LLVM API Documentation

YAMLTraits.cpp
Go to the documentation of this file.
00001 //===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
00002 //
00003 //                             The LLVM Linker
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 
00010 #include "llvm/Support/Errc.h"
00011 #include "llvm/Support/YAMLTraits.h"
00012 #include "llvm/ADT/Twine.h"
00013 #include "llvm/Support/Casting.h"
00014 #include "llvm/Support/ErrorHandling.h"
00015 #include "llvm/Support/Format.h"
00016 #include "llvm/Support/YAMLParser.h"
00017 #include "llvm/Support/raw_ostream.h"
00018 #include <cctype>
00019 #include <cstring>
00020 using namespace llvm;
00021 using namespace yaml;
00022 
00023 //===----------------------------------------------------------------------===//
00024 //  IO
00025 //===----------------------------------------------------------------------===//
00026 
00027 IO::IO(void *Context) : Ctxt(Context) {
00028 }
00029 
00030 IO::~IO() {
00031 }
00032 
00033 void *IO::getContext() {
00034   return Ctxt;
00035 }
00036 
00037 void IO::setContext(void *Context) {
00038   Ctxt = Context;
00039 }
00040 
00041 //===----------------------------------------------------------------------===//
00042 //  Input
00043 //===----------------------------------------------------------------------===//
00044 
00045 Input::Input(StringRef InputContent,
00046              void *Ctxt,
00047              SourceMgr::DiagHandlerTy DiagHandler,
00048              void *DiagHandlerCtxt)
00049   : IO(Ctxt),
00050     Strm(new Stream(InputContent, SrcMgr)),
00051     CurrentNode(nullptr) {
00052   if (DiagHandler)
00053     SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
00054   DocIterator = Strm->begin();
00055 }
00056 
00057 Input::~Input() {
00058 }
00059 
00060 std::error_code Input::error() { return EC; }
00061 
00062 // Pin the vtables to this file.
00063 void Input::HNode::anchor() {}
00064 void Input::EmptyHNode::anchor() {}
00065 void Input::ScalarHNode::anchor() {}
00066 void Input::MapHNode::anchor() {}
00067 void Input::SequenceHNode::anchor() {}
00068 
00069 bool Input::outputting() {
00070   return false;
00071 }
00072 
00073 bool Input::setCurrentDocument() {
00074   if (DocIterator != Strm->end()) {
00075     Node *N = DocIterator->getRoot();
00076     if (!N) {
00077       assert(Strm->failed() && "Root is NULL iff parsing failed");
00078       EC = make_error_code(errc::invalid_argument);
00079       return false;
00080     }
00081 
00082     if (isa<NullNode>(N)) {
00083       // Empty files are allowed and ignored
00084       ++DocIterator;
00085       return setCurrentDocument();
00086     }
00087     TopNode = this->createHNodes(N);
00088     CurrentNode = TopNode.get();
00089     return true;
00090   }
00091   return false;
00092 }
00093 
00094 bool Input::nextDocument() {
00095   return ++DocIterator != Strm->end();
00096 }
00097 
00098 bool Input::mapTag(StringRef Tag, bool Default) {
00099   std::string foundTag = CurrentNode->_node->getVerbatimTag();
00100   if (foundTag.empty()) {
00101     // If no tag found and 'Tag' is the default, say it was found.
00102     return Default;
00103   }
00104   // Return true iff found tag matches supplied tag.
00105   return Tag.equals(foundTag);
00106 }
00107 
00108 void Input::beginMapping() {
00109   if (EC)
00110     return;
00111   // CurrentNode can be null if the document is empty.
00112   MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
00113   if (MN) {
00114     MN->ValidKeys.clear();
00115   }
00116 }
00117 
00118 bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault,
00119                          void *&SaveInfo) {
00120   UseDefault = false;
00121   if (EC)
00122     return false;
00123 
00124   // CurrentNode is null for empty documents, which is an error in case required
00125   // nodes are present.
00126   if (!CurrentNode) {
00127     if (Required)
00128       EC = make_error_code(errc::invalid_argument);
00129     return false;
00130   }
00131 
00132   MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
00133   if (!MN) {
00134     setError(CurrentNode, "not a mapping");
00135     return false;
00136   }
00137   MN->ValidKeys.push_back(Key);
00138   HNode *Value = MN->Mapping[Key].get();
00139   if (!Value) {
00140     if (Required)
00141       setError(CurrentNode, Twine("missing required key '") + Key + "'");
00142     else
00143       UseDefault = true;
00144     return false;
00145   }
00146   SaveInfo = CurrentNode;
00147   CurrentNode = Value;
00148   return true;
00149 }
00150 
00151 void Input::postflightKey(void *saveInfo) {
00152   CurrentNode = reinterpret_cast<HNode *>(saveInfo);
00153 }
00154 
00155 void Input::endMapping() {
00156   if (EC)
00157     return;
00158   // CurrentNode can be null if the document is empty.
