LLVM API Documentation

X86BaseInfo.h
Go to the documentation of this file.
00001 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file contains small standalone helper functions and enum definitions for
00011 // the X86 target useful for the compiler back-end and the MC libraries.
00012 // As such, it deliberately does not include references to LLVM core
00013 // code gen types, passes, etc..
00014 //
00015 //===----------------------------------------------------------------------===//
00016 
00017 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
00018 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
00019 
00020 #include "X86MCTargetDesc.h"
00021 #include "llvm/MC/MCInstrDesc.h"
00022 #include "llvm/Support/DataTypes.h"
00023 #include "llvm/Support/ErrorHandling.h"
00024 
00025 namespace llvm {
00026 
00027 namespace X86 {
00028   // Enums for memory operand decoding.  Each memory operand is represented with
00029   // a 5 operand sequence in the form:
00030   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
00031   // These enums help decode this.
00032   enum {
00033     AddrBaseReg = 0,
00034     AddrScaleAmt = 1,
00035     AddrIndexReg = 2,
00036     AddrDisp = 3,
00037 
00038     /// AddrSegmentReg - The operand # of the segment in the memory operand.
00039     AddrSegmentReg = 4,
00040 
00041     /// AddrNumOperands - Total number of operands in a memory reference.
00042     AddrNumOperands = 5
00043   };
00044 } // end namespace X86;
00045 
00046 /// X86II - This namespace holds all of the target specific flags that
00047 /// instruction info tracks.
00048 ///
00049 namespace X86II {
00050   /// Target Operand Flag enum.
00051   enum TOF {
00052     //===------------------------------------------------------------------===//
00053     // X86 Specific MachineOperand flags.
00054 
00055     MO_NO_FLAG,
00056 
00057     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
00058     /// relocation of:
00059     ///    SYMBOL_LABEL + [. - PICBASELABEL]
00060     MO_GOT_ABSOLUTE_ADDRESS,
00061 
00062     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
00063     /// immediate should get the value of the symbol minus the PIC base label:
00064     ///    SYMBOL_LABEL - PICBASELABEL
00065     MO_PIC_BASE_OFFSET,
00066 
00067     /// MO_GOT - On a symbol operand this indicates that the immediate is the
00068     /// offset to the GOT entry for the symbol name from the base of the GOT.
00069     ///
00070     /// See the X86-64 ELF ABI supplement for more details.
00071     ///    SYMBOL_LABEL @GOT
00072     MO_GOT,
00073 
00074     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
00075     /// the offset to the location of the symbol name from the base of the GOT.
00076     ///
00077     /// See the X86-64 ELF ABI supplement for more details.
00078     ///    SYMBOL_LABEL @GOTOFF
00079     MO_GOTOFF,
00080 
00081     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
00082     /// offset to the GOT entry for the symbol name from the current code
00083     /// location.
00084     ///
00085     /// See the X86-64 ELF ABI supplement for more details.
00086     ///    SYMBOL_LABEL @GOTPCREL
00087     MO_GOTPCREL,
00088 
00089     /// MO_PLT - On a symbol operand this indicates that the immediate is
00090     /// offset to the PLT entry of symbol name from the current code location.
00091     ///
00092     /// See the X86-64 ELF ABI supplement for more details.
00093     ///    SYMBOL_LABEL @PLT
00094     MO_PLT,
00095 
00096     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
00097     /// the offset of the GOT entry with the TLS index structure that contains
00098     /// the module number and variable offset for the symbol. Used in the
00099     /// general dynamic TLS access model.
00100     ///
00101     /// See 'ELF Handling for Thread-Local Storage' for more details.
00102     ///    SYMBOL_LABEL @TLSGD
00103     MO_TLSGD,
00104 
00105     /// MO_TLSLD - On a symbol operand this indicates that the immediate is
00106     /// the offset of the GOT entry with the TLS index for the module that
00107     /// contains the symbol. When this index is passed to a call to
00108     /// __tls_get_addr, the function will return the base address of the TLS
00109     /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
00110     ///
00111     /// See 'ELF Handling for Thread-Local Storage' for more details.
