     OS << Message.str() << "\n";
00142     WriteType(T1);
00143     WriteType(T2);
00144     WriteType(T3);
00145     Broken = true;
00146   }
00147 
00148   void CheckFailed(const Twine &Message, const Comdat *C) {
00149     OS << Message.str() << "\n";
00150     WriteComdat(C);
00151     Broken = true;
00152   }
00153 };
00154 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
00155   friend class InstVisitor<Verifier>;
00156 
00157   LLVMContext *Context;
00158   const DataLayout *DL;
00159   DominatorTree DT;
00160 
00161   /// \brief When verifying a basic block, keep track of all of the
00162   /// instructions we have seen so far.
00163   ///
00164   /// This allows us to do efficient dominance checks for the case when an
00165   /// instruction has an operand that is an instruction in the same block.
00166   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
00167 
00168   /// \brief Keep track of the metadata nodes that have been checked already.
00169   SmallPtrSet<MDNode *, 32> MDNodes;
00170 
00171   /// \brief The personality function referenced by the LandingPadInsts.
00172   /// All LandingPadInsts within the same function must use the same
00173   /// personality function.
00174   const Value *PersonalityFn;
00175 
00176 public:
00177   explicit Verifier(raw_ostream &OS = dbgs())
00178       : VerifierSupport(OS), Context(nullptr), DL(nullptr),
00179         PersonalityFn(nullptr) {}
00180 
00181   bool verify(const Function &F) {
00182     M = F.getParent();
00183     Context = &M->getContext();
00184 
00185     // First ensure the function is well-enough formed to compute dominance
00186     // information.
00187     if (F.empty()) {
00188       OS << "Function '" << F.getName()
00189          << "' does not contain an entry block!\n";
00190       return false;
00191     }
00192     for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
00193       if (I->empty() || !I->back().isTerminator()) {
00194         OS << "Basic Block in function '" << F.getName()
00195            << "' does not have terminator!\n";
00196         I->printAsOperand(OS, true);
00197         OS << "\n";
00198         return false;
00199       }
00200     }
00201 
00202     // Now directly compute a dominance tree. We don't rely on the pass
00203     // manager to provide this as it isolates us from a potentially
00204     // out-of-date dominator tree and makes it significantly more complex to
00205     // run this code outside of a pass manager.
00206     // FIXME: It's really gross that we have to cast away constness here.
00207     DT.recalculate(const_cast<Function &>(F));
00208 
00209     Broken = false;
00210     // FIXME: We strip const here because the inst visitor strips const.
00211     visit(const_cast<Function &>(F));
00212     InstsInThisBlock.clear();
00213     PersonalityFn = nullptr;
00214 
00215     return !Broken;
00216   }
00217 
00218   bool verify(const Module &M) {
00219     this->M = &M;
00220     Context = &M.getContext();
00221     Broken = false;
00222 
00223     // Scan through, checking all of the external function's linkage now...
00224     for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
00225       visitGlobalValue(*I);
00226 
00227       // Check to make sure function prototypes are okay.
00228       if (I->isDeclaration())
00229         visitFunction(*I);
00230     }
00231 
00232     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
00233          I != E; ++I)
00234       visitGlobalVariable(*I);
00235 
00236     for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
00237          I != E; ++I)
00238       visitGlobalAlias(*I);
00239 
00240     for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
00241                                                E = M.named_metadata_end();
00242          I != E; ++I)
00243       visitNamedMDNode(*I);
00244 
00245     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
00246       visitComdat(SMEC.getValue());
00247 
00248     visitModuleFlags(M);
00249     visitModuleIdents(M);
00250 
00251     return !Broken;
00252   }
00253 
00254 private:
00255   // Verification methods...
00256   void visitGlobalValue(const GlobalValue &GV);
00257   void visitGlobalVariable(const GlobalVariable &GV);
00258   void visitGlobalAlias(const GlobalAlias &GA);
00259   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
00260   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
00261                            const GlobalAlias &A, const Constant &C);
00262   void visitNamedMDNode(const NamedMDNode &NMD);
00263   void visitMDNode(MDNode &MD, Function *F);
00264   void visitComdat(const Comdat &C);
00265   void visitModuleIdents(const Module &M);
00266   void visitModuleFlags(const Module &M);
00267   void visitModuleFlag(const MDNode *Op,
00268                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
00269                        SmallVectorImpl<const MDNode *> &Requirements);
00270   void visitFunction(const Function &F);
00271   void visitBasicBlock(BasicBlock &BB);
00272 
00273   // InstVisitor overrides...
00274   using InstVisitor<Verifier>::visit;
00275   void visit(Instruction &I);
00276 
00277   void visitTruncInst(TruncInst &I);
00278   void visitZExtInst(ZExtInst &I);
00279   void visitSExtInst(SExtInst &I);
00280   void visitFPTruncInst(FPTruncInst &I);
00281   void visitFPExtInst(FPExtInst &I);
00282   void visitFPToUIInst(FPToUIInst &I);
00283   void visitFPToSIInst(FPToSIInst &I);
00284   void visitUIToFPInst(UIToFPInst &I);
00285   void visitSIToFPInst(SIToFPInst &I);
00286   void visitIntToPtrInst(IntToPtrInst &I);
00287   void visitPtrToIntInst(PtrToIntInst &I);
00288   void visitBitCastInst(BitCastInst &I);
00289   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
00290   void visitPHINode(PHINode &PN);
00291   void visitBinaryOperator(BinaryOperator &B);
00292   void visitICmpInst(ICmpInst &IC);
00293   void visitFCmpInst(FCmpInst &FC);
00294   void visitExtractElementInst(ExtractElementInst &EI);
00295   void visitInsertElementInst(InsertElementInst &EI);
00296   void visitShuffleVectorInst(ShuffleVectorInst &EI);
00297   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
00298   void visitCallInst(CallInst &CI);
00299   void visitInvokeInst(InvokeInst &II);
00300   void visitGetElementPtrInst(GetElementPtrInst &GEP);
00301   void visitLoadInst(LoadInst &LI);
00302   void visitStoreInst(StoreInst &SI);
00303   void verifyDominatesUse(Instruction &I, unsigned i);
00304   void visitInstruction(Instruction &I);
00305   void visitTerminatorInst(TerminatorInst &I);
00306   void visitBranchInst(BranchInst &BI);
00307   void visitReturnInst(ReturnInst &RI);
00308   void visitSwitchInst(SwitchInst &SI);
00309   void visitIndirectBrInst(IndirectBrInst &BI);
00310   void visitSelectInst(SelectInst &SI);
00311   void visitUserOp1(Instruction &I);
00312   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
00313   void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
00314   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
00315   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
00316   void visitFenceInst(FenceInst &FI);
00317   void visitAllocaInst(AllocaInst &AI);
00318   void visitExtractValueInst(ExtractValueInst &EVI);
00319   void visitInsertValueInst(InsertValueInst &IVI);
00320   void visitLandingPadInst(LandingPadInst &LPI);
00321 
00322   void VerifyCallSite(CallSite CS);
00323   void verifyMustTailCall(CallInst &CI);
00324   bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
00325                         unsigned ArgNo, std::string &Suffix);
00326   bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
00327                            SmallVectorImpl<Type *> &ArgTys);
00328   bool VerifyIntrinsicIsVarArg(bool isVarArg,
00329                                ArrayRef<Intrinsic::IITDescriptor> &Infos);
00330   bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
00331   void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
00332                             const Value *V);
00333   void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
00334                             bool isReturnValue, const Value *V);
00335   void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
00336                            const Value *V);
00337 
00338   void VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy);
00339   void VerifyConstantExprBitcastType(const ConstantExpr *CE);
00340 };
00341 class DebugInfoVerifier : public VerifierSupport {
00342 public:
00343   explicit DebugInfoVerifier(raw_ostream &OS = dbgs()) : VerifierSupport(OS) {}
00344 
00345   bool verify(const Module &M) {
00346     this->M = &M;
00347     verifyDebugInfo();
00348     return !Broken;
00349   }
00350 
00351 private:
00352   void verifyDebugInfo();
00353   void processInstructions(DebugInfoFinder &Finder);
00354   void processCallInst(DebugInfoFinder &Finder, const CallInst &CI);
00355 };
00356 } // End anonymous namespace
00357 
00358 // Assert - We know that cond should be true, if not print an error message.
00359 #define Assert(C, M) \
00360   do { if (!(C)) { CheckFailed(M); return; } } while (0)
00361 #define Assert1(C, M, V1) \
00362   do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
00363 #define Assert2(C, M, V1, V2) \
00364   do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
00365 #define Assert3(C, M, V1, V2, V3) \
00366   do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
00367 #define Assert4(C, M, V1, V2, V3, V4) \
00368   do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
00369 
00370 void Verifier::visit(Instruction &I) {
00371   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
00372     Assert1(I.getOperand(i) != nullptr, "Operand is null", &I);
00373   InstVisitor<Verifier>::visit(I);
00374 }
00375 
00376 
00377 void Verifier::visitGlobalValue(const GlobalValue &GV) {
00378   Assert1(!GV.isDeclaration() || GV.isMaterializable() ||
00379               GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
00380           "Global is external, but doesn't have external or weak linkage!",
00381           &GV);
00382 
00383   Assert1(GV.getAlignment() <= Value::MaximumAlignment,
00384           "huge alignment values are unsupported", &GV);
00385   Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
00386           "Only global variables can have appending linkage!", &GV);
00387 
00388   if (GV.hasAppendingLinkage()) {
00389     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
00390     Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
00391             "Only global arrays can have appending linkage!", GVar);
00392   }
00393 }
00394 
00395 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
00396   if (GV.hasInitializer()) {
00397     Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
00398             "Global variable initializer type does not match global "
00399             "variable type!", &GV);
00400 
00401     // If the global has common linkage, it must have a zero initializer and
00402     // cannot be constant.
00403     if (GV.hasCommonLinkage()) {
00404       Assert1(GV.getInitializer()->isNullValue(),
00405               "'common' global must have a zero initializer!", &GV);
00406       Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
00407               &GV);
00408       Assert1(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
00409     }
00410   } else {
00411     Assert1(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
00412             "invalid linkage type for global declaration", &GV);
00413   }
00414 
00415   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
00416                        GV.getName() == "llvm.global_dtors")) {
00417     Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
00418             "invalid linkage for intrinsic global variable", &GV);
00419     // Don't worry about emitting an error for it not being an array,
00420     // visitGlobalValue will complain on appending non-array.
00421     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType()->getElementType())) {
00422       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
00423       PointerType *FuncPtrTy =
00424           FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
00425       // FIXME: Reject the 2-field form in LLVM 4.0.
