OpenSSL  1.0.1c
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Macros
bn_prime.c
Go to the documentation of this file.
1 /* crypto/bn/bn_prime.c */
2 /* Copyright (C) 1995-1998 Eric Young ([email protected])
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young ([email protected]).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to. The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson ([email protected]).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  * notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  * notice, this list of conditions and the following disclaimer in the
30  * documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  * must display the following acknowledgement:
33  * "This product includes cryptographic software written by
34  * Eric Young ([email protected])"
35  * The word 'cryptographic' can be left out if the rouines from the library
36  * being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  * the apps directory (application code) you must include an acknowledgement:
39  * "This product includes software written by Tim Hudson ([email protected])"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed. i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  * notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  * notice, this list of conditions and the following disclaimer in
70  * the documentation and/or other materials provided with the
71  * distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  * software must display the following acknowledgment:
75  * "This product includes software developed by the OpenSSL Project
76  * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  * endorse or promote products derived from this software without
80  * prior written permission. For written permission, please contact
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  * nor may "OpenSSL" appear in their names without prior written
85  * permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  * acknowledgment:
89  * "This product includes software developed by the OpenSSL Project
90  * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * ([email protected]). This product includes software written by Tim
108  * Hudson ([email protected]).
109  *
110  */
111 
112 #include <stdio.h>
113 #include <time.h>
114 #include "cryptlib.h"
115 #include "bn_lcl.h"
116 #include <openssl/rand.h>
117 
118 /* NB: these functions have been "upgraded", the deprecated versions (which are
119  * compatibility wrappers using these functions) are in bn_depr.c.
120  * - Geoff
121  */
122 
123 /* The quick sieve algorithm approach to weeding out primes is
124  * Philip Zimmermann's, as implemented in PGP. I have had a read of
125  * his comments and implemented my own version.
126  */
127 #include "bn_prime.h"
128 
129 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
130  const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont);
131 static int probable_prime(BIGNUM *rnd, int bits);
132 static int probable_prime_dh(BIGNUM *rnd, int bits,
133  const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
134 static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
135  const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
136 
137 int BN_GENCB_call(BN_GENCB *cb, int a, int b)
138  {
139  /* No callback means continue */
140  if(!cb) return 1;
141  switch(cb->ver)
142  {
143  case 1:
144  /* Deprecated-style callbacks */
145  if(!cb->cb.cb_1)
146  return 1;
147  cb->cb.cb_1(a, b, cb->arg);
148  return 1;
149  case 2:
150  /* New-style callbacks */
151  return cb->cb.cb_2(a, b, cb);
152  default:
153  break;
154  }
155  /* Unrecognised callback type */
156  return 0;
157  }
158 
159 int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
160  const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
161  {
162  BIGNUM *t;
163  int found=0;
164  int i,j,c1=0;
165  BN_CTX *ctx;
166  int checks = BN_prime_checks_for_size(bits);
167 
168  ctx=BN_CTX_new();
169  if (ctx == NULL) goto err;
170  BN_CTX_start(ctx);
171  t = BN_CTX_get(ctx);
172  if(!t) goto err;
173 loop:
174  /* make a random number and set the top and bottom bits */
175  if (add == NULL)
176  {
177  if (!probable_prime(ret,bits)) goto err;
178  }
179  else
180  {
181  if (safe)
182  {
183  if (!probable_prime_dh_safe(ret,bits,add,rem,ctx))
184  goto err;
185  }
186  else
187  {
188  if (!probable_prime_dh(ret,bits,add,rem,ctx))
189  goto err;
190  }
191  }
192  /* if (BN_mod_word(ret,(BN_ULONG)3) == 1) goto loop; */
193  if(!BN_GENCB_call(cb, 0, c1++))
194  /* aborted */
195  goto err;
196 
197  if (!safe)
198  {
199  i=BN_is_prime_fasttest_ex(ret,checks,ctx,0,cb);
200  if (i == -1) goto err;
201  if (i == 0) goto loop;
202  }
203  else
204  {
205  /* for "safe prime" generation,
206  * check that (p-1)/2 is prime.