00112     ///    SYMBOL_LABEL @TLSLD
00113     MO_TLSLD,
00114 
00115     /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
00116     /// the offset of the GOT entry with the TLS index for the module that
00117     /// contains the symbol. When this index is passed to a call to
00118     /// ___tls_get_addr, the function will return the base address of the TLS
00119     /// block for the symbol. Used in the IA32 local dynamic TLS access model.
00120     ///
00121     /// See 'ELF Handling for Thread-Local Storage' for more details.
00122     ///    SYMBOL_LABEL @TLSLDM
00123     MO_TLSLDM,
00124 
00125     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
00126     /// the offset of the GOT entry with the thread-pointer offset for the
00127     /// symbol. Used in the x86-64 initial exec TLS access model.
00128     ///
00129     /// See 'ELF Handling for Thread-Local Storage' for more details.
00130     ///    SYMBOL_LABEL @GOTTPOFF
00131     MO_GOTTPOFF,
00132 
00133     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
00134     /// the absolute address of the GOT entry with the negative thread-pointer
00135     /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
00136     /// model.
00137     ///
00138     /// See 'ELF Handling for Thread-Local Storage' for more details.
00139     ///    SYMBOL_LABEL @INDNTPOFF
00140     MO_INDNTPOFF,
00141 
00142     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
00143     /// the thread-pointer offset for the symbol. Used in the x86-64 local
00144     /// exec TLS access model.
00145     ///
00146     /// See 'ELF Handling for Thread-Local Storage' for more details.
00147     ///    SYMBOL_LABEL @TPOFF
00148     MO_TPOFF,
00149 
00150     /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
00151     /// the offset of the GOT entry with the TLS offset of the symbol. Used
00152     /// in the local dynamic TLS access model.
00153     ///
00154     /// See 'ELF Handling for Thread-Local Storage' for more details.
00155     ///    SYMBOL_LABEL @DTPOFF
00156     MO_DTPOFF,
00157 
00158     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
00159     /// the negative thread-pointer offset for the symbol. Used in the IA32
00160     /// local exec TLS access model.
00161     ///
00162     /// See 'ELF Handling for Thread-Local Storage' for more details.
00163     ///    SYMBOL_LABEL @NTPOFF
00164     MO_NTPOFF,
00165 
00166     /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
00167     /// the offset of the GOT entry with the negative thread-pointer offset for
00168     /// the symbol. Used in the PIC IA32 initial exec TLS access model.
00169     ///
00170     /// See 'ELF Handling for Thread-Local Storage' for more details.
00171     ///    SYMBOL_LABEL @GOTNTPOFF
00172     MO_GOTNTPOFF,
00173 
00174     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
00175     /// reference is actually to the "__imp_FOO" symbol.  This is used for
00176     /// dllimport linkage on windows.
00177     MO_DLLIMPORT,
00178 
00179     /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
00180     /// reference is actually to the "FOO$stub" symbol.  This is used for calls
00181     /// and jumps to external functions on Tiger and earlier.
00182     MO_DARWIN_STUB,
00183 
00184     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
00185     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
00186     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
00187     MO_DARWIN_NONLAZY,
00188 
00189     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
00190     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
00191     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
00192     MO_DARWIN_NONLAZY_PIC_BASE,
00193 
00194     /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
00195     /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
00196     /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
00197     /// stub.
00198     MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
00199 
00200     /// MO_TLVP - On a symbol operand this indicates that the immediate is
00201     /// some TLS offset.
00202     ///
00203     /// This is the TLS offset for the Darwin TLS mechanism.
00204     MO_TLVP,
00205 
00206     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
00207     /// is some TLS offset from the picbase.
