LLVM API Documentation

X86Subtarget.cpp
Go to the documentation of this file.
00001 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file implements the X86 specific subclass of TargetSubtargetInfo.
00011 //
00012 //===----------------------------------------------------------------------===//
00013 
00014 #include "X86Subtarget.h"
00015 #include "X86InstrInfo.h"
00016 #include "X86TargetMachine.h"
00017 #include "llvm/IR/Attributes.h"
00018 #include "llvm/IR/Function.h"
00019 #include "llvm/IR/GlobalValue.h"
00020 #include "llvm/Support/CommandLine.h"
00021 #include "llvm/Support/Debug.h"
00022 #include "llvm/Support/ErrorHandling.h"
00023 #include "llvm/Support/Host.h"
00024 #include "llvm/Support/raw_ostream.h"
00025 #include "llvm/Target/TargetMachine.h"
00026 #include "llvm/Target/TargetOptions.h"
00027 
00028 #if defined(_MSC_VER)
00029 #include <intrin.h>
00030 #endif
00031 
00032 using namespace llvm;
00033 
00034 #define DEBUG_TYPE "subtarget"
00035 
00036 #define GET_SUBTARGETINFO_TARGET_DESC
00037 #define GET_SUBTARGETINFO_CTOR
00038 #include "X86GenSubtargetInfo.inc"
00039 
00040 // Temporary option to control early if-conversion for x86 while adding machine
00041 // models.
00042 static cl::opt<bool>
00043 X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
00044                cl::desc("Enable early if-conversion on X86"));
00045 
00046 
00047 /// ClassifyBlockAddressReference - Classify a blockaddress reference for the
00048 /// current subtarget according to how we should reference it in a non-pcrel
00049 /// context.
00050 unsigned char X86Subtarget::ClassifyBlockAddressReference() const {
00051   if (isPICStyleGOT())    // 32-bit ELF targets.
00052     return X86II::MO_GOTOFF;
00053 
00054   if (isPICStyleStubPIC())   // Darwin/32 in PIC mode.
00055     return X86II::MO_PIC_BASE_OFFSET;
00056 
00057   // Direct static reference to label.
00058   return X86II::MO_NO_FLAG;
00059 }
00060 
00061 /// ClassifyGlobalReference - Classify a global variable reference for the
00062 /// current subtarget according to how we should reference it in a non-pcrel
00063 /// context.
00064 unsigned char X86Subtarget::
00065 ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
00066   // DLLImport only exists on windows, it is implemented as a load from a
00067   // DLLIMPORT stub.
00068   if (GV->hasDLLImportStorageClass())
00069     return X86II::MO_DLLIMPORT;
00070 
00071   // Determine whether this is a reference to a definition or a declaration.
00072   // Materializable GVs (in JIT lazy compilation mode) do not require an extra
00073   // load from stub.
00074   bool isDecl = GV->hasAvailableExternallyLinkage();
00075   if (GV->isDeclaration() && !GV->isMaterializable())
00076     isDecl = true;
00077 
00078   // X86-64 in PIC mode.
00079   if (isPICStyleRIPRel()) {
00080     // Large model never uses stubs.
00081     if (TM.getCodeModel() == CodeModel::Large)
00082       return X86II::MO_NO_FLAG;
00083 
00084     if (isTargetDarwin()) {
00085       // If symbol visibility is hidden, the extra load is not needed if
00086       // target is x86-64 or the symbol is definitely defined in the current
00087       // translation unit.
00088       if (GV->hasDefaultVisibility() &&
00089           (isDecl || GV->isWeakForLinker()))
00090         return X86II::MO_GOTPCREL;
00091     } else if (!isTargetWin64()) {
00092       assert(isTargetELF() && "Unknown rip-relative target");
00093 
00094       // Extra load is needed for all externally visible.
00095       if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
00096         return X86II::MO_GOTPCREL;
00097     }
00098 
00099     return X86II::MO_NO_FLAG;
00100   }
00101 
00102   if (isPICStyleGOT()) {   // 32-bit ELF targets.
00103     // Extra load is needed for all externally visible.
00104     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
00105       return X86II::MO_GOTOFF;
00106     return X86II::MO_GOT;
00107   }
00108 
00109   if (isPICStyleStubPIC()) {  // Darwin/32 in PIC mode.
00110     // Determine whether we have a stub reference and/or whether the reference
00111     // is relative to the PIC base or not.
00112 
00113     // If this is a strong reference to a definition, it is definitely not
00114     // through a stub.
00115     if (!isDecl && !GV->isWeakForLinker())
00116       return X86II::MO_PIC_BASE_OFFSET;
00117 
00118     // Unless we have a symbol with hidden visibility, we have to go through a
00119     // normal $non_lazy_ptr stub because this symbol might be resolved late.
00120     if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
00121       return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
00122 
00123     // If symbol visibility is hidden, we have a stub for common symbol
00124     // references and external declarations.