00159   MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
00160   if (!MN)
00161     return;
00162   for (const auto &NN : MN->Mapping) {
00163     if (!MN->isValidKey(NN.first())) {
00164       setError(NN.second.get(), Twine("unknown key '") + NN.first() + "'");
00165       break;
00166     }
00167   }
00168 }
00169 
00170 unsigned Input::beginSequence() {
00171   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
00172     return SQ->Entries.size();
00173   }
00174   return 0;
00175 }
00176 
00177 void Input::endSequence() {
00178 }
00179 
00180 bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
00181   if (EC)
00182     return false;
00183   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
00184     SaveInfo = CurrentNode;
00185     CurrentNode = SQ->Entries[Index].get();
00186     return true;
00187   }
00188   return false;
00189 }
00190 
00191 void Input::postflightElement(void *SaveInfo) {
00192   CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
00193 }
00194 
00195 unsigned Input::beginFlowSequence() {
00196   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
00197     return SQ->Entries.size();
00198   }
00199   return 0;
00200 }
00201 
00202 bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
00203   if (EC)
00204     return false;
00205   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
00206     SaveInfo = CurrentNode;
00207     CurrentNode = SQ->Entries[index].get();
00208     return true;
00209   }
00210   return false;
00211 }
00212 
00213 void Input::postflightFlowElement(void *SaveInfo) {
00214   CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
00215 }
00216 
00217 void Input::endFlowSequence() {
00218 }
00219 
00220 void Input::beginEnumScalar() {
00221   ScalarMatchFound = false;
00222 }
00223 
00224 bool Input::matchEnumScalar(const char *Str, bool) {
00225   if (ScalarMatchFound)
00226     return false;
00227   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
00228     if (SN->value().equals(Str)) {
00229       ScalarMatchFound = true;
00230       return true;
00231     }
00232   }
00233   return false;
00234 }
00235 
00236 void Input::endEnumScalar() {
00237   if (!ScalarMatchFound) {
00238     setError(CurrentNode, "unknown enumerated scalar");
00239   }
00240 }
00241 
00242 bool Input::beginBitSetScalar(bool &DoClear) {
00243   BitValuesUsed.clear();
00244   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
00245     BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false);
00246   } else {
00247     setError(CurrentNode, "expected sequence of bit values");
00248   }
00249   DoClear = true;
00250   return true;
00251 }
00252 
00253 bool Input::bitSetMatch(const char *Str, bool) {
00254   if (EC)
00255     return false;
00256   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
00257     unsigned Index = 0;
00258     for (auto &N : SQ->Entries) {
00259       if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) {
00260         if (SN->value().equals(Str)) {
00261           BitValuesUsed[Index] = true;
00262           return true;
00263         }
00264       } else {
00265         setError(CurrentNode, "unexpected scalar in sequence of bit values");
00266       }
00267       ++Index;
00268     }
00269   } else {
00270     setError(CurrentNode, "expected sequence of bit values");
00271   }
00272   return false;
00273 }
00274 
00275 void Input::endBitSetScalar() {
00276   if (EC)
00277     return;
00278   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
00279     assert(BitValuesUsed.size() == SQ->Entries.size());
00280     for (unsigned i = 0; i < SQ->Entries.size(); ++i) {
00281       if (!BitValuesUsed[i]) {
00282         setError(SQ->Entries[i].get(), "unknown bit value");
00283         return;
00284       }
00285     }
00286   }
00287 }
00288 
00289 void Input::scalarString(StringRef &S, bool) {
00290   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
00291     S = SN->value();
00292   } else {
00293     setError(CurrentNode, "unexpected scalar");
00294   }
00295 }
00296 
00297 void Input::setError(HNode *hnode, const Twine &message) {
00298   assert(hnode && "HNode must not be NULL");
00299   this->setError(hnode->_node, message);
00300 }