00208     ///
00209     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
00210     MO_TLVP_PIC_BASE,
00211 
00212     /// MO_SECREL - On a symbol operand this indicates that the immediate is
00213     /// the offset from beginning of section.
00214     ///
00215     /// This is the TLS offset for the COFF/Windows TLS mechanism.
00216     MO_SECREL
00217   };
00218 
00219   enum {
00220     //===------------------------------------------------------------------===//
00221     // Instruction encodings.  These are the standard/most common forms for X86
00222     // instructions.
00223     //
00224 
00225     // PseudoFrm - This represents an instruction that is a pseudo instruction
00226     // or one that has not been implemented yet.  It is illegal to code generate
00227     // it, but tolerated for intermediate implementation stages.
00228     Pseudo         = 0,
00229 
00230     /// Raw - This form is for instructions that don't have any operands, so
00231     /// they are just a fixed opcode value, like 'leave'.
00232     RawFrm         = 1,
00233 
00234     /// AddRegFrm - This form is used for instructions like 'push r32' that have
00235     /// their one register operand added to their opcode.
00236     AddRegFrm      = 2,
00237 
00238     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
00239     /// to specify a destination, which in this case is a register.
00240     ///
00241     MRMDestReg     = 3,
00242 
00243     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
00244     /// to specify a destination, which in this case is memory.
00245     ///
00246     MRMDestMem     = 4,
00247 
00248     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
00249     /// to specify a source, which in this case is a register.
00250     ///
00251     MRMSrcReg      = 5,
00252 
00253     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
00254     /// to specify a source, which in this case is memory.
00255     ///
00256     MRMSrcMem      = 6,
00257 
00258     /// RawFrmMemOffs - This form is for instructions that store an absolute
00259     /// memory offset as an immediate with a possible segment override.
00260     RawFrmMemOffs  = 7,
00261 
00262     /// RawFrmSrc - This form is for instructions that use the source index
00263     /// register SI/ESI/RSI with a possible segment override.
00264     RawFrmSrc      = 8,
00265 
00266     /// RawFrmDst - This form is for instructions that use the destination index
00267     /// register DI/EDI/ESI.
00268     RawFrmDst      = 9,
00269 
00270     /// RawFrmSrc - This form is for instructions that use the the source index
00271     /// register SI/ESI/ERI with a possible segment override, and also the
00272     /// destination index register DI/ESI/RDI.
00273     RawFrmDstSrc   = 10,
00274 
00275     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
00276     /// immediates, the first of which is a 16-bit immediate (specified by
00277     /// the imm encoding) and the second is a 8-bit fixed value.
00278     RawFrmImm8 = 11,
00279 
00280     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
00281     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
00282     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
00283     /// manual, this operand is described as pntr16:32 and pntr16:16
00284     RawFrmImm16 = 12,
00285 
00286     /// MRMX[rm] - The forms are used to represent instructions that use a
00287     /// Mod/RM byte, and don't use the middle field for anything.
00288     MRMXr = 14, MRMXm = 15,
00289 
00290     /// MRM[0-7][rm] - These forms are used to represent instructions that use
00291     /// a Mod/RM byte, and use the middle field to hold extended opcode
00292     /// information.  In the intel manual these are represented as /0, /1, ...
00293     ///
00294 
00295     // First, instructions that operate on a register r/m operand...
00296     MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
00297     MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
00298 
00299     // Next, instructions that operate on a memory r/m operand...
00300     MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
00301     MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
00302 
00303     //// MRM_XX - A mod/rm byte of exactly 0xXX.