00426       Assert1(STy && (STy->getNumElements() == 2 ||
00427                       STy->getNumElements() == 3) &&
00428               STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
00429               STy->getTypeAtIndex(1) == FuncPtrTy,
00430               "wrong type for intrinsic global variable", &GV);
00431       if (STy->getNumElements() == 3) {
00432         Type *ETy = STy->getTypeAtIndex(2);
00433         Assert1(ETy->isPointerTy() &&
00434                     cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
00435                 "wrong type for intrinsic global variable", &GV);
00436       }
00437     }
00438   }
00439 
00440   if (GV.hasName() && (GV.getName() == "llvm.used" ||
00441                        GV.getName() == "llvm.compiler.used")) {
00442     Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
00443             "invalid linkage for intrinsic global variable", &GV);
00444     Type *GVType = GV.getType()->getElementType();
00445     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
00446       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
00447       Assert1(PTy, "wrong type for intrinsic global variable", &GV);
00448       if (GV.hasInitializer()) {
00449         const Constant *Init = GV.getInitializer();
00450         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
00451         Assert1(InitArray, "wrong initalizer for intrinsic global variable",
00452                 Init);
00453         for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
00454           Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
00455           Assert1(
00456               isa<GlobalVariable>(V) || isa<Function>(V) || isa<GlobalAlias>(V),
00457               "invalid llvm.used member", V);
00458           Assert1(V->hasName(), "members of llvm.used must be named", V);
00459         }
00460       }
00461     }
00462   }
00463 
00464   Assert1(!GV.hasDLLImportStorageClass() ||
00465           (GV.isDeclaration() && GV.hasExternalLinkage()) ||
00466           GV.hasAvailableExternallyLinkage(),
00467           "Global is marked as dllimport, but not external", &GV);
00468 
00469   if (!GV.hasInitializer()) {
00470     visitGlobalValue(GV);
00471     return;
00472   }
00473 
00474   // Walk any aggregate initializers looking for bitcasts between address spaces
00475   SmallPtrSet<const Value *, 4> Visited;
00476   SmallVector<const Value *, 4> WorkStack;
00477   WorkStack.push_back(cast<Value>(GV.getInitializer()));
00478 
00479   while (!WorkStack.empty()) {
00480     const Value *V = WorkStack.pop_back_val();
00481     if (!Visited.insert(V))
00482       continue;
00483 
00484     if (const User *U = dyn_cast<User>(V)) {
00485       for (unsigned I = 0, N = U->getNumOperands(); I != N; ++I)
00486         WorkStack.push_back(U->getOperand(I));
00487     }
00488 
00489     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
00490       VerifyConstantExprBitcastType(CE);
00491       if (Broken)
00492         return;
00493     }
00494   }
00495 
00496   visitGlobalValue(GV);
00497 }
00498 
00499 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
00500   SmallPtrSet<const GlobalAlias*, 4> Visited;
00501   Visited.insert(&GA);
00502   visitAliaseeSubExpr(Visited, GA, C);
00503 }
00504 
00505 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
00506                                    const GlobalAlias &GA, const Constant &C) {
00507   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
00508     Assert1(!GV->isDeclaration(), "Alias must point to a definition", &GA);
00509 
00510     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
00511       Assert1(Visited.insert(GA2), "Aliases cannot form a cycle", &GA);
00512 
00513       Assert1(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
00514               &GA);
00515     } else {
00516       // Only continue verifying subexpressions of GlobalAliases.
00517       // Do not recurse into global initializers.
00518       return;
00519     }
00520   }
00521 
00522   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
00523     VerifyConstantExprBitcastType(CE);
00524 
00525   for (const Use &U : C.operands()) {
00526     Value *V = &*U;
00527     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
00528       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
00529     else if (const auto *C2 = dyn_cast<Constant>(V))
00530       visitAliaseeSubExpr(Visited, GA, *C2);
00531   }
00532 }
00533 
00534 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
00535   Assert1(!GA.getName().empty(),
00536           "Alias name cannot be empty!", &GA);
00537   Assert1(GlobalAlias::isValidLinkage(GA.getLinkage()),
00538           "Alias should have private, internal, linkonce, weak, linkonce_odr, "
00539           "weak_odr, or external linkage!",
00540           &GA);
00541   const Constant *Aliasee = GA.getAliasee();
00542   Assert1(Aliasee, "Aliasee cannot be NULL!", &GA);
00543   Assert1(GA.getType() == Aliasee->getType(),
00544           "Alias and aliasee types should match!", &GA);
00545 
00546   Assert1(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
00547           "Aliasee should be either GlobalValue or ConstantExpr", &GA);
00548 
00549   visitAliaseeSubExpr(GA, *Aliasee);
00550 
00551   visitGlobalValue(GA);
00552 }
00553 
00554 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
00555   for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
00556     MDNode *MD = NMD.getOperand(i);
00557     if (!MD)
00558       continue;
00559 
00560     Assert1(!MD->isFunctionLocal(),
00561             "Named metadata operand cannot be function local!", MD);
00562     visitMDNode(*MD, nullptr);
00563   }
00564 }
00565 
00566 void Verifier::visitMDNode(MDNode &MD, Function *F) {
00567   // Only visit each node once.  Metadata can be mutually recursive, so this
00568   // avoids infinite recursion here, as well as being an optimization.
00569   if (!MDNodes.insert(&MD))
00570     return;
00571 
00572   for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
00573     Value *Op = MD.getOperand(i);
00574     if (!Op)
00575       continue;
00576     if (isa<Constant>(Op) || isa<MDString>(Op))
00577       continue;
00578     if (MDNode *N = dyn_cast<MDNode>(Op)) {
00579       Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
00580               "Global metadata operand cannot be function local!", &MD, N);
00581       visitMDNode(*N, F);
00582       continue;
00583     }
00584     Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
00585 
00586     // If this was an instruction, bb, or argument, verify that it is in the
00587     // function that we expect.
00588     Function *ActualF = nullptr;
00589     if (Instruction *I = dyn_cast<Instruction>(Op))
00590       ActualF = I->getParent()->getParent();
00591     else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
00592       ActualF = BB->getParent();
00593     else if (Argument *A = dyn_cast<Argument>(Op))
00594       ActualF = A->getParent();
00595     assert(ActualF && "Unimplemented function local metadata case!");
00596 
00597     Assert2(ActualF == F, "function-local metadata used in wrong function",
00598             &MD, Op);
00599   }
00600 }
00601 
00602 void Verifier::visitComdat(const Comdat &C) {
00603   // All Comdat::SelectionKind values other than Comdat::Any require a
00604   // GlobalValue with the same name as the Comdat.
00605   const GlobalValue *GV = M->getNamedValue(C.getName());
00606   if (C.getSelectionKind() != Comdat::Any)
00607     Assert1(GV,
00608             "comdat selection kind requires a global value with the same name",
00609             &C);
00610   // The Module is invalid if the GlobalValue has private linkage.  Entities
00611   // with private linkage don't have entries in the symbol table.
00612   if (GV)
00613     Assert1(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
00614             GV);
00615 }
00616 
00617 void Verifier::visitModuleIdents(const Module &M) {
00618   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
00619   if (!Idents) 
00620     return;
00621   
00622   // llvm.ident takes a list of metadata entry. Each entry has only one string.
00623   // Scan each llvm.ident entry and make sure that this requirement is met.
00624   for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
00625     const MDNode *N = Idents->getOperand(i);
00626     Assert1(N->getNumOperands() == 1,
00627             "incorrect number of operands in llvm.ident metadata", N);
00628     Assert1(isa<MDString>(N->getOperand(0)),
00629             ("invalid value for llvm.ident metadata entry operand"
00630              "(the operand should be a string)"),
00631             N->getOperand(0));
00632   } 
00633 }
00634 
00635 void Verifier::visitModuleFlags(const Module &M) {
00636   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
00637   if (!Flags) return;
00638 
00639   // Scan each flag, and track the flags and requirements.
00640   DenseMap<const MDString*, const MDNode*> SeenIDs;
00641   SmallVector<const MDNode*, 16> Requirements;
00642   for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
00643     visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
00644   }
00645 
00646   // Validate that the requirements in the module are valid.
00647   for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
00648     const MDNode *Requirement = Requirements[I];
00649     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
00650     const Value *ReqValue = Requirement->getOperand(1);
00651 
00652     const MDNode *Op = SeenIDs.lookup(Flag);
00653     if (!Op) {
00654       CheckFailed("invalid requirement on flag, flag is not present in module",
00655                   Flag);
00656       continue;
00657     }
00658 
00659     if (Op->getOperand(2) != ReqValue) {
00660       CheckFailed(("invalid requirement on flag, "
00661                    "flag does not have the required value"),
00662                   Flag);
00663       continue;
00664     }
00665   }
00666 }
00667 
00668 void
00669 Verifier::visitModuleFlag(const MDNode *Op,
00670                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
00671                           SmallVectorImpl<const MDNode *> &Requirements) {
00672   // Each module flag should have three arguments, the merge behavior (a
00673   // constant int), the flag ID (an MDString), and the value.
00674   Assert1(Op->getNumOperands() == 3,
00675           "incorrect number of operands in module flag", Op);
00676   Module::ModFlagBehavior MFB;
00677   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
00678     Assert1(
00679         dyn_cast<ConstantInt>(Op->getOperand(0)),
00680         "invalid behavior operand in module flag (expected constant integer)",
00681         Op->getOperand(0));
00682     Assert1(false,
00683             "invalid behavior operand in module flag (unexpected constant)",
00684             Op->getOperand(0));
00685   }
00686   MDString *ID = dyn_cast<MDString>(Op->getOperand(1));
00687   Assert1(ID,
00688           "invalid ID operand in module flag (expected metadata string)",
00689           Op->getOperand(1));
00690 
00691   // Sanity check the values for behaviors with additional requirements.
00692   switch (MFB) {
00693   case Module::Error:
00694   case Module::Warning:
00695   case Module::Override:
00696     // These behavior types accept any value.
00697     break;
00698 
00699   case Module::Require: {
00700     // The value should itself be an MDNode with two operands, a flag ID (an
00701     // MDString), and a value.
00702     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
00703     Assert1(Value && Value->getNumOperands() == 2,
00704             "invalid value for 'require' module flag (expected metadata pair)",
00705             Op->getOperand(2));
00706     Assert1(isa<MDString>(Value->getOperand(0)),
00707             ("invalid value for 'require' module flag "
00708              "(first value operand should be a string)"),
00709             Value->getOperand(0));
00710 
00711     // Append it to the list of requirements, to check once all module flags are
00712     // scanned.
00713     Requirements.push_back(Value);
00714     break;
00715   }
00716 
00717   case Module::Append:
00718   case Module::AppendUnique: {
00719     // These behavior types require the operand be an MDNode.
00720     Assert1(isa<MDNode>(Op->getOperand(2)),
00721             "invalid value for 'append'-type module flag "
00722             "(expected a metadata node)", Op->getOperand(2));
00723     break;
00724   }
00725   }
00726 
00727   // Unless this is a "requires" flag, check the ID is unique.
00728   if (MFB != Module::Require) {
00729     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
00730     Assert1(Inserted,
00731             "module flag identifiers must be unique (or of 'require' type)",
00732             ID);
00733   }
00734 }
00735 
00736 void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
00737                                     bool isFunction, const Value *V) {
00738   unsigned Slot = ~0U;
00739   for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
00740     if (Attrs.getSlotIndex(I) == Idx) {
00741       Slot = I;
00742       break;
00743     }
00744 
00745   assert(Slot != ~0U && "Attribute set inconsistency!");
00746 
00747   for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
00748          I != E; ++I) {
00749     if (I->isStringAttribute())
00750       continue;
00751 
00752     if (I->getKindAsEnum() == Attribute::NoReturn ||
00753         I->getKindAsEnum() == Attribute::NoUnwind ||
00754         I->getKindAsEnum() == Attribute::NoInline ||
00755         I->getKindAsEnum() == Attribute::AlwaysInline ||
00756         I->getKindAsEnum() == Attribute::OptimizeForSize ||
00757         I->getKindAsEnum() == Attribute::StackProtect ||
00758         I->getKindAsEnum() == Attribute::StackProtectReq ||
00759         I->getKindAsEnum() == Attribute::StackProtectStrong ||
00760         I->getKindAsEnum() == Attribute::NoRedZone ||
00761         I->getKindAsEnum() == Attribute::NoImplicitFloat ||
00762         I->getKindAsEnum() == Attribute::Naked ||
00763         I->getKindAsEnum() == Attribute::InlineHint ||
00764         I->getKindAsEnum() == Attribute::StackAlignment ||
00765         I->getKindAsEnum() == Attribute::UWTable ||
00766         I->getKindAsEnum() == Attribute::NonLazyBind ||
00767         I->getKindAsEnum() == Attribute::ReturnsTwice ||
00768         I->getKindAsEnum() == Attribute::SanitizeAddress ||
00769         I->getKindAsEnum() == Attribute::SanitizeThread ||
00770         I->getKindAsEnum() == Attribute::SanitizeMemory ||
00771         I->getKindAsEnum() == Attribute::MinSize ||
00772         I->getKindAsEnum() == Attribute::NoDuplicate ||
00773         I->getKindAsEnum() == Attribute::Builtin ||
00774         I->getKindAsEnum() == Attribute::NoBuiltin ||
00775         I->getKindAsEnum() == Attribute::Cold ||
00776         I->getKindAsEnum() == Attribute::OptimizeNone ||
00777         I->getKindAsEnum() == Attribute::JumpTable) {
00778       if (!isFunction) {
00779         CheckFailed("Attribute '" + I->getAsString() +
00780                     "' only applies to functions!", V);
00781         return;
00782       }
00783     } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
00784                I->getKindAsEnum() == Attribute::ReadNone) {
00785       if (Idx == 0) {
00786         CheckFailed("Attribute '" + I->getAsString() +
00787                     "' does not apply to function returns");
00788         return;
00789       }
00790     } else if (isFunction) {
00791       CheckFailed("Attribute '" + I->getAsString() +
00792                   "' does not apply to functions!", V);
00793       return;
00794     }
00795   }
00796 }
00797 
00798 // VerifyParameterAttrs - Check the given attributes for an argument or return
00799 // value of the specified type.  The value V is printed in error messages.