00301 
00302 void Input::setError(Node *node, const Twine &message) {
00303   Strm->printError(node, message);
00304   EC = make_error_code(errc::invalid_argument);
00305 }
00306 
00307 std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) {
00308   SmallString<128> StringStorage;
00309   if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) {
00310     StringRef KeyStr = SN->getValue(StringStorage);
00311     if (!StringStorage.empty()) {
00312       // Copy string to permanent storage
00313       unsigned Len = StringStorage.size();
00314       char *Buf = StringAllocator.Allocate<char>(Len);
00315       memcpy(Buf, &StringStorage[0], Len);
00316       KeyStr = StringRef(Buf, Len);
00317     }
00318     return llvm::make_unique<ScalarHNode>(N, KeyStr);
00319   } else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) {
00320     auto SQHNode = llvm::make_unique<SequenceHNode>(N);
00321     for (Node &SN : *SQ) {
00322       auto Entry = this->createHNodes(&SN);
00323       if (EC)
00324         break;
00325       SQHNode->Entries.push_back(std::move(Entry));
00326     }
00327     return std::move(SQHNode);
00328   } else if (MappingNode *Map = dyn_cast<MappingNode>(N)) {
00329     auto mapHNode = llvm::make_unique<MapHNode>(N);
00330     for (KeyValueNode &KVN : *Map) {
00331       Node *KeyNode = KVN.getKey();
00332       ScalarNode *KeyScalar = dyn_cast<ScalarNode>(KeyNode);
00333       if (!KeyScalar) {
00334         setError(KeyNode, "Map key must be a scalar");
00335         break;
00336       }
00337       StringStorage.clear();
00338       StringRef KeyStr = KeyScalar->getValue(StringStorage);
00339       if (!StringStorage.empty()) {
00340         // Copy string to permanent storage
00341         unsigned Len = StringStorage.size();
00342         char *Buf = StringAllocator.Allocate<char>(Len);
00343         memcpy(Buf, &StringStorage[0], Len);
00344         KeyStr = StringRef(Buf, Len);
00345       }
00346       auto ValueHNode = this->createHNodes(KVN.getValue());
00347       if (EC)
00348         break;
00349       mapHNode->Mapping[KeyStr] = std::move(ValueHNode);
00350     }
00351     return std::move(mapHNode);
00352   } else if (isa<NullNode>(N)) {
00353     return llvm::make_unique<EmptyHNode>(N);
00354   } else {
00355     setError(N, "unknown node kind");
00356     return nullptr;
00357   }
00358 }
00359 
00360 bool Input::MapHNode::isValidKey(StringRef Key) {
00361   for (const char *K : ValidKeys) {
00362     if (Key.equals(K))
00363       return true;
00364   }
00365   return false;
00366 }
00367 
00368 void Input::setError(const Twine &Message) {
00369   this->setError(CurrentNode, Message);
00370 }
00371 
00372 bool Input::canElideEmptySequence() {
00373   return false;
00374 }
00375 
00376 //===----------------------------------------------------------------------===//
00377 //  Output
00378 //===----------------------------------------------------------------------===//
00379 
00380 Output::Output(raw_ostream &yout, void *context)
00381     : IO(context),
00382       Out(yout),
00383       Column(0),
00384       ColumnAtFlowStart(0),
00385       NeedBitValueComma(false),
00386       NeedFlowSequenceComma(false),
00387       EnumerationMatchFound(false),
00388       NeedsNewLine(false) {
00389 }
00390 
00391 Output::~Output() {
00392 }
00393 
00394 bool Output::outputting() {
00395   return true;
00396 }
00397 
00398 void Output::beginMapping() {
00399   StateStack.push_back(inMapFirstKey);
00400   NeedsNewLine = true;
00401 }
00402 
00403 bool Output::mapTag(StringRef Tag, bool Use) {
00404   if (Use) {
00405     this->output(" ");
00406     this->output(Tag);
00407   }
00408   return Use;
00409 }
00410 
00411 void Output::endMapping() {
00412   StateStack.pop_back();
00413 }
00414 
00415 bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
00416                           bool &UseDefault, void *&) {
00417   UseDefault = false;
00418   if (Required || !SameAsDefault) {
00419     this->newLineCheck();
00420     this->paddedKey(Key);
00421     return true;
00422   }
00423   return false;
00424 }
00425 
00426 void Output::postflightKey(void *) {
00427   if (StateStack.back() == inMapFirstKey) {