207  * Since a prime is odd, We just
208  * need to divide by 2 */
209  if (!BN_rshift1(t,ret)) goto err;
210 
211  for (i=0; i<checks; i++)
212  {
213  j=BN_is_prime_fasttest_ex(ret,1,ctx,0,cb);
214  if (j == -1) goto err;
215  if (j == 0) goto loop;
216 
217  j=BN_is_prime_fasttest_ex(t,1,ctx,0,cb);
218  if (j == -1) goto err;
219  if (j == 0) goto loop;
220 
221  if(!BN_GENCB_call(cb, 2, c1-1))
222  goto err;
223  /* We have a safe prime test pass */
224  }
225  }
226  /* we have a prime :-) */
227  found = 1;
228 err:
229  if (ctx != NULL)
230  {
231  BN_CTX_end(ctx);
232  BN_CTX_free(ctx);
233  }
234  bn_check_top(ret);
235  return found;
236  }
237 
238 int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, BN_GENCB *cb)
239  {
240  return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb);
241  }
242 
243 int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
244  int do_trial_division, BN_GENCB *cb)
245  {
246  int i, j, ret = -1;
247  int k;
248  BN_CTX *ctx = NULL;
249  BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
250  BN_MONT_CTX *mont = NULL;
251  const BIGNUM *A = NULL;
252 
253  if (BN_cmp(a, BN_value_one()) <= 0)
254  return 0;
255 
256  if (checks == BN_prime_checks)
258 
259  /* first look for small factors */
260  if (!BN_is_odd(a))
261  /* a is even => a is prime if and only if a == 2 */
262  return BN_is_word(a, 2);
263  if (do_trial_division)
264  {
265  for (i = 1; i < NUMPRIMES; i++)
266  if (BN_mod_word(a, primes[i]) == 0)
267  return 0;
268  if(!BN_GENCB_call(cb, 1, -1))
269  goto err;
270  }
271 
272  if (ctx_passed != NULL)
273  ctx = ctx_passed;
274  else
275  if ((ctx=BN_CTX_new()) == NULL)
276  goto err;
277  BN_CTX_start(ctx);
278 
279  /* A := abs(a) */
280  if (a->neg)
281  {
282  BIGNUM *t;
283  if ((t = BN_CTX_get(ctx)) == NULL) goto err;
284  BN_copy(t, a);
285  t->neg = 0;
286  A = t;
287  }
288  else
289  A = a;
290  A1 = BN_CTX_get(ctx);
291  A1_odd = BN_CTX_get(ctx);
292  check = BN_CTX_get(ctx);
293  if (check == NULL) goto err;
294 
295  /* compute A1 := A - 1 */
296  if (!BN_copy(A1, A))
297  goto err;
298  if (!BN_sub_word(A1, 1))
299  goto err;
300  if (BN_is_zero(A1))
301  {
302  ret = 0;
303  goto err;
304  }
305 
306  /* write A1 as A1_odd * 2^k */
307  k = 1;
308  while (!BN_is_bit_set(A1, k))
309  k++;
310  if (!BN_rshift(A1_odd, A1, k))
311  goto err;
312 
313  /* Montgomery setup for computations mod A */
314  mont = BN_MONT_CTX_new();
315  if (mont == NULL)
316  goto err;
317  if (!BN_MONT_CTX_set(mont, A, ctx))
318  goto err;
319 
320  for (i = 0; i < checks; i++)
321  {
322  if (!BN_pseudo_rand_range(check, A1))
323  goto err;
324  if (!BN_add_word(check, 1))
325  goto err;
326  /* now 1 <= check < A */
327 
328  j = witness(check, A, A1, A1_odd, k, ctx, mont);
329  if (j == -1) goto err;
330  if (j)
331  {
332  ret=0;
333  goto err;
334  }
335  if(!BN_GENCB_call(cb, 1, i))
336  goto err;
337  }
338  ret=1;
339 err:
340  if (ctx != NULL)
341  {
342  BN_CTX_end(ctx);
343  if (ctx_passed == NULL)
344  BN_CTX_free(ctx);
345  }
346  if (mont != NULL)
347  BN_MONT_CTX_free(mont);
348 
349  return(ret);
350  }
351 
352 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
353  const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont)
354  {
355  if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
356  return -1;
357  if (BN_is_one(w))
358  return 0; /* probably prime */
359  if (BN_cmp(w, a1) == 0)
360  return 0; /* w == -1 (mod a), 'a' is probably prime */
