OpenSSL  1.0.1c
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Macros
ec2_smpl.c
Go to the documentation of this file.
1 /* crypto/ec/ec2_smpl.c */
2 /* ====================================================================
3  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4  *
5  * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6  * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7  * to the OpenSSL project.
8  *
9  * The ECC Code is licensed pursuant to the OpenSSL open source
10  * license provided below.
11  *
12  * The software is originally written by Sheueling Chang Shantz and
13  * Douglas Stebila of Sun Microsystems Laboratories.
14  *
15  */
16 /* ====================================================================
17  * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  *
23  * 1. Redistributions of source code must retain the above copyright
24  * notice, this list of conditions and the following disclaimer.
25  *
26  * 2. Redistributions in binary form must reproduce the above copyright
27  * notice, this list of conditions and the following disclaimer in
28  * the documentation and/or other materials provided with the
29  * distribution.
30  *
31  * 3. All advertising materials mentioning features or use of this
32  * software must display the following acknowledgment:
33  * "This product includes software developed by the OpenSSL Project
34  * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
35  *
36  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37  * endorse or promote products derived from this software without
38  * prior written permission. For written permission, please contact
40  *
41  * 5. Products derived from this software may not be called "OpenSSL"
42  * nor may "OpenSSL" appear in their names without prior written
43  * permission of the OpenSSL Project.
44  *
45  * 6. Redistributions of any form whatsoever must retain the following
46  * acknowledgment:
47  * "This product includes software developed by the OpenSSL Project
48  * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
54  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61  * OF THE POSSIBILITY OF SUCH DAMAGE.
62  * ====================================================================
63  *
64  * This product includes cryptographic software written by Eric Young
65  * ([email protected]). This product includes software written by Tim
66  * Hudson ([email protected]).
67  *
68  */
69 
70 #include <openssl/err.h>
71 
72 #include "ec_lcl.h"
73 
74 #ifndef OPENSSL_NO_EC2M
75 
76 #ifdef OPENSSL_FIPS
77 #include <openssl/fips.h>
78 #endif
79 
80 
82  {
83 #ifdef OPENSSL_FIPS
84  return fips_ec_gf2m_simple_method();
85 #else
86  static const EC_METHOD ret = {
102  0 /* set_Jprojective_coordinates_GFp */,
103  0 /* get_Jprojective_coordinates_GFp */,
106  0,0,0,
115 
116  /* the following three method functions are defined in ec2_mult.c */
120 
124  0 /* field_encode */,
125  0 /* field_decode */,
126  0 /* field_set_to_one */ };
127 
128  return &ret;
129 #endif
130  }
131 
132 
133 /* Initialize a GF(2^m)-based EC_GROUP structure.
134  * Note that all other members are handled by EC_GROUP_new.
135  */
137  {
138  BN_init(&group->field);
139  BN_init(&group->a);
140  BN_init(&group->b);
141  return 1;
142  }
143 
144 
145 /* Free a GF(2^m)-based EC_GROUP structure.
146  * Note that all other members are handled by EC_GROUP_free.
147  */
149  {
150  BN_free(&group->field);
151  BN_free(&group->a);
152  BN_free(&group->b);
153  }
154 
155 
156 /* Clear and free a GF(2^m)-based EC_GROUP structure.
157  * Note that all other members are handled by EC_GROUP_clear_free.
158  */
160  {
161  BN_clear_free(&group->field);
162  BN_clear_free(&group->a);
163  BN_clear_free(&group->b);
164  group->poly[0] = 0;
165  group->poly[1] = 0;
166  group->poly[2] = 0;
167  group->poly[3] = 0;
168  group->poly[4] = 0;
169  group->poly[5] = -1;
170  }
171 
172 
173 /* Copy a GF(2^m)-based EC_GROUP structure.
174  * Note that all other members are handled by EC_GROUP_copy.
175  */
177  {
178  int i;
179  if (!BN_copy(&dest->field, &src->field)) return 0;
180  if (!BN_copy(&dest->a, &src->a)) return 0;
181  if (!BN_copy(&dest->b, &src->b)) return 0;
182  dest->poly[0] = src->poly[0];
183  dest->poly[1] = src->poly[1];
184  dest->poly[2] = src->poly[2];
185  dest->poly[3] = src->poly[3];
186  dest->poly[4] = src->poly[4];
187  dest->poly[5] = src->poly[5];
188  if (bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0;
189  if (bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0;
190  for (i = dest->a.top; i < dest->a.dmax; i++) dest->a.d[i] = 0;
191  for (i = dest->b.top; i < dest->b.dmax; i++) dest->b.d[i] = 0;
192  return 1;
193  }
194 
195 
196 /* Set the curve parameters of an EC_GROUP structure. */
198  const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
199  {
200  int ret = 0, i;
201 
202  /* group->field */
203  if (!BN_copy(&group->field, p)) goto err;
204  i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1;
205  if ((i != 5) && (i != 3))
206  {
208  goto err;
209  }
210 
211  /* group->a */
212  if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) goto err;
213  if(bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err;
214  for (i = group->a.top; i < group->a.dmax; i++) group->a.d[i] = 0;
215 
216  /* group->b */
217  if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) goto err;
218  if(bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err;
219  for (i = group->b.top; i < group->b.dmax; i++) group->b.d[i] = 0;
220 
221  ret = 1;
222  err:
223  return ret;
224  }
225 
226 
227 /* Get the curve parameters of an EC_GROUP structure.