00800 void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
00801                                     bool isReturnValue, const Value *V) {
00802   if (!Attrs.hasAttributes(Idx))
00803     return;
00804 
00805   VerifyAttributeTypes(Attrs, Idx, false, V);
00806 
00807   if (isReturnValue)
00808     Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
00809             !Attrs.hasAttribute(Idx, Attribute::Nest) &&
00810             !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
00811             !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
00812             !Attrs.hasAttribute(Idx, Attribute::Returned) &&
00813             !Attrs.hasAttribute(Idx, Attribute::InAlloca),
00814             "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
00815             "'returned' do not apply to return values!", V);
00816 
00817   // Check for mutually incompatible attributes.  Only inreg is compatible with
00818   // sret.
00819   unsigned AttrCount = 0;
00820   AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
00821   AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
00822   AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
00823                Attrs.hasAttribute(Idx, Attribute::InReg);
00824   AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
00825   Assert1(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
00826                           "and 'sret' are incompatible!", V);
00827 
00828   Assert1(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
00829             Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
00830           "'inalloca and readonly' are incompatible!", V);
00831 
00832   Assert1(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
00833             Attrs.hasAttribute(Idx, Attribute::Returned)), "Attributes "
00834           "'sret and returned' are incompatible!", V);
00835 
00836   Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
00837             Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes "
00838           "'zeroext and signext' are incompatible!", V);
00839 
00840   Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
00841             Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
00842           "'readnone and readonly' are incompatible!", V);
00843 
00844   Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
00845             Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes "
00846           "'noinline and alwaysinline' are incompatible!", V);
00847 
00848   Assert1(!AttrBuilder(Attrs, Idx).
00849             hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx),
00850           "Wrong types for attribute: " +
00851           AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), V);
00852 
00853   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
00854     if (!PTy->getElementType()->isSized()) {
00855       Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
00856               !Attrs.hasAttribute(Idx, Attribute::InAlloca),
00857               "Attributes 'byval' and 'inalloca' do not support unsized types!",
00858               V);
00859     }
00860   } else {
00861     Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal),
00862             "Attribute 'byval' only applies to parameters with pointer type!",
00863             V);
00864   }
00865 }
00866 
00867 // VerifyFunctionAttrs - Check parameter attributes against a function type.
00868 // The value V is printed in error messages.
00869 void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
00870                                    const Value *V) {
00871   if (Attrs.isEmpty())
00872     return;
00873 
00874   bool SawNest = false;
00875   bool SawReturned = false;
00876   bool SawSRet = false;
00877 
00878   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
00879     unsigned Idx = Attrs.getSlotIndex(i);
00880 
00881     Type *Ty;
00882     if (Idx == 0)
00883       Ty = FT->getReturnType();
00884     else if (Idx-1 < FT->getNumParams())
00885       Ty = FT->getParamType(Idx-1);
00886     else
00887       break;  // VarArgs attributes, verified elsewhere.
00888 
00889     VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
00890 
00891     if (Idx == 0)
00892       continue;
00893 
00894     if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
00895       Assert1(!SawNest, "More than one parameter has attribute nest!", V);
00896       SawNest = true;
00897     }
00898 
00899     if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
00900       Assert1(!SawReturned, "More than one parameter has attribute returned!",
00901               V);
00902       Assert1(Ty->canLosslesslyBitCastTo(FT->getReturnType()), "Incompatible "
00903               "argument and return types for 'returned' attribute", V);
00904       SawReturned = true;
00905     }
00906 
00907     if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
00908       Assert1(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
00909       Assert1(Idx == 1 || Idx == 2,
00910               "Attribute 'sret' is not on first or second parameter!", V);
00911       SawSRet = true;
00912     }
00913 
00914     if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
00915       Assert1(Idx == FT->getNumParams(),
00916               "inalloca isn't on the last parameter!", V);
00917     }
00918   }
00919 
00920   if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
00921     return;
00922 
00923   VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
00924 
00925   Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
00926                                Attribute::ReadNone) &&
00927             Attrs.hasAttribute(AttributeSet::FunctionIndex,
00928                                Attribute::ReadOnly)),
00929           "Attributes 'readnone and readonly' are incompatible!", V);
00930 
00931   Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
00932                                Attribute::NoInline) &&
00933             Attrs.hasAttribute(AttributeSet::FunctionIndex,
00934                                Attribute::AlwaysInline)),
00935           "Attributes 'noinline and alwaysinline' are incompatible!", V);
00936 
00937   if (Attrs.hasAttribute(AttributeSet::FunctionIndex, 
00938                          Attribute::OptimizeNone)) {
00939     Assert1(Attrs.hasAttribute(AttributeSet::FunctionIndex,
00940                                Attribute::NoInline),
00941             "Attribute 'optnone' requires 'noinline'!", V);
00942 
00943     Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
00944                                 Attribute::OptimizeForSize),
00945             "Attributes 'optsize and optnone' are incompatible!", V);
00946 
00947     Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
00948                                 Attribute::MinSize),
00949             "Attributes 'minsize and optnone' are incompatible!", V);
00950   }
00951 
00952   if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
00953                          Attribute::JumpTable)) {
00954     const GlobalValue *GV = cast<GlobalValue>(V);
00955     Assert1(GV->hasUnnamedAddr(),
00956             "Attribute 'jumptable' requires 'unnamed_addr'", V);
00957 
00958   }
00959 }
00960 
00961 void Verifier::VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy) {
00962   // Get the size of the types in bits, we'll need this later
00963   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
00964   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
00965 
00966   // BitCast implies a no-op cast of type only. No bits change.
00967   // However, you can't cast pointers to anything but pointers.
00968   Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
00969           "Bitcast requires both operands to be pointer or neither", V);
00970   Assert1(SrcBitSize == DestBitSize,
00971           "Bitcast requires types of same width", V);
00972 
00973   // Disallow aggregates.
00974   Assert1(!SrcTy->isAggregateType(),
00975           "Bitcast operand must not be aggregate", V);
00976   Assert1(!DestTy->isAggregateType(),
00977           "Bitcast type must not be aggregate", V);
00978 
00979   // Without datalayout, assume all address spaces are the same size.
00980   // Don't check if both types are not pointers.
00981   // Skip casts between scalars and vectors.
00982   if (!DL ||
00983       !SrcTy->isPtrOrPtrVectorTy() ||
00984       !DestTy->isPtrOrPtrVectorTy() ||
00985       SrcTy->isVectorTy() != DestTy->isVectorTy()) {
00986     return;
00987   }
00988 
00989   unsigned SrcAS = SrcTy->getPointerAddressSpace();
00990   unsigned DstAS = DestTy->getPointerAddressSpace();
00991 
00992   Assert1(SrcAS == DstAS,
00993           "Bitcasts between pointers of different address spaces is not legal."
00994           "Use AddrSpaceCast instead.", V);
00995 }
00996 
00997 void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
00998   if (CE->getOpcode() == Instruction::BitCast) {
00999     Type *SrcTy = CE->getOperand(0)->getType();
01000     Type *DstTy = CE->getType();
01001     VerifyBitcastType(CE, DstTy, SrcTy);
01002   }
01003 }
01004 
01005 bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
01006   if (Attrs.getNumSlots() == 0)
01007     return true;
01008 
01009   unsigned LastSlot = Attrs.getNumSlots() - 1;
01010   unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
01011   if (LastIndex <= Params
01012       || (LastIndex == AttributeSet::FunctionIndex
01013           && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
01014     return true;
01015 
01016   return false;
01017 }
01018 
01019 // visitFunction - Verify that a function is ok.
01020 //
01021 void Verifier::visitFunction(const Function &F) {
01022   // Check function arguments.
01023   FunctionType *FT = F.getFunctionType();
01024   unsigned NumArgs = F.arg_size();
01025 
01026   Assert1(Context == &F.getContext(),
01027           "Function context does not match Module context!", &F);
01028 
01029   Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
01030   Assert2(FT->getNumParams() == NumArgs,
01031           "# formal arguments must match # of arguments for function type!",
01032           &F, FT);
01033   Assert1(F.getReturnType()->isFirstClassType() ||
01034           F.getReturnType()->isVoidTy() ||
01035           F.getReturnType()->isStructTy(),
01036           "Functions cannot return aggregate values!", &F);
01037 
01038   Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
01039           "Invalid struct return type!", &F);
01040 
01041   AttributeSet Attrs = F.getAttributes();
01042 
01043   Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
01044           "Attribute after last parameter!", &F);
01045 
01046   // Check function attributes.
01047   VerifyFunctionAttrs(FT, Attrs, &F);
01048 
01049   // On function declarations/definitions, we do not support the builtin
01050   // attribute. We do not check this in VerifyFunctionAttrs since that is
01051   // checking for Attributes that can/can not ever be on functions.
01052   Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
01053                               Attribute::Builtin),
01054           "Attribute 'builtin' can only be applied to a callsite.", &F);
01055 
01056   // Check that this function meets the restrictions on this calling convention.
01057   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
01058   // restrictions can be lifted.
01059   switch (F.getCallingConv()) {
01060   default:
01061   case CallingConv::C:
01062     break;
01063   case CallingConv::Fast:
01064   case CallingConv::Cold:
01065   case CallingConv::Intel_OCL_BI:
01066   case CallingConv::PTX_Kernel:
01067   case CallingConv::PTX_Device:
01068     Assert1(!F.isVarArg(), "Calling convention does not support varargs or "
01069                            "perfect forwarding!", &F);
01070     break;
01071   }
01072 
01073   bool isLLVMdotName = F.getName().size() >= 5 &&
01074                        F.getName().substr(0, 5) == "llvm.";
01075 
01076   // Check that the argument values match the function type for this function...
01077   unsigned i = 0;
01078   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
01079        ++I, ++i) {
01080     Assert2(I->getType() == FT->getParamType(i),
01081             "Argument value does not match function argument type!",
01082             I, FT->getParamType(i));
01083     Assert1(I->getType()->isFirstClassType(),
01084             "Function arguments must have first-class types!", I);
01085     if (!isLLVMdotName)
01086       Assert2(!I->getType()->isMetadataTy(),
01087               "Function takes metadata but isn't an intrinsic", I, &F);
01088   }
01089 
01090   if (F.isMaterializable()) {
01091     // Function has a body somewhere we can't see.
01092   } else if (F.isDeclaration()) {
01093     Assert1(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
01094             "invalid linkage type for function declaration", &F);
01095   } else {
01096     // Verify that this function (which has a body) is not named "llvm.*".  It
01097     // is not legal to define intrinsics.
01098     Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
01099 
01100     // Check the entry node
01101     const BasicBlock *Entry = &F.getEntryBlock();
01102     Assert1(pred_begin(Entry) == pred_end(Entry),
01103             "Entry block to function must not have predecessors!", Entry);
01104 
01105     // The address of the entry block cannot be taken, unless it is dead.
01106     if (Entry->hasAddressTaken()) {
01107       Assert1(!BlockAddress::lookup(Entry)->isConstantUsed(),
01108               "blockaddress may not be used with the entry block!", Entry);
01109     }
01110   }
01111 
01112   // If this function is actually an intrinsic, verify that it is only used in
01113   // direct call/invokes, never having its "address taken".