361  while (--k)
362  {
363  if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
364  return -1;
365  if (BN_is_one(w))
366  return 1; /* 'a' is composite, otherwise a previous 'w' would
367  * have been == -1 (mod 'a') */
368  if (BN_cmp(w, a1) == 0)
369  return 0; /* w == -1 (mod a), 'a' is probably prime */
370  }
371  /* If we get here, 'w' is the (a-1)/2-th power of the original 'w',
372  * and it is neither -1 nor +1 -- so 'a' cannot be prime */
373  bn_check_top(w);
374  return 1;
375  }
376 
377 static int probable_prime(BIGNUM *rnd, int bits)
378  {
379  int i;
380  prime_t mods[NUMPRIMES];
381  BN_ULONG delta,maxdelta;
382 
383 again:
384  if (!BN_rand(rnd,bits,1,1)) return(0);
385  /* we now have a random number 'rand' to test. */
386  for (i=1; i<NUMPRIMES; i++)
387  mods[i]=(prime_t)BN_mod_word(rnd,(BN_ULONG)primes[i]);
388  maxdelta=BN_MASK2 - primes[NUMPRIMES-1];
389  delta=0;
390  loop: for (i=1; i<NUMPRIMES; i++)
391  {
392  /* check that rnd is not a prime and also
393  * that gcd(rnd-1,primes) == 1 (except for 2) */
394  if (((mods[i]+delta)%primes[i]) <= 1)
395  {
396  delta+=2;
397  if (delta > maxdelta) goto again;
398  goto loop;
399  }
400  }
401  if (!BN_add_word(rnd,delta)) return(0);
402  bn_check_top(rnd);
403  return(1);
404  }
405 
406 static int probable_prime_dh(BIGNUM *rnd, int bits,
407  const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx)
408  {
409  int i,ret=0;
410  BIGNUM *t1;
411 
412  BN_CTX_start(ctx);
413  if ((t1 = BN_CTX_get(ctx)) == NULL) goto err;
414 
415  if (!BN_rand(rnd,bits,0,1)) goto err;
416 
417  /* we need ((rnd-rem) % add) == 0 */
418 
419  if (!BN_mod(t1,rnd,add,ctx)) goto err;
420  if (!BN_sub(rnd,rnd,t1)) goto err;
421  if (rem == NULL)
422  { if (!BN_add_word(rnd,1)) goto err; }
423  else
424  { if (!BN_add(rnd,rnd,rem)) goto err; }
425 
426  /* we now have a random number 'rand' to test. */
427 
428  loop: for (i=1; i<NUMPRIMES; i++)
429  {
430  /* check that rnd is a prime */
431  if (BN_mod_word(rnd,(BN_ULONG)primes[i]) <= 1)
432  {
433  if (!BN_add(rnd,rnd,add)) goto err;
434  goto loop;
435  }
436  }
437  ret=1;
438 err:
439  BN_CTX_end(ctx);
440  bn_check_top(rnd);
441  return(ret);
442  }
443 
444 static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd,
445  const BIGNUM *rem, BN_CTX *ctx)
446  {
447  int i,ret=0;
448  BIGNUM *t1,*qadd,*q;
449 
450  bits--;
451  BN_CTX_start(ctx);
452  t1 = BN_CTX_get(ctx);
453  q = BN_CTX_get(ctx);
454  qadd = BN_CTX_get(ctx);
455  if (qadd == NULL) goto err;
456 
457  if (!BN_rshift1(qadd,padd)) goto err;
458 
459  if (!BN_rand(q,bits,0,1)) goto err;
460 
461  /* we need ((rnd-rem) % add) == 0 */
462  if (!BN_mod(t1,q,qadd,ctx)) goto err;
463  if (!BN_sub(q,q,t1)) goto err;
464  if (rem == NULL)
465  { if (!BN_add_word(q,1)) goto err; }
466  else
467  {
468  if (!BN_rshift1(t1,rem)) goto err;
469  if (!BN_add(q,q,t1)) goto err;
470  }
471 
472  /* we now have a random number 'rand' to test. */
473  if (!BN_lshift1(p,q)) goto err;
474  if (!BN_add_word(p,1)) goto err;
475 
476  loop: for (i=1; i<NUMPRIMES; i++)
477  {
478  /* check that p and q are prime */
479  /* check that for p and q
480  * gcd(p-1,primes) == 1 (except for 2) */
481  if ( (BN_mod_word(p,(BN_ULONG)primes[i]) == 0) ||
482  (BN_mod_word(q,(BN_ULONG)primes[i]) == 0))
483  {
484  if (!BN_add(p,p,padd)) goto err;
485  if (!BN_add(q,q,qadd)) goto err;
486  goto loop;
487  }
488  }
489  ret=1;
490 err:
491  BN_CTX_end(ctx);
492  bn_check_top(p);
493  return(ret);
494  }