00428     StateStack.pop_back();
00429     StateStack.push_back(inMapOtherKey);
00430   }
00431 }
00432 
00433 void Output::beginDocuments() {
00434   this->outputUpToEndOfLine("---");
00435 }
00436 
00437 bool Output::preflightDocument(unsigned index) {
00438   if (index > 0)
00439     this->outputUpToEndOfLine("\n---");
00440   return true;
00441 }
00442 
00443 void Output::postflightDocument() {
00444 }
00445 
00446 void Output::endDocuments() {
00447   output("\n...\n");
00448 }
00449 
00450 unsigned Output::beginSequence() {
00451   StateStack.push_back(inSeq);
00452   NeedsNewLine = true;
00453   return 0;
00454 }
00455 
00456 void Output::endSequence() {
00457   StateStack.pop_back();
00458 }
00459 
00460 bool Output::preflightElement(unsigned, void *&) {
00461   return true;
00462 }
00463 
00464 void Output::postflightElement(void *) {
00465 }
00466 
00467 unsigned Output::beginFlowSequence() {
00468   StateStack.push_back(inFlowSeq);
00469   this->newLineCheck();
00470   ColumnAtFlowStart = Column;
00471   output("[ ");
00472   NeedFlowSequenceComma = false;
00473   return 0;
00474 }
00475 
00476 void Output::endFlowSequence() {
00477   StateStack.pop_back();
00478   this->outputUpToEndOfLine(" ]");
00479 }
00480 
00481 bool Output::preflightFlowElement(unsigned, void *&) {
00482   if (NeedFlowSequenceComma)
00483     output(", ");
00484   if (Column > 70) {
00485     output("\n");
00486     for (int i = 0; i < ColumnAtFlowStart; ++i)
00487       output(" ");
00488     Column = ColumnAtFlowStart;
00489     output("  ");
00490   }
00491   return true;
00492 }
00493 
00494 void Output::postflightFlowElement(void *) {
00495   NeedFlowSequenceComma = true;
00496 }
00497 
00498 void Output::beginEnumScalar() {
00499   EnumerationMatchFound = false;
00500 }
00501 
00502 bool Output::matchEnumScalar(const char *Str, bool Match) {
00503   if (Match && !EnumerationMatchFound) {
00504     this->newLineCheck();
00505     this->outputUpToEndOfLine(Str);
00506     EnumerationMatchFound = true;
00507   }
00508   return false;
00509 }
00510 
00511 void Output::endEnumScalar() {
00512   if (!EnumerationMatchFound)
00513     llvm_unreachable("bad runtime enum value");
00514 }
00515 
00516 bool Output::beginBitSetScalar(bool &DoClear) {
00517   this->newLineCheck();
00518   output("[ ");
00519   NeedBitValueComma = false;
00520   DoClear = false;
00521   return true;
00522 }
00523 
00524 bool Output::bitSetMatch(const char *Str, bool Matches) {
00525   if (Matches) {
00526     if (NeedBitValueComma)
00527       output(", ");
00528     this->output(Str);
00529     NeedBitValueComma = true;
00530   }
00531   return false;
00532 }
00533 
00534 void Output::endBitSetScalar() {
00535   this->outputUpToEndOfLine(" ]");
00536 }
00537 
00538 void Output::scalarString(StringRef &S, bool MustQuote) {
00539   this->newLineCheck();
00540   if (S.empty()) {
00541     // Print '' for the empty string because leaving the field empty is not
00542     // allowed.
00543     this->outputUpToEndOfLine("''");
00544     return;
00545   }
00546   if (!MustQuote) {
00547     // Only quote if we must.
00548     this->outputUpToEndOfLine(S);
00549     return;
00550   }
00551   unsigned i = 0;
00552   unsigned j = 0;
00553   unsigned End = S.size();
00554   output("'"); // Starting single quote.
00555   const char *Base = S.data();
00556   while (j < End) {
00557     // Escape a single quote by doubling it.
00558     if (S[j] == '\'') {
00559       output(StringRef(&Base[i], j - i + 1));
00560       output("'");
00561       i = j + 1;
00562     }
00563     ++j;
00564   }
00565   output(StringRef(&Base[i], j - i));
00566   this->outputUpToEndOfLine("'"); // Ending single quote.
00567 }
00568 
00569 void Output::setError(const Twine &message) {
00570 }
00571 
00572 bool Output::canElideEmptySequence() {
00573   // Normally, with an optional key/value where the value is an empty sequence,
00574   // the whole key/value can be not written.  But, that produces wrong yaml
00575   // if the key/value is the only thing in the map and the map is used in
00576   // a sequence.  This detects if the this sequence is the first key/value
00577   // in map that itself is embedded in a sequnce.