01114   if (F.getIntrinsicID()) {
01115     const User *U;
01116     if (F.hasAddressTaken(&U))
01117       Assert1(0, "Invalid user of intrinsic instruction!", U);
01118   }
01119 
01120   Assert1(!F.hasDLLImportStorageClass() ||
01121           (F.isDeclaration() && F.hasExternalLinkage()) ||
01122           F.hasAvailableExternallyLinkage(),
01123           "Function is marked as dllimport, but not external.", &F);
01124 }
01125 
01126 // verifyBasicBlock - Verify that a basic block is well formed...
01127 //
01128 void Verifier::visitBasicBlock(BasicBlock &BB) {
01129   InstsInThisBlock.clear();
01130 
01131   // Ensure that basic blocks have terminators!
01132   Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
01133 
01134   // Check constraints that this basic block imposes on all of the PHI nodes in
01135   // it.
01136   if (isa<PHINode>(BB.front())) {
01137     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
01138     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
01139     std::sort(Preds.begin(), Preds.end());
01140     PHINode *PN;
01141     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
01142       // Ensure that PHI nodes have at least one entry!
01143       Assert1(PN->getNumIncomingValues() != 0,
01144               "PHI nodes must have at least one entry.  If the block is dead, "
01145               "the PHI should be removed!", PN);
01146       Assert1(PN->getNumIncomingValues() == Preds.size(),
01147               "PHINode should have one entry for each predecessor of its "
01148               "parent basic block!", PN);
01149 
01150       // Get and sort all incoming values in the PHI node...
01151       Values.clear();
01152       Values.reserve(PN->getNumIncomingValues());
01153       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
01154         Values.push_back(std::make_pair(PN->getIncomingBlock(i),
01155                                         PN->getIncomingValue(i)));
01156       std::sort(Values.begin(), Values.end());
01157 
01158       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
01159         // Check to make sure that if there is more than one entry for a
01160         // particular basic block in this PHI node, that the incoming values are
01161         // all identical.
01162         //
01163         Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
01164                 Values[i].second == Values[i-1].second,
01165                 "PHI node has multiple entries for the same basic block with "
01166                 "different incoming values!", PN, Values[i].first,
01167                 Values[i].second, Values[i-1].second);
01168 
01169         // Check to make sure that the predecessors and PHI node entries are
01170         // matched up.
01171         Assert3(Values[i].first == Preds[i],
01172                 "PHI node entries do not match predecessors!", PN,
01173                 Values[i].first, Preds[i]);
01174       }
01175     }
01176   }
01177 }
01178 
01179 void Verifier::visitTerminatorInst(TerminatorInst &I) {
01180   // Ensure that terminators only exist at the end of the basic block.
01181   Assert1(&I == I.getParent()->getTerminator(),
01182           "Terminator found in the middle of a basic block!", I.getParent());
01183   visitInstruction(I);
01184 }
01185 
01186 void Verifier::visitBranchInst(BranchInst &BI) {
01187   if (BI.isConditional()) {
01188     Assert2(BI.getCondition()->getType()->isIntegerTy(1),
01189             "Branch condition is not 'i1' type!", &BI, BI.getCondition());
01190   }
01191   visitTerminatorInst(BI);
01192 }
01193 
01194 void Verifier::visitReturnInst(ReturnInst &RI) {
01195   Function *F = RI.getParent()->getParent();
01196   unsigned N = RI.getNumOperands();
01197   if (F->getReturnType()->isVoidTy())
01198     Assert2(N == 0,
01199             "Found return instr that returns non-void in Function of void "
01200             "return type!", &RI, F->getReturnType());
01201   else
01202     Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
01203             "Function return type does not match operand "
01204             "type of return inst!", &RI, F->getReturnType());
01205 
01206   // Check to make sure that the return value has necessary properties for
01207   // terminators...
01208   visitTerminatorInst(RI);
01209 }
01210 
01211 void Verifier::visitSwitchInst(SwitchInst &SI) {
01212   // Check to make sure that all of the constants in the switch instruction
01213   // have the same type as the switched-on value.
01214   Type *SwitchTy = SI.getCondition()->getType();
01215   SmallPtrSet<ConstantInt*, 32> Constants;
01216   for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
01217     Assert1(i.getCaseValue()->getType() == SwitchTy,
01218             "Switch constants must all be same type as switch value!", &SI);
01219     Assert2(Constants.insert(i.getCaseValue()),
01220             "Duplicate integer as switch case", &SI, i.getCaseValue());
01221   }
01222 
01223   visitTerminatorInst(SI);
01224 }
01225 
01226 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
01227   Assert1(BI.getAddress()->getType()->isPointerTy(),
01228           "Indirectbr operand must have pointer type!", &BI);
01229   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
01230     Assert1(BI.getDestination(i)->getType()->isLabelTy(),
01231             "Indirectbr destinations must all have pointer type!", &BI);
01232 
01233   visitTerminatorInst(BI);
01234 }
01235 
01236 void Verifier::visitSelectInst(SelectInst &SI) {
01237   Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
01238                                           SI.getOperand(2)),
01239           "Invalid operands for select instruction!", &SI);
01240 
01241   Assert1(SI.getTrueValue()->getType() == SI.getType(),
01242           "Select values must have same type as select instruction!", &SI);
01243   visitInstruction(SI);
01244 }
01245 
01246 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
01247 /// a pass, if any exist, it's an error.
01248 ///
01249 void Verifier::visitUserOp1(Instruction &I) {
01250   Assert1(0, "User-defined operators should not live outside of a pass!", &I);
01251 }
01252 
01253 void Verifier::visitTruncInst(TruncInst &I) {
01254   // Get the source and destination types
01255   Type *SrcTy = I.getOperand(0)->getType();
01256   Type *DestTy = I.getType();
01257 
01258   // Get the size of the types in bits, we'll need this later
01259   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
01260   unsigned DestBitSize = DestTy->getScalarSizeInBits();
01261 
01262   Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
01263   Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
01264   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
01265           "trunc source and destination must both be a vector or neither", &I);
01266   Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
01267 
01268   visitInstruction(I);
01269 }
01270 
01271 void Verifier::visitZExtInst(ZExtInst &I) {
01272   // Get the source and destination types
01273   Type *SrcTy = I.getOperand(0)->getType();
01274   Type *DestTy = I.getType();
01275 
01276   // Get the size of the types in bits, we'll need this later
01277   Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
01278   Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
01279   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
01280           "zext source and destination must both be a vector or neither", &I);
01281   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
01282   unsigned DestBitSize = DestTy->getScalarSizeInBits();
01283 
01284   Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
01285 
01286   visitInstruction(I);
01287 }
01288 
01289 void Verifier::visitSExtInst(SExtInst &I) {
01290   // Get the source and destination types
01291   Type *SrcTy = I.getOperand(0)->getType();
01292   Type *DestTy = I.getType();
01293 
01294   // Get the size of the types in bits, we'll need this later
01295   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
01296   unsigned DestBitSize = DestTy->getScalarSizeInBits();
01297 
01298   Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
01299   Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
01300   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
01301           "sext source and destination must both be a vector or neither", &I);
01302   Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
01303 
01304   visitInstruction(I);
01305 }
01306 
01307 void Verifier::visitFPTruncInst(FPTruncInst &I) {
01308   // Get the source and destination types
01309   Type *SrcTy = I.getOperand(0)->getType();
01310   Type *DestTy = I.getType();
01311   // Get the size of the types in bits, we'll need this later
01312   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
01313   unsigned DestBitSize = DestTy->getScalarSizeInBits();
01314 
01315   Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
01316   Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
01317   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
01318           "fptrunc source and destination must both be a vector or neither",&I);
01319   Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
01320 
01321   visitInstruction(I);
01322 }
01323 
01324 void Verifier::visitFPExtInst(FPExtInst &I) {
01325   // Get the source and destination types
01326   Type *SrcTy = I.getOperand(0)->getType();
01327   Type *DestTy = I.getType();
01328 
01329   // Get the size of the types in bits, we'll need this later
01330   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
01331   unsigned DestBitSize = DestTy->getScalarSizeInBits();
01332 
01333   Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
01334   Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
01335   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
01336           "fpext source and destination must both be a vector or neither", &I);
01337   Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
01338 
01339   visitInstruction(I);
01340 }
01341 
01342 void Verifier::visitUIToFPInst(UIToFPInst &I) {
01343   // Get the source and destination types
01344   Type *SrcTy = I.getOperand(0)->getType();
01345   Type *DestTy = I.getType();
01346 
01347   bool SrcVec = SrcTy->isVectorTy();
01348   bool DstVec = DestTy->isVectorTy();
01349 
01350   Assert1(SrcVec == DstVec,
01351           "UIToFP source and dest must both be vector or scalar", &I);
01352   Assert1(SrcTy->isIntOrIntVectorTy(),
01353           "UIToFP source must be integer or integer vector", &I);
01354   Assert1(DestTy->isFPOrFPVectorTy(),
01355           "UIToFP result must be FP or FP vector", &I);
01356 
01357   if (SrcVec && DstVec)
01358     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
01359             cast<VectorType>(DestTy)->getNumElements(),
01360             "UIToFP source and dest vector length mismatch", &I);
01361 
01362   visitInstruction(I);
01363 }
01364 
01365 void Verifier::visitSIToFPInst(SIToFPInst &I) {
01366   // Get the source and destination types
01367   Type *SrcTy = I.getOperand(0)->getType();
01368   Type *DestTy = I.getType();
01369 
01370   bool SrcVec = SrcTy->isVectorTy();
01371   bool DstVec = DestTy->isVectorTy();
01372 
01373   Assert1(SrcVec == DstVec,
01374           "SIToFP source and dest must both be vector or scalar", &I);
01375   Assert1(SrcTy->isIntOrIntVectorTy(),
01376           "SIToFP source must be integer or integer vector", &I);
01377   Assert1(DestTy->isFPOrFPVectorTy(),
01378           "SIToFP result must be FP or FP vector", &I);
01379 
01380   if (SrcVec && DstVec)
01381     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
01382             cast<VectorType>(DestTy)->getNumElements(),
01383             "SIToFP source and dest vector length mismatch", &I);
01384 
01385   visitInstruction(I);
01386 }
01387 
01388 void Verifier::visitFPToUIInst(FPToUIInst &I) {
01389   // Get the source and destination types
01390   Type *SrcTy = I.getOperand(0)->getType();
01391   Type *DestTy = I.getType();
01392 
01393   bool SrcVec = SrcTy->isVectorTy();
01394   bool DstVec = DestTy->isVectorTy();
01395 
01396   Assert1(SrcVec == DstVec,
01397           "FPToUI source and dest must both be vector or scalar", &I);
01398   Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
01399           &I);
01400   Assert1(DestTy->isIntOrIntVectorTy(),
01401           "FPToUI result must be integer or integer vector", &I);
01402 
01403   if (SrcVec && DstVec)
01404     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
01405             cast<VectorType>(DestTy)->getNumElements(),
01406             "FPToUI source and dest vector length mismatch", &I);
01407 
01408   visitInstruction(I);
01409 }
01410 
01411 void Verifier::visitFPToSIInst(FPToSIInst &I) {
01412   // Get the source and destination types
01413   Type *SrcTy = I.getOperand(0)->getType();
01414   Type *DestTy = I.getType();
01415 
01416   bool SrcVec = SrcTy->isVectorTy();
01417   bool DstVec = DestTy->isVectorTy();
01418 
01419   Assert1(SrcVec == DstVec,
01420           "FPToSI source and dest must both be vector or scalar", &I);
01421   Assert1(SrcTy->isFPOrFPVectorTy(),
01422           "FPToSI source must be FP or FP vector", &I);
01423   Assert1(DestTy->isIntOrIntVectorTy(),
01424           "FPToSI result must be integer or integer vector", &I);
01425 
01426   if (SrcVec && DstVec)
01427     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
01428             cast<VectorType>(DestTy)->getNumElements(),
01429             "FPToSI source and dest vector length mismatch", &I);
01430 
01431   visitInstruction(I);
01432 }
01433 
01434 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
01435   // Get the source and destination types
01436   Type *SrcTy = I.getOperand(0)->getType();
01437   Type *DestTy = I.getType();
01438 
01439   Assert1(SrcTy->getScalarType()->isPointerTy(),
01440           "PtrToInt source must be pointer", &I);
01441   Assert1(DestTy->getScalarType()->isIntegerTy(),
01442           "PtrToInt result must be integral", &I);
01443   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
01444           "PtrToInt type mismatch", &I);
01445 
01446   if (SrcTy->isVectorTy()) {
01447     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
01448     VectorType *VDest = dyn_cast<VectorType>(DestTy);
01449     Assert1(VSrc->getNumElements() == VDest->getNumElements(),
01450           "PtrToInt Vector width mismatch", &I);
01451   }
01452 
01453   visitInstruction(I);
01454 }
01455 
01456 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
01457   // Get the source and destination types
01458   Type *SrcTy = I.getOperand(0)->getType();
01459   Type *DestTy = I.getType();
01460 
01461   Assert1(SrcTy->getScalarType()->isIntegerTy(),
01462           "IntToPtr source must be an integral", &I);
01463   Assert1(DestTy->getScalarType()->isPointerTy(),
01464           "IntToPtr result must be a pointer",&I);
01465   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
01466           "IntToPtr type mismatch", &I);
01467   if (SrcTy->isVectorTy()) {
01468     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
01469     VectorType *VDest = dyn_cast<VectorType>(DestTy);
01470     Assert1(VSrc->getNumElements() == VDest->getNumElements(),
01471           "IntToPtr Vector width mismatch", &I);
01472   }
01473   visitInstruction(I);
01474 }
01475 
01476 void Verifier::visitBitCastInst(BitCastInst &I) {
01477   Type *SrcTy = I.getOperand(0)->getType();
01478   Type *DestTy = I.getType();
01479   VerifyBitcastType(&I, DestTy, SrcTy);
01480   visitInstruction(I);
01481 }
01482 
01483 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
01484   Type *SrcTy = I.getOperand(0)->getType();
01485   Type *DestTy = I.getType();
01486 
01487   Assert1(SrcTy->isPtrOrPtrVectorTy(),
01488           "AddrSpaceCast source must be a pointer", &I);
01489   Assert1(DestTy->isPtrOrPtrVectorTy(),
01490           "AddrSpaceCast result must be a pointer", &I);
01491   Assert1(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
01492           "AddrSpaceCast must be between different address spaces", &I);
01493   if (SrcTy->isVectorTy())
01494     Assert1(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
01495             "AddrSpaceCast vector pointer number of elements mismatch", &I);
01496   visitInstruction(I);
01497 }
01498 
01499 /// visitPHINode - Ensure that a PHI node is well formed.