00304     MRM_C0 = 32, MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35,
00305     MRM_C4 = 36, MRM_C8 = 37, MRM_C9 = 38, MRM_CA = 39,
00306     MRM_CB = 40, MRM_CF = 41, MRM_D0 = 42, MRM_D1 = 43,
00307     MRM_D4 = 44, MRM_D5 = 45, MRM_D6 = 46, MRM_D7 = 47,
00308     MRM_D8 = 48, MRM_D9 = 49, MRM_DA = 50, MRM_DB = 51,
00309     MRM_DC = 52, MRM_DD = 53, MRM_DE = 54, MRM_DF = 55,
00310     MRM_E0 = 56, MRM_E1 = 57, MRM_E2 = 58, MRM_E3 = 59,
00311     MRM_E4 = 60, MRM_E5 = 61, MRM_E8 = 62, MRM_E9 = 63,
00312     MRM_EA = 64, MRM_EB = 65, MRM_EC = 66, MRM_ED = 67,
00313     MRM_EE = 68, MRM_F0 = 69, MRM_F1 = 70, MRM_F2 = 71,
00314     MRM_F3 = 72, MRM_F4 = 73, MRM_F5 = 74, MRM_F6 = 75,
00315     MRM_F7 = 76, MRM_F8 = 77, MRM_F9 = 78, MRM_FA = 79,
00316     MRM_FB = 80, MRM_FC = 81, MRM_FD = 82, MRM_FE = 83,
00317     MRM_FF = 84,
00318 
00319     FormMask       = 127,
00320 
00321     //===------------------------------------------------------------------===//
00322     // Actual flags...
00323 
00324     // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
00325     // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
00326     // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
00327     // prefix in 16-bit mode.
00328     OpSizeShift = 7,
00329     OpSizeMask = 0x3 << OpSizeShift,
00330 
00331     OpSize16 = 1,
00332     OpSize32 = 2,
00333 
00334     // AsSize - Set if this instruction requires an operand size prefix (0x67),
00335     // which most often indicates that the instruction address 16 bit address
00336     // instead of 32 bit address (or 32 bit address in 64 bit mode).
00337     AdSizeShift = OpSizeShift + 2,
00338     AdSize      = 1 << AdSizeShift,
00339 
00340     //===------------------------------------------------------------------===//
00341     // OpPrefix - There are several prefix bytes that are used as opcode
00342     // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
00343     // no prefix.
00344     //
00345     OpPrefixShift = AdSizeShift + 1,
00346     OpPrefixMask  = 0x7 << OpPrefixShift,
00347 
00348     // PS, PD - Prefix code for packed single and double precision vector
00349     // floating point operations performed in the SSE registers.
00350     PS = 1 << OpPrefixShift, PD = 2 << OpPrefixShift,
00351 
00352     // XS, XD - These prefix codes are for single and double precision scalar
00353     // floating point operations performed in the SSE registers.
00354     XS = 3 << OpPrefixShift,  XD = 4 << OpPrefixShift,
00355 
00356     //===------------------------------------------------------------------===//
00357     // OpMap - This field determines which opcode map this instruction
00358     // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
00359     //
00360     OpMapShift = OpPrefixShift + 3,
00361     OpMapMask  = 0x7 << OpMapShift,
00362 
00363     // OB - OneByte - Set if this instruction has a one byte opcode.
00364     OB = 0 << OpMapShift,
00365 
00366     // TB - TwoByte - Set if this instruction has a two byte opcode, which
00367     // starts with a 0x0F byte before the real opcode.
00368     TB = 1 << OpMapShift,
00369 
00370     // T8, TA - Prefix after the 0x0F prefix.
00371     T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
00372 
00373     // XOP8 - Prefix to include use of imm byte.
00374     XOP8 = 4 << OpMapShift,
00375 
00376     // XOP9 - Prefix to exclude use of imm byte.
00377     XOP9 = 5 << OpMapShift,
00378 
00379     // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
00380     XOPA = 6 << OpMapShift,
00381 
00382     //===------------------------------------------------------------------===//
00383     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
00384     // They are used to specify GPRs and SSE registers, 64-bit operand size,
00385     // etc. We only cares about REX.W and REX.R bits and only the former is
00386     // statically determined.