00578   if (StateStack.size() < 2)
00579     return true;
00580   if (StateStack.back() != inMapFirstKey)
00581     return true;
00582   return (StateStack[StateStack.size()-2] != inSeq);
00583 }
00584 
00585 void Output::output(StringRef s) {
00586   Column += s.size();
00587   Out << s;
00588 }
00589 
00590 void Output::outputUpToEndOfLine(StringRef s) {
00591   this->output(s);
00592   if (StateStack.empty() || StateStack.back() != inFlowSeq)
00593     NeedsNewLine = true;
00594 }
00595 
00596 void Output::outputNewLine() {
00597   Out << "\n";
00598   Column = 0;
00599 }
00600 
00601 // if seq at top, indent as if map, then add "- "
00602 // if seq in middle, use "- " if firstKey, else use "  "
00603 //
00604 
00605 void Output::newLineCheck() {
00606   if (!NeedsNewLine)
00607     return;
00608   NeedsNewLine = false;
00609 
00610   this->outputNewLine();
00611 
00612   assert(StateStack.size() > 0);
00613   unsigned Indent = StateStack.size() - 1;
00614   bool OutputDash = false;
00615 
00616   if (StateStack.back() == inSeq) {
00617     OutputDash = true;
00618   } else if ((StateStack.size() > 1) && (StateStack.back() == inMapFirstKey) &&
00619              (StateStack[StateStack.size() - 2] == inSeq)) {
00620     --Indent;
00621     OutputDash = true;
00622   }
00623 
00624   for (unsigned i = 0; i < Indent; ++i) {
00625     output("  ");
00626   }
00627   if (OutputDash) {
00628     output("- ");
00629   }
00630 
00631 }
00632 
00633 void Output::paddedKey(StringRef key) {
00634   output(key);
00635   output(":");
00636   const char *spaces = "                ";
00637   if (key.size() < strlen(spaces))
00638     output(&spaces[key.size()]);
00639   else
00640     output(" ");
00641 }
00642 
00643 //===----------------------------------------------------------------------===//
00644 //  traits for built-in types
00645 //===----------------------------------------------------------------------===//
00646 
00647 void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) {
00648   Out << (Val ? "true" : "false");
00649 }
00650 
00651 StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) {
00652   if (Scalar.equals("true")) {
00653     Val = true;
00654     return StringRef();
00655   } else if (Scalar.equals("false")) {
00656     Val = false;
00657     return StringRef();
00658   }
00659   return "invalid boolean";
00660 }
00661 
00662 void ScalarTraits<StringRef>::output(const StringRef &Val, void *,
00663                                      raw_ostream &Out) {
00664   Out << Val;
00665 }
00666 
00667 StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *,
00668                                          StringRef &Val) {
00669   Val = Scalar;
00670   return StringRef();
00671 }
00672  
00673 void ScalarTraits<std::string>::output(const std::string &Val, void *,
00674                                      raw_ostream &Out) {
00675   Out << Val;
00676 }
00677 
00678 StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *,
00679                                          std::string &Val) {
00680   Val = Scalar.str();
00681   return StringRef();
00682 }
00683 
00684 void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *,
00685                                    raw_ostream &Out) {
00686   // use temp uin32_t because ostream thinks uint8_t is a character
00687   uint32_t Num = Val;
00688   Out << Num;
00689 }
00690 
00691 StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) {
00692   unsigned long long n;
00693   if (getAsUnsignedInteger(Scalar, 0, n))
00694     return "invalid number";
00695   if (n > 0xFF)
00696     return "out of range number";
00697   Val = n;
00698   return StringRef();
00699 }
00700 
00701 void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *,
00702                                     raw_ostream &Out) {
00703   Out << Val;
00704 }
00705 
00706 StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *,
00707                                         uint16_t &Val) {
00708   unsigned long long n;
00709   if (getAsUnsignedInteger(Scalar, 0, n))
00710     return "invalid number";
00711   if (n > 0xFFFF)
00712     return "out of range number";
00713   Val = n;
00714   return StringRef();
00715 }
00716 
00717 void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *,
00718                                     raw_ostream &Out) {
00719   Out << Val;
00720 }
00721 
00722 StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *,
00723                                         uint32_t &Val) {
00724   unsigned long long n;
00725   if (getAsUnsignedInteger(Scalar, 0, n))
00726     return "invalid number";
00727   if (n > 0xFFFFFFFFUL)
00728     return "out of range number";
00729   Val = n;
00730   return StringRef();
00731 }
00732 
00733 void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *,