01500 ///
01501 void Verifier::visitPHINode(PHINode &PN) {
01502   // Ensure that the PHI nodes are all grouped together at the top of the block.
01503   // This can be tested by checking whether the instruction before this is
01504   // either nonexistent (because this is begin()) or is a PHI node.  If not,
01505   // then there is some other instruction before a PHI.
01506   Assert2(&PN == &PN.getParent()->front() ||
01507           isa<PHINode>(--BasicBlock::iterator(&PN)),
01508           "PHI nodes not grouped at top of basic block!",
01509           &PN, PN.getParent());
01510 
01511   // Check that all of the values of the PHI node have the same type as the
01512   // result, and that the incoming blocks are really basic blocks.
01513   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
01514     Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
01515             "PHI node operands are not the same type as the result!", &PN);
01516   }
01517 
01518   // All other PHI node constraints are checked in the visitBasicBlock method.
01519 
01520   visitInstruction(PN);
01521 }
01522 
01523 void Verifier::VerifyCallSite(CallSite CS) {
01524   Instruction *I = CS.getInstruction();
01525 
01526   Assert1(CS.getCalledValue()->getType()->isPointerTy(),
01527           "Called function must be a pointer!", I);
01528   PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
01529 
01530   Assert1(FPTy->getElementType()->isFunctionTy(),
01531           "Called function is not pointer to function type!", I);
01532   FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
01533 
01534   // Verify that the correct number of arguments are being passed
01535   if (FTy->isVarArg())
01536     Assert1(CS.arg_size() >= FTy->getNumParams(),
01537             "Called function requires more parameters than were provided!",I);
01538   else
01539     Assert1(CS.arg_size() == FTy->getNumParams(),
01540             "Incorrect number of arguments passed to called function!", I);
01541 
01542   // Verify that all arguments to the call match the function type.
01543   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
01544     Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
01545             "Call parameter type does not match function signature!",
01546             CS.getArgument(i), FTy->getParamType(i), I);
01547 
01548   AttributeSet Attrs = CS.getAttributes();
01549 
01550   Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
01551           "Attribute after last parameter!", I);
01552 
01553   // Verify call attributes.
01554   VerifyFunctionAttrs(FTy, Attrs, I);
01555 
01556   // Conservatively check the inalloca argument.
01557   // We have a bug if we can find that there is an underlying alloca without
01558   // inalloca.
01559   if (CS.hasInAllocaArgument()) {
01560     Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
01561     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
01562       Assert2(AI->isUsedWithInAlloca(),
01563               "inalloca argument for call has mismatched alloca", AI, I);
01564   }
01565 
01566   if (FTy->isVarArg()) {
01567     // FIXME? is 'nest' even legal here?
01568     bool SawNest = false;
01569     bool SawReturned = false;
01570 
01571     for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
01572       if (Attrs.hasAttribute(Idx, Attribute::Nest))
01573         SawNest = true;
01574       if (Attrs.hasAttribute(Idx, Attribute::Returned))
01575         SawReturned = true;
01576     }
01577 
01578     // Check attributes on the varargs part.
01579     for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
01580       Type *Ty = CS.getArgument(Idx-1)->getType();
01581       VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
01582 
01583       if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
01584         Assert1(!SawNest, "More than one parameter has attribute nest!", I);
01585         SawNest = true;
01586       }
01587 
01588       if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
01589         Assert1(!SawReturned, "More than one parameter has attribute returned!",
01590                 I);
01591         Assert1(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
01592                 "Incompatible argument and return types for 'returned' "
01593                 "attribute", I);
01594         SawReturned = true;
01595       }
01596 
01597       Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet),
01598               "Attribute 'sret' cannot be used for vararg call arguments!", I);
01599 
01600       if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
01601         Assert1(Idx == CS.arg_size(), "inalloca isn't on the last argument!",
01602                 I);
01603     }
01604   }
01605 
01606   // Verify that there's no metadata unless it's a direct call to an intrinsic.
01607   if (CS.getCalledFunction() == nullptr ||
01608       !CS.getCalledFunction()->getName().startswith("llvm.")) {
01609     for (FunctionType::param_iterator PI = FTy->param_begin(),
01610            PE = FTy->param_end(); PI != PE; ++PI)
01611       Assert1(!(*PI)->isMetadataTy(),
01612               "Function has metadata parameter but isn't an intrinsic", I);
01613   }
01614 
01615   visitInstruction(*I);
01616 }
01617 
01618 /// Two types are "congruent" if they are identical, or if they are both pointer
01619 /// types with different pointee types and the same address space.
01620 static bool isTypeCongruent(Type *L, Type *R) {
01621   if (L == R)
01622     return true;
01623   PointerType *PL = dyn_cast<PointerType>(L);
01624   PointerType *PR = dyn_cast<PointerType>(R);
01625   if (!PL || !PR)
01626     return false;
01627   return PL->getAddressSpace() == PR->getAddressSpace();
01628 }
01629 
01630 static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
01631   static const Attribute::AttrKind ABIAttrs[] = {
01632       Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
01633       Attribute::InReg, Attribute::Returned};
01634   AttrBuilder Copy;
01635   for (auto AK : ABIAttrs) {
01636     if (Attrs.hasAttribute(I + 1, AK))
01637       Copy.addAttribute(AK);
01638   }
01639   if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
01640     Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
01641   return Copy;
01642 }
01643 
01644 void Verifier::verifyMustTailCall(CallInst &CI) {
01645   Assert1(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
01646 
01647   // - The caller and callee prototypes must match.  Pointer types of
01648   //   parameters or return types may differ in pointee type, but not
01649   //   address space.
01650   Function *F = CI.getParent()->getParent();
01651   auto GetFnTy = [](Value *V) {
01652     return cast<FunctionType>(
01653         cast<PointerType>(V->getType())->getElementType());
01654   };
01655   FunctionType *CallerTy = GetFnTy(F);
01656   FunctionType *CalleeTy = GetFnTy(CI.getCalledValue());
01657   Assert1(CallerTy->getNumParams() == CalleeTy->getNumParams(),
01658           "cannot guarantee tail call due to mismatched parameter counts", &CI);
01659   Assert1(CallerTy->isVarArg() == CalleeTy->isVarArg(),
01660           "cannot guarantee tail call due to mismatched varargs", &CI);
01661   Assert1(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
01662           "cannot guarantee tail call due to mismatched return types", &CI);
01663   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
01664     Assert1(
01665         isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
01666         "cannot guarantee tail call due to mismatched parameter types", &CI);
01667   }
01668 
01669   // - The calling conventions of the caller and callee must match.
01670   Assert1(F->getCallingConv() == CI.getCallingConv(),
01671           "cannot guarantee tail call due to mismatched calling conv", &CI);
01672 
01673   // - All ABI-impacting function attributes, such as sret, byval, inreg,
01674   //   returned, and inalloca, must match.
01675   AttributeSet CallerAttrs = F->getAttributes();
01676   AttributeSet CalleeAttrs = CI.getAttributes();
01677   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
01678     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
01679     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
01680     Assert2(CallerABIAttrs == CalleeABIAttrs,
01681             "cannot guarantee tail call due to mismatched ABI impacting "
01682             "function attributes", &CI, CI.getOperand(I));
01683   }
01684 
01685   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
01686   //   or a pointer bitcast followed by a ret instruction.
01687   // - The ret instruction must return the (possibly bitcasted) value
01688   //   produced by the call or void.
01689   Value *RetVal = &CI;
01690   Instruction *Next = CI.getNextNode();
01691 
01692   // Handle the optional bitcast.
01693   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
01694     Assert1(BI->getOperand(0) == RetVal,
01695             "bitcast following musttail call must use the call", BI);
01696     RetVal = BI;
01697     Next = BI->getNextNode();
01698   }
01699 
01700   // Check the return.
01701   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
01702   Assert1(Ret, "musttail call must be precede a ret with an optional bitcast",
01703           &CI);
01704   Assert1(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
01705           "musttail call result must be returned", Ret);
01706 }
01707 
01708 void Verifier::visitCallInst(CallInst &CI) {
01709   VerifyCallSite(&CI);
01710 
01711   if (CI.isMustTailCall())
01712     verifyMustTailCall(CI);
01713 
01714   if (Function *F = CI.getCalledFunction())
01715     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
01716       visitIntrinsicFunctionCall(ID, CI);
01717 }
01718 
01719 void Verifier::visitInvokeInst(InvokeInst &II) {
01720   VerifyCallSite(&II);
01721 
01722   // Verify that there is a landingpad instruction as the first non-PHI
01723   // instruction of the 'unwind' destination.
01724   Assert1(II.getUnwindDest()->isLandingPad(),
01725           "The unwind destination does not have a landingpad instruction!",&II);
01726 
01727   visitTerminatorInst(II);
01728 }
01729 
01730 /// visitBinaryOperator - Check that both arguments to the binary operator are
01731 /// of the same type!
01732 ///
01733 void Verifier::visitBinaryOperator(BinaryOperator &B) {
01734   Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
01735           "Both operands to a binary operator are not of the same type!", &B);
01736 
01737   switch (B.getOpcode()) {
01738   // Check that integer arithmetic operators are only used with
01739   // integral operands.