00387     //
00388     REXShift    = OpMapShift + 3,
00389     REX_W       = 1 << REXShift,
00390 
00391     //===------------------------------------------------------------------===//
00392     // This three-bit field describes the size of an immediate operand.  Zero is
00393     // unused so that we can tell if we forgot to set a value.
00394     ImmShift = REXShift + 1,
00395     ImmMask    = 15 << ImmShift,
00396     Imm8       = 1 << ImmShift,
00397     Imm8PCRel  = 2 << ImmShift,
00398     Imm16      = 3 << ImmShift,
00399     Imm16PCRel = 4 << ImmShift,
00400     Imm32      = 5 << ImmShift,
00401     Imm32PCRel = 6 << ImmShift,
00402     Imm32S     = 7 << ImmShift,
00403     Imm64      = 8 << ImmShift,
00404 
00405     //===------------------------------------------------------------------===//
00406     // FP Instruction Classification...  Zero is non-fp instruction.
00407 
00408     // FPTypeMask - Mask for all of the FP types...
00409     FPTypeShift = ImmShift + 4,
00410     FPTypeMask  = 7 << FPTypeShift,
00411 
00412     // NotFP - The default, set for instructions that do not use FP registers.
00413     NotFP      = 0 << FPTypeShift,
00414 
00415     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
00416     ZeroArgFP  = 1 << FPTypeShift,
00417 
00418     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
00419     OneArgFP   = 2 << FPTypeShift,
00420 
00421     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
00422     // result back to ST(0).  For example, fcos, fsqrt, etc.
00423     //
00424     OneArgFPRW = 3 << FPTypeShift,
00425 
00426     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
00427     // explicit argument, storing the result to either ST(0) or the implicit
00428     // argument.  For example: fadd, fsub, fmul, etc...
00429     TwoArgFP   = 4 << FPTypeShift,
00430 
00431     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
00432     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
00433     CompareFP  = 5 << FPTypeShift,
00434 
00435     // CondMovFP - "2 operand" floating point conditional move instructions.
00436     CondMovFP  = 6 << FPTypeShift,
00437 
00438     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
00439     SpecialFP  = 7 << FPTypeShift,
00440 
00441     // Lock prefix
00442     LOCKShift = FPTypeShift + 3,
00443     LOCK = 1 << LOCKShift,
00444 
00445     // REP prefix
00446     REPShift = LOCKShift + 1,
00447     REP = 1 << REPShift,
00448 
00449     // Execution domain for SSE instructions.
00450     // 0 means normal, non-SSE instruction.
00451     SSEDomainShift = REPShift + 1,
00452 
00453     // Encoding
00454     EncodingShift = SSEDomainShift + 2,
00455     EncodingMask = 0x3 << EncodingShift,
00456 
00457     // VEX - encoding using 0xC4/0xC5
00458     VEX = 1,
00459 
00460     /// XOP - Opcode prefix used by XOP instructions.
00461     XOP = 2,
00462 
00463     // VEX_EVEX - Specifies that this instruction use EVEX form which provides
00464     // syntax support up to 32 512-bit register operands and up to 7 16-bit
00465     // mask operands as well as source operand data swizzling/memory operand
00466     // conversion, eviction hint, and rounding mode.
00467     EVEX = 3,
00468 
00469     // Opcode
00470     OpcodeShift   = EncodingShift + 2,
00471 
00472     //===------------------------------------------------------------------===//
00473     /// VEX - The opcode prefix used by AVX instructions
00474     VEXShift = OpcodeShift + 8,
00475 
00476     /// VEX_W - Has a opcode specific functionality, but is used in the same
00477     /// way as REX_W is for regular SSE instructions.
00478     VEX_W       = 1U << 0,
00479 
00480     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
00481     /// address instructions in SSE are represented as 3 address ones in AVX
00482     /// and the additional register is encoded in VEX_VVVV prefix.