00125     if (isDecl || GV->hasCommonLinkage()) {
00126       // Hidden $non_lazy_ptr reference.
00127       return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
00128     }
00129 
00130     // Otherwise, no stub.
00131     return X86II::MO_PIC_BASE_OFFSET;
00132   }
00133 
00134   if (isPICStyleStubNoDynamic()) {  // Darwin/32 in -mdynamic-no-pic mode.
00135     // Determine whether we have a stub reference.
00136 
00137     // If this is a strong reference to a definition, it is definitely not
00138     // through a stub.
00139     if (!isDecl && !GV->isWeakForLinker())
00140       return X86II::MO_NO_FLAG;
00141 
00142     // Unless we have a symbol with hidden visibility, we have to go through a
00143     // normal $non_lazy_ptr stub because this symbol might be resolved late.
00144     if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
00145       return X86II::MO_DARWIN_NONLAZY;
00146 
00147     // Otherwise, no stub.
00148     return X86II::MO_NO_FLAG;
00149   }
00150 
00151   // Direct static reference to global.
00152   return X86II::MO_NO_FLAG;
00153 }
00154 
00155 
00156 /// getBZeroEntry - This function returns the name of a function which has an
00157 /// interface like the non-standard bzero function, if such a function exists on
00158 /// the current subtarget and it is considered prefereable over memset with zero
00159 /// passed as the second argument. Otherwise it returns null.
00160 const char *X86Subtarget::getBZeroEntry() const {
00161   // Darwin 10 has a __bzero entry point for this purpose.
00162   if (getTargetTriple().isMacOSX() &&
00163       !getTargetTriple().isMacOSXVersionLT(10, 6))
00164     return "__bzero";
00165 
00166   return nullptr;
00167 }
00168 
00169 bool X86Subtarget::hasSinCos() const {
00170   return getTargetTriple().isMacOSX() &&
00171     !getTargetTriple().isMacOSXVersionLT(10, 9) &&
00172     is64Bit();
00173 }
00174 
00175 /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
00176 /// to immediate address.
00177 bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
00178   // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
00179   // but WinCOFFObjectWriter::RecordRelocation cannot emit them.  Once it does,
00180   // the following check for Win32 should be removed.
00181   if (In64BitMode || isTargetWin32())
00182     return false;
00183   return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
00184 }
00185 
00186 void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
00187   std::string CPUName = CPU;
00188   if (CPUName.empty())
00189     CPUName = "generic";
00190 
00191   // Make sure 64-bit features are available in 64-bit mode. (But make sure
00192   // SSE2 can be turned off explicitly.)
00193   std::string FullFS = FS;
00194   if (In64BitMode) {
00195     if (!FullFS.empty())
00196       FullFS = "+64bit,+sse2," + FullFS;
00197     else
00198       FullFS = "+64bit,+sse2";
00199   }
00200 
00201   // If feature string is not empty, parse features string.
00202   ParseSubtargetFeatures(CPUName, FullFS);
00203 
00204   // Make sure the right MCSchedModel is used.
00205   InitCPUSchedModel(CPUName);
00206 
00207   InstrItins = getInstrItineraryForCPU(CPUName);
00208 
00209   // It's important to keep the MCSubtargetInfo feature bits in sync with
00210   // target data structure which is shared with MC code emitter, etc.
00211   if (In64BitMode)
00212     ToggleFeature(X86::Mode64Bit);
00213   else if (In32BitMode)
00214     ToggleFeature(X86::Mode32Bit);
00215   else if (In16BitMode)
00216     ToggleFeature(X86::Mode16Bit);
00217   else
00218     llvm_unreachable("Not 16-bit, 32-bit or 64-bit mode!");
00219 
00220   DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
00221                << ", 3DNowLevel " << X863DNowLevel
00222                << ", 64bit " << HasX86_64 << "\n");
00223   assert((!In64BitMode || HasX86_64) &&
00224          "64-bit code requested on a subtarget that doesn't support it!");
00225 
00226   // Stack alignment is 16 bytes on Darwin, Linux and Solaris (both
00227   // 32 and 64 bit) and for all 64-bit targets.