01740   case Instruction::Add:
01741   case Instruction::Sub:
01742   case Instruction::Mul:
01743   case Instruction::SDiv:
01744   case Instruction::UDiv:
01745   case Instruction::SRem:
01746   case Instruction::URem:
01747     Assert1(B.getType()->isIntOrIntVectorTy(),
01748             "Integer arithmetic operators only work with integral types!", &B);
01749     Assert1(B.getType() == B.getOperand(0)->getType(),
01750             "Integer arithmetic operators must have same type "
01751             "for operands and result!", &B);
01752     break;
01753   // Check that floating-point arithmetic operators are only used with
01754   // floating-point operands.
01755   case Instruction::FAdd:
01756   case Instruction::FSub:
01757   case Instruction::FMul:
01758   case Instruction::FDiv:
01759   case Instruction::FRem:
01760     Assert1(B.getType()->isFPOrFPVectorTy(),
01761             "Floating-point arithmetic operators only work with "
01762             "floating-point types!", &B);
01763     Assert1(B.getType() == B.getOperand(0)->getType(),
01764             "Floating-point arithmetic operators must have same type "
01765             "for operands and result!", &B);
01766     break;
01767   // Check that logical operators are only used with integral operands.
01768   case Instruction::And:
01769   case Instruction::Or:
01770   case Instruction::Xor:
01771     Assert1(B.getType()->isIntOrIntVectorTy(),
01772             "Logical operators only work with integral types!", &B);
01773     Assert1(B.getType() == B.getOperand(0)->getType(),
01774             "Logical operators must have same type for operands and result!",
01775             &B);
01776     break;
01777   case Instruction::Shl:
01778   case Instruction::LShr:
01779   case Instruction::AShr:
01780     Assert1(B.getType()->isIntOrIntVectorTy(),
01781             "Shifts only work with integral types!", &B);
01782     Assert1(B.getType() == B.getOperand(0)->getType(),
01783             "Shift return type must be same as operands!", &B);
01784     break;
01785   default:
01786     llvm_unreachable("Unknown BinaryOperator opcode!");
01787   }
01788 
01789   visitInstruction(B);
01790 }
01791 
01792 void Verifier::visitICmpInst(ICmpInst &IC) {
01793   // Check that the operands are the same type
01794   Type *Op0Ty = IC.getOperand(0)->getType();
01795   Type *Op1Ty = IC.getOperand(1)->getType();
01796   Assert1(Op0Ty == Op1Ty,
01797           "Both operands to ICmp instruction are not of the same type!", &IC);
01798   // Check that the operands are the right type
01799   Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
01800           "Invalid operand types for ICmp instruction", &IC);
01801   // Check that the predicate is valid.
01802   Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
01803           IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
01804           "Invalid predicate in ICmp instruction!", &IC);
01805 
01806   visitInstruction(IC);
01807 }
01808 
01809 void Verifier::visitFCmpInst(FCmpInst &FC) {
01810   // Check that the operands are the same type
01811   Type *Op0Ty = FC.getOperand(0)->getType();
01812   Type *Op1Ty = FC.getOperand(1)->getType();
01813   Assert1(Op0Ty == Op1Ty,
01814           "Both operands to FCmp instruction are not of the same type!", &FC);
01815   // Check that the operands are the right type
01816   Assert1(Op0Ty->isFPOrFPVectorTy(),
01817           "Invalid operand types for FCmp instruction", &FC);
01818   // Check that the predicate is valid.
01819   Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
01820           FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
01821           "Invalid predicate in FCmp instruction!", &FC);
01822 
01823   visitInstruction(FC);
01824 }
01825 
01826 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
01827   Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
01828                                               EI.getOperand(1)),
01829           "Invalid extractelement operands!", &EI);
01830   visitInstruction(EI);
01831 }
01832 
01833 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
01834   Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
01835                                              IE.getOperand(1),
01836                                              IE.getOperand(2)),
01837           "Invalid insertelement operands!", &IE);
01838   visitInstruction(IE);
01839 }
01840 
01841 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
01842   Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
01843                                              SV.getOperand(2)),
01844           "Invalid shufflevector operands!", &SV);
01845   visitInstruction(SV);
01846 }
01847 
01848 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
01849   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
01850 
01851   Assert1(isa<PointerType>(TargetTy),
01852     "GEP base pointer is not a vector or a vector of pointers", &GEP);
01853   Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
01854           "GEP into unsized type!", &GEP);
01855   Assert1(GEP.getPointerOperandType()->isVectorTy() ==
01856           GEP.getType()->isVectorTy(), "Vector GEP must return a vector value",
01857           &GEP);
01858 
01859   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
01860   Type *ElTy =
01861     GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
01862   Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
01863 
01864   Assert2(GEP.getType()->getScalarType()->isPointerTy() &&
01865           cast<PointerType>(GEP.getType()->getScalarType())->getElementType()
01866           == ElTy, "GEP is not of right type for indices!", &GEP, ElTy);
01867 
01868   if (GEP.getPointerOperandType()->isVectorTy()) {
01869     // Additional checks for vector GEPs.
01870     unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
01871     Assert1(GepWidth == GEP.getType()->getVectorNumElements(),
01872             "Vector GEP result width doesn't match operand's", &GEP);
01873     for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
01874       Type *IndexTy = Idxs[i]->getType();
01875       Assert1(IndexTy->isVectorTy(),
01876               "Vector GEP must have vector indices!", &GEP);
01877       unsigned IndexWidth = IndexTy->getVectorNumElements();
01878       Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
01879     }
01880   }
01881   visitInstruction(GEP);
01882 }
01883 
01884 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
01885   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
01886 }
01887 
01888 void Verifier::visitLoadInst(LoadInst &LI) {
01889   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
01890   Assert1(PTy, "Load operand must be a pointer.", &LI);
01891   Type *ElTy = PTy->getElementType();
01892   Assert2(ElTy == LI.getType(),
01893           "Load result type does not match pointer operand type!", &LI, ElTy);
01894   Assert1(LI.getAlignment() <= Value::MaximumAlignment,
01895           "huge alignment values are unsupported", &LI);
01896   if (LI.isAtomic()) {
01897     Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
01898             "Load cannot have Release ordering", &LI);
01899     Assert1(LI.getAlignment() != 0,
01900             "Atomic load must specify explicit alignment", &LI);
01901     if (!ElTy->isPointerTy()) {
01902       Assert2(ElTy->isIntegerTy(),
01903               "atomic load operand must have integer type!",
01904               &LI, ElTy);
01905       unsigned Size = ElTy->getPrimitiveSizeInBits();
01906       Assert2(Size >= 8 && !(Size & (Size - 1)),
01907               "atomic load operand must be power-of-two byte-sized integer",
01908               &LI, ElTy);
01909     }
01910   } else {
01911     Assert1(LI.getSynchScope() == CrossThread,
01912             "Non-atomic load cannot have SynchronizationScope specified", &LI);
01913   }
01914 
01915   if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
01916     unsigned NumOperands = Range->getNumOperands();
01917     Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
01918     unsigned NumRanges = NumOperands / 2;
01919     Assert1(NumRanges >= 1, "It should have at least one range!", Range);
01920 
01921     ConstantRange LastRange(1); // Dummy initial value
01922     for (unsigned i = 0; i < NumRanges; ++i) {
01923       ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
01924       Assert1(Low, "The lower limit must be an integer!", Low);
01925       ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
01926       Assert1(High, "The upper limit must be an integer!", High);
01927       Assert1(High->getType() == Low->getType() &&
01928               High->getType() == ElTy, "Range types must match load type!",
01929               &LI);
01930 
01931       APInt HighV = High->getValue();
01932       APInt LowV = Low->getValue();
01933       ConstantRange CurRange(LowV, HighV);
01934       Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
01935               "Range must not be empty!", Range);
01936       if (i != 0) {
01937         Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
01938                 "Intervals are overlapping", Range);
01939         Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
01940                 Range);
01941         Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
01942                 Range);
01943       }
01944       LastRange = ConstantRange(LowV, HighV);
01945     }
01946     if (NumRanges > 2) {
01947       APInt FirstLow =
01948         dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
01949       APInt FirstHigh =
01950         dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
01951       ConstantRange FirstRange(FirstLow, FirstHigh);
01952       Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
01953               "Intervals are overlapping", Range);
01954       Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
01955               Range);
01956     }
01957 
01958 
01959   }
01960 
01961   visitInstruction(LI);
01962 }
01963 
01964 void Verifier::visitStoreInst(StoreInst &SI) {
01965   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
01966   Assert1(PTy, "Store operand must be a pointer.", &SI);
01967   Type *ElTy = PTy->getElementType();
01968   Assert2(ElTy == SI.getOperand(0)->getType(),
01969           "Stored value type does not match pointer operand type!",
01970           &SI, ElTy);
01971   Assert1(SI.getAlignment() <= Value::MaximumAlignment,
01972           "huge alignment values are unsupported", &SI);
01973   if (SI.isAtomic()) {
01974     Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
01975             "Store cannot have Acquire ordering", &SI);
01976     Assert1(SI.getAlignment() != 0,
01977             "Atomic store must specify explicit alignment", &SI);
01978     if (!ElTy->isPointerTy()) {
01979       Assert2(ElTy->isIntegerTy(),
01980               "atomic store operand must have integer type!",
01981               &SI, ElTy);
01982       unsigned Size = ElTy->getPrimitiveSizeInBits();
01983       Assert2(Size >= 8 && !(Size & (Size - 1)),
01984               "atomic store operand must be power-of-two byte-sized integer",
01985               &SI, ElTy);
01986     }
01987   } else {
01988     Assert1(SI.getSynchScope() == CrossThread,
01989             "Non-atomic store cannot have SynchronizationScope specified", &SI);
01990   }
01991   visitInstruction(SI);
01992 }
01993 
01994 void Verifier::visitAllocaInst(AllocaInst &AI) {
01995   SmallPtrSet<const Type*, 4> Visited;
01996   PointerType *PTy = AI.getType();
01997   Assert1(PTy->getAddressSpace() == 0,
01998           "Allocation instruction pointer not in the generic address space!",
01999           &AI);
02000   Assert1(PTy->getElementType()->isSized(&Visited), "Cannot allocate unsized type",
02001           &AI);
02002   Assert1(AI.getArraySize()->getType()->isIntegerTy(),
02003           "Alloca array size must have integer type", &AI);
02004   Assert1(AI.getAlignment() <= Value::MaximumAlignment,
02005           "huge alignment values are unsupported", &AI);
02006 
02007   visitInstruction(AI);
02008 }
02009 
02010 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
02011 
02012   // FIXME: more conditions???