00483     VEX_4V      = 1U << 1,
00484 
00485     /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
00486     /// operand 3 with VEX.vvvv.
00487     VEX_4VOp3   = 1U << 2,
00488 
00489     /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
00490     /// must be encoded in the i8 immediate field. This usually happens in
00491     /// instructions with 4 operands.
00492     VEX_I8IMM   = 1U << 3,
00493 
00494     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
00495     /// instruction uses 256-bit wide registers. This is usually auto detected
00496     /// if a VR256 register is used, but some AVX instructions also have this
00497     /// field marked when using a f256 memory references.
00498     VEX_L       = 1U << 4,
00499 
00500     // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
00501     // prefix. Usually used for scalar instructions. Needed by disassembler.
00502     VEX_LIG     = 1U << 5,
00503 
00504     // TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field
00505     // with following encoding:
00506     // - 00 V128
00507     // - 01 V256
00508     // - 10 V512
00509     // - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros.
00510     // this will save 1 tsflag bit
00511 
00512     // EVEX_K - Set if this instruction requires masking
00513     EVEX_K      = 1U << 6,
00514 
00515     // EVEX_Z - Set if this instruction has EVEX.Z field set.
00516     EVEX_Z      = 1U << 7,
00517 
00518     // EVEX_L2 - Set if this instruction has EVEX.L' field set.
00519     EVEX_L2     = 1U << 8,
00520 
00521     // EVEX_B - Set if this instruction has EVEX.B field set.
00522     EVEX_B      = 1U << 9,
00523 
00524     // The scaling factor for the AVX512's 8-bit compressed displacement.
00525     CD8_Scale_Shift = VEXShift + 10,
00526     CD8_Scale_Mask = 127,
00527 
00528     /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
00529     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
00530     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
00531     /// storing a classifier in the imm8 field.  To simplify our implementation,
00532     /// we handle this by storeing the classifier in the opcode field and using
00533     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
00534     Has3DNow0F0FOpcodeShift = CD8_Scale_Shift + 7,
00535     Has3DNow0F0FOpcode = 1U << (Has3DNow0F0FOpcodeShift - VEXShift),
00536 
00537     /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
00538     /// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
00539     MemOp4Shift = Has3DNow0F0FOpcodeShift + 1,
00540     MemOp4 = 1U << (MemOp4Shift - VEXShift),
00541 
00542     /// Explicitly specified rounding control
00543     EVEX_RCShift = MemOp4Shift + 1,
00544     EVEX_RC = 1U << (EVEX_RCShift - VEXShift)
00545   };
00546 
00547   // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
00548   // specified machine instruction.
00549   //
00550   inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
00551     return TSFlags >> X86II::OpcodeShift;
00552   }
00553 
00554   inline bool hasImm(uint64_t TSFlags) {
00555     return (TSFlags & X86II::ImmMask) != 0;
00556   }
00557 
00558   /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
00559   /// of the specified instruction.
00560   inline unsigned getSizeOfImm(uint64_t TSFlags) {
00561     switch (TSFlags & X86II::ImmMask) {
00562     default: llvm_unreachable("Unknown immediate size");
00563     case X86II::Imm8:
00564     case X86II::Imm8PCRel:  return 1;
00565     case X86II::Imm16:
00566     case X86II::Imm16PCRel: return 2;
00567     case X86II::Imm32:
00568     case X86II::Imm32S:
00569     case X86II::Imm32PCRel: return 4;
00570     case X86II::Imm64:      return 8;
00571     }
00572   }
00573 
00574   /// isImmPCRel - Return true if the immediate of the specified instruction's
00575   /// TSFlags indicates that it is pc relative.