228  * If p, a, or b are NULL then there values will not be set but the method will return with success.
229  */
231  {
232  int ret = 0;
233 
234  if (p != NULL)
235  {
236  if (!BN_copy(p, &group->field)) return 0;
237  }
238 
239  if (a != NULL)
240  {
241  if (!BN_copy(a, &group->a)) goto err;
242  }
243 
244  if (b != NULL)
245  {
246  if (!BN_copy(b, &group->b)) goto err;
247  }
248 
249  ret = 1;
250 
251  err:
252  return ret;
253  }
254 
255 
256 /* Gets the degree of the field. For a curve over GF(2^m) this is the value m. */
258  {
259  return BN_num_bits(&group->field)-1;
260  }
261 
262 
263 /* Checks the discriminant of the curve.
264  * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
265  */
267  {
268  int ret = 0;
269  BIGNUM *b;
270  BN_CTX *new_ctx = NULL;
271 
272  if (ctx == NULL)
273  {
274  ctx = new_ctx = BN_CTX_new();
275  if (ctx == NULL)
276  {
278  goto err;
279  }
280  }
281  BN_CTX_start(ctx);
282  b = BN_CTX_get(ctx);
283  if (b == NULL) goto err;
284 
285  if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) goto err;
286 
287  /* check the discriminant:
288  * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
289  */
290  if (BN_is_zero(b)) goto err;
291 
292  ret = 1;
293 
294 err:
295  if (ctx != NULL)
296  BN_CTX_end(ctx);
297  if (new_ctx != NULL)
298  BN_CTX_free(new_ctx);
299  return ret;
300  }
301 
302 
303 /* Initializes an EC_POINT. */
305  {
306  BN_init(&point->X);
307  BN_init(&point->Y);
308  BN_init(&point->Z);
309  return 1;
310  }
311 
312 
313 /* Frees an EC_POINT. */
315  {
316  BN_free(&point->X);
317  BN_free(&point->Y);
318  BN_free(&point->Z);
319  }
320 
321 
322 /* Clears and frees an EC_POINT. */
324  {
325  BN_clear_free(&point->X);
326  BN_clear_free(&point->Y);
327  BN_clear_free(&point->Z);
328  point->Z_is_one = 0;
329  }
330 
331 
332 /* Copy the contents of one EC_POINT into another. Assumes dest is initialized. */
334  {
335  if (!BN_copy(&dest->X, &src->X)) return 0;
336  if (!BN_copy(&dest->Y, &src->Y)) return 0;
337  if (!BN_copy(&dest->Z, &src->Z)) return 0;
338  dest->Z_is_one = src->Z_is_one;
339 
340  return 1;
341  }
342 
343 
344 /* Set an EC_POINT to the point at infinity.
345  * A point at infinity is represented by having Z=0.
346  */
348  {
349  point->Z_is_one = 0;
350  BN_zero(&point->Z);
351  return 1;
352  }
353 
354 
355 /* Set the coordinates of an EC_POINT using affine coordinates.
356  * Note that the simple implementation only uses affine coordinates.
357  */
359  const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx)
360  {
361  int ret = 0;
362  if (x == NULL || y == NULL)
363  {
365  return 0;
366  }
367 
368  if (!BN_copy(&point->X, x)) goto err;
369  BN_set_negative(&point->X, 0);
370  if (!BN_copy(&point->Y, y)) goto err;
371  BN_set_negative(&point->Y, 0);
372  if (!BN_copy(&point->Z, BN_value_one())) goto err;
373  BN_set_negative(&point->Z, 0);
374  point->Z_is_one = 1;
375  ret = 1;
376 
377  err:
378  return ret;
379  }
380 
381 
382 /* Gets the affine coordinates of an EC_POINT.
383  * Note that the simple implementation only uses affine coordinates.