02013   Assert1(CXI.getSuccessOrdering() != NotAtomic,
02014           "cmpxchg instructions must be atomic.", &CXI);
02015   Assert1(CXI.getFailureOrdering() != NotAtomic,
02016           "cmpxchg instructions must be atomic.", &CXI);
02017   Assert1(CXI.getSuccessOrdering() != Unordered,
02018           "cmpxchg instructions cannot be unordered.", &CXI);
02019   Assert1(CXI.getFailureOrdering() != Unordered,
02020           "cmpxchg instructions cannot be unordered.", &CXI);
02021   Assert1(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
02022           "cmpxchg instructions be at least as constrained on success as fail",
02023           &CXI);
02024   Assert1(CXI.getFailureOrdering() != Release &&
02025               CXI.getFailureOrdering() != AcquireRelease,
02026           "cmpxchg failure ordering cannot include release semantics", &CXI);
02027 
02028   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
02029   Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
02030   Type *ElTy = PTy->getElementType();
02031   Assert2(ElTy->isIntegerTy(),
02032           "cmpxchg operand must have integer type!",
02033           &CXI, ElTy);
02034   unsigned Size = ElTy->getPrimitiveSizeInBits();
02035   Assert2(Size >= 8 && !(Size & (Size - 1)),
02036           "cmpxchg operand must be power-of-two byte-sized integer",
02037           &CXI, ElTy);
02038   Assert2(ElTy == CXI.getOperand(1)->getType(),
02039           "Expected value type does not match pointer operand type!",
02040           &CXI, ElTy);
02041   Assert2(ElTy == CXI.getOperand(2)->getType(),
02042           "Stored value type does not match pointer operand type!",
02043           &CXI, ElTy);
02044   visitInstruction(CXI);
02045 }
02046 
02047 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
02048   Assert1(RMWI.getOrdering() != NotAtomic,
02049           "atomicrmw instructions must be atomic.", &RMWI);
02050   Assert1(RMWI.getOrdering() != Unordered,
02051           "atomicrmw instructions cannot be unordered.", &RMWI);
02052   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
02053   Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
02054   Type *ElTy = PTy->getElementType();
02055   Assert2(ElTy->isIntegerTy(),
02056           "atomicrmw operand must have integer type!",
02057           &RMWI, ElTy);
02058   unsigned Size = ElTy->getPrimitiveSizeInBits();
02059   Assert2(Size >= 8 && !(Size & (Size - 1)),
02060           "atomicrmw operand must be power-of-two byte-sized integer",
02061           &RMWI, ElTy);
02062   Assert2(ElTy == RMWI.getOperand(1)->getType(),
02063           "Argument value type does not match pointer operand type!",
02064           &RMWI, ElTy);
02065   Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
02066           RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
02067           "Invalid binary operation!", &RMWI);
02068   visitInstruction(RMWI);
02069 }
02070 
02071 void Verifier::visitFenceInst(FenceInst &FI) {
02072   const AtomicOrdering Ordering = FI.getOrdering();
02073   Assert1(Ordering == Acquire || Ordering == Release ||
02074           Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
02075           "fence instructions may only have "
02076           "acquire, release, acq_rel, or seq_cst ordering.", &FI);
02077   visitInstruction(FI);
02078 }
02079 
02080 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
02081   Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
02082                                            EVI.getIndices()) ==
02083           EVI.getType(),
02084           "Invalid ExtractValueInst operands!", &EVI);
02085 
02086   visitInstruction(EVI);
02087 }
02088 
02089 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
02090   Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
02091                                            IVI.getIndices()) ==
02092           IVI.getOperand(1)->getType(),
02093           "Invalid InsertValueInst operands!", &IVI);
02094 
02095   visitInstruction(IVI);
02096 }
02097 
02098 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
02099   BasicBlock *BB = LPI.getParent();
02100 
02101   // The landingpad instruction is ill-formed if it doesn't have any clauses and
02102   // isn't a cleanup.
02103   Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
02104           "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
02105 
02106   // The landingpad instruction defines its parent as a landing pad block. The
02107   // landing pad block may be branched to only by the unwind edge of an invoke.
02108   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
02109     const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
02110     Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
02111             "Block containing LandingPadInst must be jumped to "
02112             "only by the unwind edge of an invoke.", &LPI);
02113   }
02114 
02115   // The landingpad instruction must be the first non-PHI instruction in the
02116   // block.
02117   Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
02118           "LandingPadInst not the first non-PHI instruction in the block.",
02119           &LPI);
02120 
02121   // The personality functions for all landingpad instructions within the same
02122   // function should match.
02123   if (PersonalityFn)
02124     Assert1(LPI.getPersonalityFn() == PersonalityFn,
02125             "Personality function doesn't match others in function", &LPI);
02126   PersonalityFn = LPI.getPersonalityFn();
02127 
02128   // All operands must be constants.
02129   Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
02130           &LPI);
02131   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
02132     Constant *Clause = LPI.getClause(i);
02133     if (LPI.isCatch(i)) {
02134       Assert1(isa<PointerType>(Clause->getType()),
02135               "Catch operand does not have pointer type!", &LPI);
02136     } else {
02137       Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
02138       Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
02139               "Filter operand is not an array of constants!", &LPI);
02140     }
02141   }
02142 
02143   visitInstruction(LPI);
02144 }
02145 
02146 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
02147   Instruction *Op = cast<Instruction>(I.getOperand(i));
02148   // If the we have an invalid invoke, don't try to compute the dominance.
02149   // We already reject it in the invoke specific checks and the dominance
02150   // computation doesn't handle multiple edges.
02151   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
02152     if (II->getNormalDest() == II->getUnwindDest())
02153       return;
02154   }
02155 
02156   const Use &U = I.getOperandUse(i);
02157   Assert2(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
02158           "Instruction does not dominate all uses!", Op, &I);
02159 }
02160 
02161 /// verifyInstruction - Verify that an instruction is well formed.
02162 ///
02163 void Verifier::visitInstruction(Instruction &I) {
02164   BasicBlock *BB = I.getParent();
02165   Assert1(BB, "Instruction not embedded in basic block!", &I);
02166 
02167   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
02168     for (User *U : I.users()) {
02169       Assert1(U != (User*)&I || !DT.isReachableFromEntry(BB),
02170               "Only PHI nodes may reference their own value!", &I);
02171     }
02172   }
02173 
02174   // Check that void typed values don't have names
02175   Assert1(!I.getType()->isVoidTy() || !I.hasName(),
02176           "Instruction has a name, but provides a void value!", &I);
02177 
02178   // Check that the return value of the instruction is either void or a legal
02179   // value type.
02180   Assert1(I.getType()->isVoidTy() ||
02181           I.getType()->isFirstClassType(),
02182           "Instruction returns a non-scalar type!", &I);
02183 
02184   // Check that the instruction doesn't produce metadata. Calls are already
02185   // checked against the callee type.
02186   Assert1(!I.getType()->isMetadataTy() ||
02187           isa<CallInst>(I) || isa<InvokeInst>(I),
02188           "Invalid use of metadata!", &I);
02189 
02190   // Check that all uses of the instruction, if they are instructions
02191   // themselves, actually have parent basic blocks.  If the use is not an
02192   // instruction, it is an error!
02193   for (Use &U : I.uses()) {
02194     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
02195       Assert2(Used->getParent() != nullptr, "Instruction referencing"
02196               " instruction not embedded in a basic block!", &I, Used);
02197     else {
02198       CheckFailed("Use of instruction is not an instruction!", U);
02199       return;
02200     }
02201   }
02202 
02203   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
02204     Assert1(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
02205 
02206     // Check to make sure that only first-class-values are operands to
02207     // instructions.
02208     if (!I.getOperand(i)->getType()->isFirstClassType()) {
02209       Assert1(0, "Instruction operands must be first-class values!", &I);
02210     }
02211 
02212     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
02213       // Check to make sure that the "address of" an intrinsic function is never
02214       // taken.
02215       Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
02216               "Cannot take the address of an intrinsic!", &I);
02217       Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
02218               F->getIntrinsicID() == Intrinsic::donothing,
02219               "Cannot invoke an intrinsinc other than donothing", &I);
02220       Assert1(F->getParent() == M, "Referencing function in another module!",
02221               &I);
02222     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
02223       Assert1(OpBB->getParent() == BB->getParent(),
02224               "Referring to a basic block in another function!", &I);
02225     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
02226       Assert1(OpArg->getParent() == BB->getParent(),
02227               "Referring to an argument in another function!", &I);
02228     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
02229       Assert1(GV->getParent() == M, "Referencing global in another module!",
02230               &I);
02231     } else if (isa<Instruction>(I.getOperand(i))) {
02232       verifyDominatesUse(I, i);
02233     } else if (isa<InlineAsm>(I.getOperand(i))) {
02234       Assert1((i + 1 == e && isa<CallInst>(I)) ||
02235               (i + 3 == e && isa<InvokeInst>(I)),
02236               "Cannot take the address of an inline asm!", &I);
02237     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
02238       if (CE->getType()->isPtrOrPtrVectorTy()) {
02239         // If we have a ConstantExpr pointer, we need to see if it came from an
02240         // illegal bitcast (inttoptr <constant int> )
02241         SmallVector<const ConstantExpr *, 4> Stack;
02242         SmallPtrSet<const ConstantExpr *, 4> Visited;
02243         Stack.push_back(CE);
02244 
02245         while (!Stack.empty()) {
02246           const ConstantExpr *V = Stack.pop_back_val();
02247           if (!Visited.insert(V))
02248             continue;
02249 
02250           VerifyConstantExprBitcastType(V);
02251 
02252           for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
02253             if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
02254               Stack.push_back(Op);
02255           }
02256         }
02257       }
02258     }
02259   }
02260 
02261   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
02262     Assert1(I.getType()->isFPOrFPVectorTy(),
02263             "fpmath requires a floating point result!", &I);
02264     Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
02265     Value *Op0 = MD->getOperand(0);
02266     if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
02267       APFloat Accuracy = CFP0->getValueAPF();
02268       Assert1(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
02269               "fpmath accuracy not a positive number!", &I);
02270     } else {
02271       Assert1(false, "invalid fpmath accuracy!", &I);
02272     }
02273   }
02274 
02275   MDNode *MD = I.getMetadata(LLVMContext::MD_range);
02276   Assert1(!MD || isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
02277           "Ranges are only for loads, calls and invokes!", &I);
02278 
02279   InstsInThisBlock.insert(&I);
02280 }
02281 
02282 /// VerifyIntrinsicType - Verify that the specified type (which comes from an
02283 /// intrinsic argument or return value) matches the type constraints specified
02284 /// by the .td file (e.g. an "any integer" argument really is an integer).
02285 ///
02286 /// This return true on error but does not print a message.
02287 bool Verifier::VerifyIntrinsicType(Type *Ty,
02288                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
02289                                    SmallVectorImpl<Type*> &ArgTys) {
02290   using namespace Intrinsic;
02291 
02292   // If we ran out of descriptors, there are too many arguments.
02293   if (Infos.empty()) return true;
02294   IITDescriptor D = Infos.front();
02295   Infos = Infos.slice(1);
02296 
02297   switch (D.Kind) {
02298   case IITDescriptor::Void: return !Ty->isVoidTy();
02299   case IITDescriptor::VarArg: return true;
02300   case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
02301   case IITDescriptor::Metadata: return !Ty->isMetadataTy();
02302   case IITDescriptor::Half: return !Ty->isHalfTy();
02303   case IITDescriptor::Float: return !Ty->isFloatTy();
02304   case IITDescriptor::Double: return !Ty->isDoubleTy();
02305   case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
02306   case IITDescriptor::Vector: {
02307     VectorType *VT = dyn_cast<VectorType>(Ty);
02308     return !VT || VT->getNumElements() != D.Vector_Width ||
02309            VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
02310   }
02311   case IITDescriptor::Pointer: {
02312     PointerType *PT = dyn_cast<PointerType>(Ty);
02313     return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
02314            VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
02315   }
02316 
02317   case IITDescriptor::Struct: {
02318     StructType *ST = dyn_cast<StructType>(Ty);
02319     if (!ST || ST->getNumElements() != D.Struct_NumElements)
02320       return true;
02321 
02322     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
02323       if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
02324         return true;
02325     return false;
02326   }
02327 
02328   case IITDescriptor::Argument:
02329     // Two cases here - If this is the second occurrence of an argument, verify
02330     // that the later instance matches the previous instance.
02331     if (D.getArgumentNumber() < ArgTys.size())
02332       return Ty != ArgTys[D.getArgumentNumber()];
02333 
02334     // Otherwise, if this is the first instance of an argument, record it and
02335     // verify the "Any" kind.
02336     assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
02337     ArgTys.push_back(Ty);
02338 
02339     switch (D.getArgumentKind()) {
02340     case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
02341     case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
02342     case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
02343     case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
02344     }
02345     llvm_unreachable("all argument kinds not covered");
02346 
02347   case IITDescriptor::ExtendArgument: {
02348     // This may only be used when referring to a previous vector argument.
02349     if (D.getArgumentNumber() >= ArgTys.size())
02350       return true;
02351 
02352     Type *NewTy = ArgTys[D.getArgumentNumber()];
02353     if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
02354       NewTy = VectorType::getExtendedElementVectorType(VTy);
02355     else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
02356       NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
02357     else
02358       return true;
02359 
02360     return Ty != NewTy;
02361   }
02362   case IITDescriptor::TruncArgument: {
02363     // This may only be used when referring to a previous vector argument.
02364     if (D.getArgumentNumber() >= ArgTys.size())
02365       return true;
02366 
02367     Type *NewTy = ArgTys[D.getArgumentNumber()];
02368     if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
02369       NewTy = VectorType::getTruncatedElementVectorType(VTy);
02370     else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
02371       NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
02372     else
02373       return true;
02374 
02375     return Ty != NewTy;
02376   }
02377   case IITDescriptor::HalfVecArgument:
02378     // This may only be used when referring to a previous vector argument.