00576   inline unsigned isImmPCRel(uint64_t TSFlags) {
00577     switch (TSFlags & X86II::ImmMask) {
00578     default: llvm_unreachable("Unknown immediate size");
00579     case X86II::Imm8PCRel:
00580     case X86II::Imm16PCRel:
00581     case X86II::Imm32PCRel:
00582       return true;
00583     case X86II::Imm8:
00584     case X86II::Imm16:
00585     case X86II::Imm32:
00586     case X86II::Imm32S:
00587     case X86II::Imm64:
00588       return false;
00589     }
00590   }
00591 
00592   /// isImmSigned - Return true if the immediate of the specified instruction's
00593   /// TSFlags indicates that it is signed.
00594   inline unsigned isImmSigned(uint64_t TSFlags) {
00595     switch (TSFlags & X86II::ImmMask) {
00596     default: llvm_unreachable("Unknown immediate signedness");
00597     case X86II::Imm32S:
00598       return true;
00599     case X86II::Imm8:
00600     case X86II::Imm8PCRel:
00601     case X86II::Imm16:
00602     case X86II::Imm16PCRel:
00603     case X86II::Imm32:
00604     case X86II::Imm32PCRel:
00605     case X86II::Imm64:
00606       return false;
00607     }
00608   }
00609 
00610   /// getOperandBias - compute any additional adjustment needed to
00611   ///                  the offset to the start of the memory operand
00612   ///                  in this instruction.
00613   /// If this is a two-address instruction,skip one of the register operands.
00614   /// FIXME: This should be handled during MCInst lowering.
00615   inline int getOperandBias(const MCInstrDesc& Desc)
00616   {
00617     unsigned NumOps = Desc.getNumOperands();
00618     unsigned CurOp = 0;
00619     if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
00620       ++CurOp;
00621     else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
00622              Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
00623       // Special case for AVX-512 GATHER with 2 TIED_TO operands
00624       // Skip the first 2 operands: dst, mask_wb
00625       CurOp += 2;
00626     else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
00627              Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
00628       // Special case for GATHER with 2 TIED_TO operands
00629       // Skip the first 2 operands: dst, mask_wb
00630       CurOp += 2;
00631     else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
00632       // SCATTER
00633       ++CurOp;
00634     return CurOp;
00635   }
00636 
00637   /// getMemoryOperandNo - The function returns the MCInst operand # for the
00638   /// first field of the memory operand.  If the instruction doesn't have a
00639   /// memory operand, this returns -1.
00640   ///
00641   /// Note that this ignores tied operands.  If there is a tied register which
00642   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
00643   /// counted as one operand.
00644   ///
00645   inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) {
00646     bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
00647     bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
00648     bool HasEVEX_K = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
00649     
00650     switch (TSFlags & X86II::FormMask) {
00651     default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
00652     case X86II::Pseudo:
00653     case X86II::RawFrm:
00654     case X86II::AddRegFrm:
00655     case X86II::MRMDestReg:
00656     case X86II::MRMSrcReg:
00657     case X86II::RawFrmImm8:
00658     case X86II::RawFrmImm16:
00659     case X86II::RawFrmMemOffs:
00660     case X86II::RawFrmSrc:
00661     case X86II::RawFrmDst:
00662     case X86II::RawFrmDstSrc:
00663        return -1;
00664     case X86II::MRMDestMem:
00665       return 0;
00666     case X86II::MRMSrcMem: {
00667       unsigned FirstMemOp = 1;
00668       if (HasVEX_4V)
00669         ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
00670       if (HasMemOp4)
00671         ++FirstMemOp;// Skip the register source (which is encoded in I8IMM).
00672       if (HasEVEX_K)
00673         ++FirstMemOp;// Skip the mask register
00674       // FIXME: Maybe lea should have its own form?  This is a horrible hack.