00228   if (StackAlignOverride)
00229     stackAlignment = StackAlignOverride;
00230   else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
00231            In64BitMode)
00232     stackAlignment = 16;
00233 }
00234 
00235 void X86Subtarget::initializeEnvironment() {
00236   X86SSELevel = NoMMXSSE;
00237   X863DNowLevel = NoThreeDNow;
00238   HasCMov = false;
00239   HasX86_64 = false;
00240   HasPOPCNT = false;
00241   HasSSE4A = false;
00242   HasAES = false;
00243   HasPCLMUL = false;
00244   HasFMA = false;
00245   HasFMA4 = false;
00246   HasXOP = false;
00247   HasTBM = false;
00248   HasMOVBE = false;
00249   HasRDRAND = false;
00250   HasF16C = false;
00251   HasFSGSBase = false;
00252   HasLZCNT = false;
00253   HasBMI = false;
00254   HasBMI2 = false;
00255   HasRTM = false;
00256   HasHLE = false;
00257   HasERI = false;
00258   HasCDI = false;
00259   HasPFI = false;
00260   HasDQI = false;
00261   HasBWI = false;
00262   HasVLX = false;
00263   HasADX = false;
00264   HasSHA = false;
00265   HasSGX = false;
00266   HasPRFCHW = false;
00267   HasRDSEED = false;
00268   HasSMAP = false;
00269   IsBTMemSlow = false;
00270   IsSHLDSlow = false;
00271   IsUAMemFast = false;
00272   HasVectorUAMem = false;
00273   HasCmpxchg16b = false;
00274   UseLeaForSP = false;
00275   HasSlowDivide = false;
00276   PadShortFunctions = false;
00277   CallRegIndirect = false;
00278   LEAUsesAG = false;
00279   SlowLEA = false;
00280   SlowIncDec = false;
00281   stackAlignment = 4;
00282   // FIXME: this is a known good value for Yonah. How about others?
00283   MaxInlineSizeThreshold = 128;
00284 }
00285 
00286 static std::string computeDataLayout(const Triple &TT) {
00287   // X86 is little endian
00288   std::string Ret = "e";
00289 
00290   Ret += DataLayout::getManglingComponent(TT);
00291   // X86 and x32 have 32 bit pointers.
00292   if ((TT.isArch64Bit() &&
00293        (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
00294       !TT.isArch64Bit())
00295     Ret += "-p:32:32";
00296 
00297   // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
00298   if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
00299     Ret += "-i64:64";
00300   else
00301     Ret += "-f64:32:64";
00302 
00303   // Some ABIs align long double to 128 bits, others to 32.
00304   if (TT.isOSNaCl())
00305     ; // No f80
00306   else if (TT.isArch64Bit() || TT.isOSDarwin())
00307     Ret += "-f80:128";
00308   else
00309     Ret += "-f80:32";
00310 
00311   // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
00312   if (TT.isArch64Bit())
00313     Ret += "-n8:16:32:64";
00314   else
00315     Ret += "-n8:16:32";
00316 
00317   // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
00318   if (!TT.isArch64Bit() && TT.isOSWindows())
00319     Ret += "-S32";
00320   else
00321     Ret += "-S128";
00322 
00323   return Ret;
00324 }
00325 
00326 X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
00327                                                             StringRef FS) {
00328   initializeEnvironment();
00329   initSubtargetFeatures(CPU, FS);
00330   return *this;
00331 }
00332 
00333 X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU,
00334                            const std::string &FS, X86TargetMachine &TM,
00335                            unsigned StackAlignOverride)
00336     : X86GenSubtargetInfo(TT, CPU, FS), X86ProcFamily(Others),
00337       PICStyle(PICStyles::None), TargetTriple(TT),
00338       DL(computeDataLayout(TargetTriple)),
00339       StackAlignOverride(StackAlignOverride),
00340       In64BitMode(TargetTriple.getArch() == Triple::x86_64),
00341       In32BitMode(TargetTriple.getArch() == Triple::x86 &&
00342                   TargetTriple.getEnvironment() != Triple::CODE16),
00343       In16BitMode(TargetTriple.getArch() == Triple::x86 &&
00344                   TargetTriple.getEnvironment() == Triple::CODE16),
00345       TSInfo(DL), InstrInfo(initializeSubtargetDependencies(CPU, FS)),
00346       TLInfo(TM), FrameLowering(TargetFrameLowering::StackGrowsDown,
00347                                 getStackAlignment(), is64Bit() ? -8 : -4) {
00348   // Determine the PICStyle based on the target selected.
00349   if (TM.getRelocationModel() == Reloc::Static) {
00350     // Unless we're in PIC or DynamicNoPIC mode, set the PIC style to None.
00351     setPICStyle(PICStyles::None);
00352   } else if (is64Bit()) {
00353     // PIC in 64 bit mode is always rip-rel.
00354     setPICStyle(PICStyles::RIPRel);
00355   } else if (isTargetCOFF()) {
00356     setPICStyle(PICStyles::None);
00357   } else if (isTargetDarwin()) {
00358     if (TM.getRelocationModel() == Reloc::PIC_)
00359       setPICStyle(PICStyles::StubPIC);
00360     else {
00361       assert(TM.getRelocationModel() == Reloc::DynamicNoPIC);
00362       setPICStyle(PICStyles::StubDynamicNoPIC);
00363     }
00364   } else if (isTargetELF()) {
00365     setPICStyle(PICStyles::GOT);
00366   }
00367 }
00368 
00369 bool X86Subtarget::enableEarlyIfConversion() const {
00370   return hasCMov() && X86EarlyIfConv;
00371 }
00372