02379     return D.getArgumentNumber() >= ArgTys.size() ||
02380            !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
02381            VectorType::getHalfElementsVectorType(
02382                          cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
02383   }
02384   llvm_unreachable("unhandled");
02385 }
02386 
02387 /// \brief Verify if the intrinsic has variable arguments.
02388 /// This method is intended to be called after all the fixed arguments have been
02389 /// verified first.
02390 ///
02391 /// This method returns true on error and does not print an error message.
02392 bool
02393 Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
02394                                   ArrayRef<Intrinsic::IITDescriptor> &Infos) {
02395   using namespace Intrinsic;
02396 
02397   // If there are no descriptors left, then it can't be a vararg.
02398   if (Infos.empty())
02399     return isVarArg ? true : false;
02400 
02401   // There should be only one descriptor remaining at this point.
02402   if (Infos.size() != 1)
02403     return true;
02404 
02405   // Check and verify the descriptor.
02406   IITDescriptor D = Infos.front();
02407   Infos = Infos.slice(1);
02408   if (D.Kind == IITDescriptor::VarArg)
02409     return isVarArg ? false : true;
02410 
02411   return true;
02412 }
02413 
02414 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
02415 ///
02416 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
02417   Function *IF = CI.getCalledFunction();
02418   Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
02419           IF);
02420 
02421   // Verify that the intrinsic prototype lines up with what the .td files
02422   // describe.
02423   FunctionType *IFTy = IF->getFunctionType();
02424   bool IsVarArg = IFTy->isVarArg();
02425 
02426   SmallVector<Intrinsic::IITDescriptor, 8> Table;
02427   getIntrinsicInfoTableEntries(ID, Table);
02428   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
02429 
02430   SmallVector<Type *, 4> ArgTys;
02431   Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
02432           "Intrinsic has incorrect return type!", IF);
02433   for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
02434     Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
02435             "Intrinsic has incorrect argument type!", IF);
02436 
02437   // Verify if the intrinsic call matches the vararg property.
02438   if (IsVarArg)
02439     Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
02440             "Intrinsic was not defined with variable arguments!", IF);
02441   else
02442     Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
02443             "Callsite was not defined with variable arguments!", IF);
02444 
02445   // All descriptors should be absorbed by now.
02446   Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
02447 
02448   // Now that we have the intrinsic ID and the actual argument types (and we
02449   // know they are legal for the intrinsic!) get the intrinsic name through the
02450   // usual means.  This allows us to verify the mangling of argument types into
02451   // the name.
02452   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
02453   Assert1(ExpectedName == IF->getName(),
02454           "Intrinsic name not mangled correctly for type arguments! "
02455           "Should be: " + ExpectedName, IF);
02456 
02457   // If the intrinsic takes MDNode arguments, verify that they are either global
02458   // or are local to *this* function.
02459   for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
02460     if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
02461       visitMDNode(*MD, CI.getParent()->getParent());
02462 
02463   switch (ID) {
02464   default:
02465     break;
02466   case Intrinsic::ctlz:  // llvm.ctlz
02467   case Intrinsic::cttz:  // llvm.cttz
02468     Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
02469             "is_zero_undef argument of bit counting intrinsics must be a "
02470             "constant int", &CI);
02471     break;
02472   case Intrinsic::dbg_declare: {  // llvm.dbg.declare
02473     Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
02474                 "invalid llvm.dbg.declare intrinsic call 1", &CI);
02475     MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
02476     Assert1(MD->getNumOperands() == 1,
02477                 "invalid llvm.dbg.declare intrinsic call 2", &CI);
02478   } break;
02479   case Intrinsic::memcpy:
02480   case Intrinsic::memmove:
02481   case Intrinsic::memset:
02482     Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
02483             "alignment argument of memory intrinsics must be a constant int",
02484             &CI);
02485     Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
02486             "isvolatile argument of memory intrinsics must be a constant int",
02487             &CI);
02488     break;
02489   case Intrinsic::gcroot:
02490   case Intrinsic::gcwrite:
02491   case Intrinsic::gcread:
02492     if (ID == Intrinsic::gcroot) {
02493       AllocaInst *AI =
02494         dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
02495       Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
02496       Assert1(isa<Constant>(CI.getArgOperand(1)),
02497               "llvm.gcroot parameter #2 must be a constant.", &CI);
02498       if (!AI->getType()->getElementType()->isPointerTy()) {
02499         Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
02500                 "llvm.gcroot parameter #1 must either be a pointer alloca, "
02501                 "or argument #2 must be a non-null constant.", &CI);
02502       }
02503     }
02504 
02505     Assert1(CI.getParent()->getParent()->hasGC(),
02506             "Enclosing function does not use GC.", &CI);
02507     break;
02508   case Intrinsic::init_trampoline:
02509     Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
02510             "llvm.init_trampoline parameter #2 must resolve to a function.",
02511             &CI);
02512     break;
02513   case Intrinsic::prefetch:
02514     Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
02515             isa<ConstantInt>(CI.getArgOperand(2)) &&
02516             cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
02517             cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
02518             "invalid arguments to llvm.prefetch",
02519             &CI);
02520     break;
02521   case Intrinsic::stackprotector:
02522     Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
02523             "llvm.stackprotector parameter #2 must resolve to an alloca.",
02524             &CI);
02525     break;
02526   case Intrinsic::lifetime_start:
02527   case Intrinsic::lifetime_end:
02528   case Intrinsic::invariant_start:
02529     Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
02530             "size argument of memory use markers must be a constant integer",
02531             &CI);
02532     break;
02533   case Intrinsic::invariant_end:
02534     Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
02535             "llvm.invariant.end parameter #2 must be a constant integer", &CI);
02536     break;
02537   }
02538 }
02539 
02540 void DebugInfoVerifier::verifyDebugInfo() {
02541   if (!VerifyDebugInfo)
02542     return;
02543 
02544   DebugInfoFinder Finder;
02545   Finder.processModule(*M);
02546   processInstructions(Finder);
02547 
02548   // Verify Debug Info.
02549   //
02550   // NOTE:  The loud braces are necessary for MSVC compatibility.
02551   for (DICompileUnit CU : Finder.compile_units()) {
02552     Assert1(CU.Verify(), "DICompileUnit does not Verify!", CU);
02553   }
02554   for (DISubprogram S : Finder.subprograms()) {
02555     Assert1(S.Verify(), "DISubprogram does not Verify!", S);
02556   }
02557   for (DIGlobalVariable GV : Finder.global_variables()) {
02558     Assert1(GV.Verify(), "DIGlobalVariable does not Verify!", GV);
02559   }
02560   for (DIType T : Finder.types()) {
02561     Assert1(T.Verify(), "DIType does not Verify!", T);
02562   }
02563   for (DIScope S : Finder.scopes()) {
02564     Assert1(S.Verify(), "DIScope does not Verify!", S);
02565   }
02566 }
02567 
02568 void DebugInfoVerifier::processInstructions(DebugInfoFinder &Finder) {
02569   for (const Function &F : *M)
02570     for (auto I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
02571       if (MDNode *MD = I->getMetadata(LLVMContext::MD_dbg))
02572         Finder.processLocation(*M, DILocation(MD));
02573       if (const CallInst *CI = dyn_cast<CallInst>(&*I))
02574         processCallInst(Finder, *CI);
02575     }
02576 }
02577 
02578 void DebugInfoVerifier::processCallInst(DebugInfoFinder &Finder,
02579                                         const CallInst &CI) {
02580   if (Function *F = CI.getCalledFunction())
02581     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
02582       switch (ID) {
02583       case Intrinsic::dbg_declare:
02584         Finder.processDeclare(*M, cast<DbgDeclareInst>(&CI));
02585         break;
02586       case Intrinsic::dbg_value:
02587         Finder.processValue(*M, cast<DbgValueInst>(&CI));
02588         break;
02589       default:
02590         break;
02591       }
02592 }
02593 
02594 //===----------------------------------------------------------------------===//
02595 //  Implement the public interfaces to this file...
02596 //===----------------------------------------------------------------------===//
02597 
02598 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
02599   Function &F = const_cast<Function &>(f);
02600   assert(!F.isDeclaration() && "Cannot verify external functions");
02601 
02602   raw_null_ostream NullStr;
02603   Verifier V(OS ? *OS : NullStr);
02604 
02605   // Note that this function's return value is inverted from what you would
02606   // expect of a function called "verify".
02607   return !V.verify(F);
02608 }
02609 
02610 bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
02611   raw_null_ostream NullStr;
02612   Verifier V(OS ? *OS : NullStr);
02613 
02614   bool Broken = false;
02615   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
02616     if (!I->isDeclaration())
02617       Broken |= !V.verify(*I);
02618 
02619   // Note that this function's return value is inverted from what you would
02620   // expect of a function called "verify".
02621   DebugInfoVerifier DIV(OS ? *OS : NullStr);
02622   return !V.verify(M) || !DIV.verify(M) || Broken;
02623 }
02624 
02625 namespace {
02626 struct VerifierLegacyPass : public FunctionPass {
02627   static char ID;
02628 
02629   Verifier V;
02630   bool FatalErrors;
02631 
02632   VerifierLegacyPass() : FunctionPass(ID), FatalErrors(true) {
02633     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
02634   }
02635   explicit VerifierLegacyPass(bool FatalErrors)
02636       : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
02637     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
02638   }
02639 
02640   bool runOnFunction(Function &F) override {
02641     if (!V.verify(F) && FatalErrors)
02642       report_fatal_error("Broken function found, compilation aborted!");
02643 
02644     return false;
02645   }
02646 
02647   bool doFinalization(Module &M) override {
02648     if (!V.verify(M) && FatalErrors)
02649       report_fatal_error("Broken module found, compilation aborted!");
02650 
02651     return false;
02652   }
02653 
02654   void getAnalysisUsage(AnalysisUsage &AU) const override {
02655     AU.setPreservesAll();
02656   }
02657 };
02658 struct DebugInfoVerifierLegacyPass : public ModulePass {
02659   static char ID;
02660 
02661   DebugInfoVerifier V;
02662   bool FatalErrors;
02663 
02664   DebugInfoVerifierLegacyPass() : ModulePass(ID), FatalErrors(true) {
02665     initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
02666   }
02667   explicit DebugInfoVerifierLegacyPass(bool FatalErrors)
02668       : ModulePass(ID), V(dbgs()), FatalErrors(FatalErrors) {
02669     initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
02670   }
02671 
02672   bool runOnModule(Module &M) override {
02673     if (!V.verify(M) && FatalErrors)
02674       report_fatal_error("Broken debug info found, compilation aborted!");
02675 
02676     return false;
02677   }
02678 
02679   void getAnalysisUsage(AnalysisUsage &AU) const override {
02680     AU.setPreservesAll();
02681   }
02682 };
02683 }
02684 
02685 char VerifierLegacyPass::ID = 0;
02686 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
02687 
02688 char DebugInfoVerifierLegacyPass::ID = 0;
02689 INITIALIZE_PASS(DebugInfoVerifierLegacyPass, "verify-di", "Debug Info Verifier",
02690                 false, false)
02691 
02692 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
02693   return new VerifierLegacyPass(FatalErrors);
02694 }
02695 
02696 ModulePass *llvm::createDebugInfoVerifierPass(bool FatalErrors) {
02697   return new DebugInfoVerifierLegacyPass(FatalErrors);
02698 }
02699 
02700 PreservedAnalyses VerifierPass::run(Module *M) {
02701   if (verifyModule(*M, &dbgs()) && FatalErrors)
02702     report_fatal_error("Broken module found, compilation aborted!");
02703 
02704   return PreservedAnalyses::all();
02705 }
02706 
02707 PreservedAnalyses VerifierPass::run(Function *F) {
02708   if (verifyFunction(*F, &dbgs()) && FatalErrors)
02709     report_fatal_error("Broken function found, compilation aborted!");
02710 
02711   return PreservedAnalyses::all();
02712 }