00675       //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
00676       //    Opcode == X86::LEA16r || Opcode == X86::LEA32r)
00677       return FirstMemOp;
00678     }
00679     case X86II::MRMXr:
00680     case X86II::MRM0r: case X86II::MRM1r:
00681     case X86II::MRM2r: case X86II::MRM3r:
00682     case X86II::MRM4r: case X86II::MRM5r:
00683     case X86II::MRM6r: case X86II::MRM7r:
00684       return -1;
00685     case X86II::MRMXm:
00686     case X86II::MRM0m: case X86II::MRM1m:
00687     case X86II::MRM2m: case X86II::MRM3m:
00688     case X86II::MRM4m: case X86II::MRM5m:
00689     case X86II::MRM6m: case X86II::MRM7m: {
00690       bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
00691       unsigned FirstMemOp = 0;
00692       if (HasVEX_4V)
00693         ++FirstMemOp;// Skip the register dest (which is encoded in VEX_VVVV).
00694       if (HasEVEX_K)
00695         ++FirstMemOp;// Skip the mask register
00696       return FirstMemOp;
00697     }
00698     case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
00699     case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
00700     case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
00701     case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
00702     case X86II::MRM_D4: case X86II::MRM_D5: case X86II::MRM_D6:
00703     case X86II::MRM_D7: case X86II::MRM_D8: case X86II::MRM_D9:
00704     case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC:
00705     case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF:
00706     case X86II::MRM_E0: case X86II::MRM_E1: case X86II::MRM_E2:
00707     case X86II::MRM_E3: case X86II::MRM_E4: case X86II::MRM_E5:
00708     case X86II::MRM_E8: case X86II::MRM_E9: case X86II::MRM_EA:
00709     case X86II::MRM_EB: case X86II::MRM_EC: case X86II::MRM_ED:
00710     case X86II::MRM_EE: case X86II::MRM_F0: case X86II::MRM_F1:
00711     case X86II::MRM_F2: case X86II::MRM_F3: case X86II::MRM_F4:
00712     case X86II::MRM_F5: case X86II::MRM_F6: case X86II::MRM_F7:
00713     case X86II::MRM_F8: case X86II::MRM_F9: case X86II::MRM_FA:
00714     case X86II::MRM_FB: case X86II::MRM_FC: case X86II::MRM_FD:
00715     case X86II::MRM_FE: case X86II::MRM_FF:
00716       return -1;
00717     }
00718   }
00719 
00720   /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
00721   /// higher) register?  e.g. r8, xmm8, xmm13, etc.
00722   inline bool isX86_64ExtendedReg(unsigned RegNo) {
00723     if ((RegNo > X86::XMM7 && RegNo <= X86::XMM15) ||
00724         (RegNo > X86::XMM23 && RegNo <= X86::XMM31) ||
00725         (RegNo > X86::YMM7 && RegNo <= X86::YMM15) ||
00726         (RegNo > X86::YMM23 && RegNo <= X86::YMM31) ||
00727         (RegNo > X86::ZMM7 && RegNo <= X86::ZMM15) ||
00728         (RegNo > X86::ZMM23 && RegNo <= X86::ZMM31))
00729       return true;
00730 
00731     switch (RegNo) {
00732     default: break;
00733     case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
00734     case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
00735     case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
00736     case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
00737     case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
00738     case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
00739     case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
00740     case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
00741     case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
00742     case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
00743         return true;
00744     }
00745     return false;
00746   }
00747 
00748   /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
00749   /// registers? e.g. zmm21, etc.
00750   static inline bool is32ExtendedReg(unsigned RegNo) {
00751     return ((RegNo > X86::XMM15 && RegNo <= X86::XMM31) ||
00752             (RegNo > X86::YMM15 && RegNo <= X86::YMM31) ||
00753             (RegNo > X86::ZMM15 && RegNo <= X86::ZMM31));
00754   }
00755 
00756   
00757   inline bool isX86_64NonExtLowByteReg(unsigned reg) {
00758     return (reg == X86::SPL || reg == X86::BPL ||
00759             reg == X86::SIL || reg == X86::DIL);
00760   }
00761 }
00762 
00763 } // end namespace llvm;
00764 
00765 #endif