00734                                     raw_ostream &Out) {
00735   Out << Val;
00736 }
00737 
00738 StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *,
00739                                         uint64_t &Val) {
00740   unsigned long long N;
00741   if (getAsUnsignedInteger(Scalar, 0, N))
00742     return "invalid number";
00743   Val = N;
00744   return StringRef();
00745 }
00746 
00747 void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) {
00748   // use temp in32_t because ostream thinks int8_t is a character
00749   int32_t Num = Val;
00750   Out << Num;
00751 }
00752 
00753 StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) {
00754   long long N;
00755   if (getAsSignedInteger(Scalar, 0, N))
00756     return "invalid number";
00757   if ((N > 127) || (N < -128))
00758     return "out of range number";
00759   Val = N;
00760   return StringRef();
00761 }
00762 
00763 void ScalarTraits<int16_t>::output(const int16_t &Val, void *,
00764                                    raw_ostream &Out) {
00765   Out << Val;
00766 }
00767 
00768 StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) {
00769   long long N;
00770   if (getAsSignedInteger(Scalar, 0, N))
00771     return "invalid number";
00772   if ((N > INT16_MAX) || (N < INT16_MIN))
00773     return "out of range number";
00774   Val = N;
00775   return StringRef();
00776 }
00777 
00778 void ScalarTraits<int32_t>::output(const int32_t &Val, void *,
00779                                    raw_ostream &Out) {
00780   Out << Val;
00781 }
00782 
00783 StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) {
00784   long long N;
00785   if (getAsSignedInteger(Scalar, 0, N))
00786     return "invalid number";
00787   if ((N > INT32_MAX) || (N < INT32_MIN))
00788     return "out of range number";
00789   Val = N;
00790   return StringRef();
00791 }
00792 
00793 void ScalarTraits<int64_t>::output(const int64_t &Val, void *,
00794                                    raw_ostream &Out) {
00795   Out << Val;
00796 }
00797 
00798 StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) {
00799   long long N;
00800   if (getAsSignedInteger(Scalar, 0, N))
00801     return "invalid number";
00802   Val = N;
00803   return StringRef();
00804 }
00805 
00806 void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) {
00807   Out << format("%g", Val);
00808 }
00809 
00810 StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) {
00811   SmallString<32> buff(Scalar.begin(), Scalar.end());
00812   char *end;
00813   Val = strtod(buff.c_str(), &end);
00814   if (*end != '\0')
00815     return "invalid floating point number";
00816   return StringRef();
00817 }
00818 
00819 void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) {
00820   Out << format("%g", Val);
00821 }
00822 
00823 StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) {
00824   SmallString<32> buff(Scalar.begin(), Scalar.end());
00825   char *end;
00826   Val = strtod(buff.c_str(), &end);
00827   if (*end != '\0')
00828     return "invalid floating point number";
00829   return StringRef();
00830 }
00831 
00832 void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) {
00833   uint8_t Num = Val;
00834   Out << format("0x%02X", Num);
00835 }
00836 
00837 StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) {
00838   unsigned long long n;
00839   if (getAsUnsignedInteger(Scalar, 0, n))
00840     return "invalid hex8 number";
00841   if (n > 0xFF)
00842     return "out of range hex8 number";
00843   Val = n;
00844   return StringRef();
00845 }
00846 
00847 void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) {
00848   uint16_t Num = Val;
00849   Out << format("0x%04X", Num);
00850 }
00851 
00852 StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) {
00853   unsigned long long n;
00854   if (getAsUnsignedInteger(Scalar, 0, n))
00855     return "invalid hex16 number";
00856   if (n > 0xFFFF)
00857     return "out of range hex16 number";
00858   Val = n;
00859   return StringRef();
00860 }
00861 
00862 void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) {
00863   uint32_t Num = Val;
00864   Out << format("0x%08X", Num);
00865 }
00866 
00867 StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) {
00868   unsigned long long n;
00869   if (getAsUnsignedInteger(Scalar, 0, n))
00870     return "invalid hex32 number";
00871   if (n > 0xFFFFFFFFUL)
00872     return "out of range hex32 number";
00873   Val = n;
00874   return StringRef();
00875 }
00876 
00877 void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) {
00878   uint64_t Num = Val;
00879   Out << format("0x%016llX", Num);
00880 }
00881 
00882 StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) {
00883   unsigned long long Num;
00884   if (getAsUnsignedInteger(Scalar, 0, Num))
00885     return "invalid hex64 number";
00886   Val = Num;
00887   return StringRef();
00888 }