384  */
386  BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
387  {
388  int ret = 0;
389 
390  if (EC_POINT_is_at_infinity(group, point))
391  {
393  return 0;
394  }
395 
396  if (BN_cmp(&point->Z, BN_value_one()))
397  {
399  return 0;
400  }
401  if (x != NULL)
402  {
403  if (!BN_copy(x, &point->X)) goto err;
404  BN_set_negative(x, 0);
405  }
406  if (y != NULL)
407  {
408  if (!BN_copy(y, &point->Y)) goto err;
409  BN_set_negative(y, 0);
410  }
411  ret = 1;
412 
413  err:
414  return ret;
415  }
416 
417 /* Computes a + b and stores the result in r. r could be a or b, a could be b.
418  * Uses algorithm A.10.2 of IEEE P1363.
419  */
420 int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
421  {
422  BN_CTX *new_ctx = NULL;
423  BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
424  int ret = 0;
425 
426  if (EC_POINT_is_at_infinity(group, a))
427  {
428  if (!EC_POINT_copy(r, b)) return 0;
429  return 1;
430  }
431 
432  if (EC_POINT_is_at_infinity(group, b))
433  {
434  if (!EC_POINT_copy(r, a)) return 0;
435  return 1;
436  }
437 
438  if (ctx == NULL)
439  {
440  ctx = new_ctx = BN_CTX_new();
441  if (ctx == NULL)
442  return 0;
443  }
444 
445  BN_CTX_start(ctx);
446  x0 = BN_CTX_get(ctx);
447  y0 = BN_CTX_get(ctx);
448  x1 = BN_CTX_get(ctx);
449  y1 = BN_CTX_get(ctx);
450  x2 = BN_CTX_get(ctx);
451  y2 = BN_CTX_get(ctx);
452  s = BN_CTX_get(ctx);
453  t = BN_CTX_get(ctx);
454  if (t == NULL) goto err;
455 
456  if (a->Z_is_one)
457  {
458  if (!BN_copy(x0, &a->X)) goto err;
459  if (!BN_copy(y0, &a->Y)) goto err;
460  }
461  else
462  {
463  if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) goto err;
464  }
465  if (b->Z_is_one)
466  {
467  if (!BN_copy(x1, &b->X)) goto err;
468  if (!BN_copy(y1, &b->Y)) goto err;
469  }
470  else
471  {
472  if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) goto err;
473  }
474 
475 
476  if (BN_GF2m_cmp(x0, x1))
477  {
478  if (!BN_GF2m_add(t, x0, x1)) goto err;
479  if (!BN_GF2m_add(s, y0, y1)) goto err;
480  if (!group->meth->field_div(group, s, s, t, ctx)) goto err;
481  if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
482  if (!BN_GF2m_add(x2, x2, &group->a)) goto err;
483  if (!BN_GF2m_add(x2, x2, s)) goto err;
484  if (!BN_GF2m_add(x2, x2, t)) goto err;
485  }
486  else
487  {
488  if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1))
489  {
490  if (!EC_POINT_set_to_infinity(group, r)) goto err;
491  ret = 1;
492  goto err;
493  }
494  if (!group->meth->field_div(group, s, y1, x1, ctx)) goto err;
495  if (!BN_GF2m_add(s, s, x1)) goto err;
496 
497  if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
498  if (!BN_GF2m_add(x2, x2, s)) goto err;
499  if (!BN_GF2m_add(x2, x2, &group->a)) goto err;
500  }
501 
502  if (!BN_GF2m_add(y2, x1, x2)) goto err;
503  if (!group->meth->field_mul(group, y2, y2, s, ctx)) goto err;
504  if (!BN_GF2m_add(y2, y2, x2)) goto err;
505  if (!BN_GF2m_add(y2, y2, y1)) goto err;
506 
507  if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) goto err;
508 
509  ret = 1;
510 
511  err:
512  BN_CTX_end(ctx);
513  if (new_ctx != NULL)
514  BN_CTX_free(new_ctx);
515  return ret;
516  }
517 
518 
519 /* Computes 2 * a and stores the result in r. r could be a.
520  * Uses algorithm A.10.2 of IEEE P1363.
521  */
523  {
524  return ec_GF2m_simple_add(group, r, a, a, ctx);
525  }
526 
527 
529  {
530  if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y))
531  /* point is its own inverse */
532  return 1;
533 
534  if (!EC_POINT_make_affine(group, point, ctx)) return 0;
535  return BN_GF2m_add(&point->Y, &point->X, &point->Y);
536  }
537 
538 
539 /* Indicates whether the given point is the point at infinity. */
541  {
542  return BN_is_zero(&point->Z);
543  }
544 
545 
546 /* Determines whether the given EC_POINT is an actual point on the curve defined
547  * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation:
548  * y^2 + x*y = x^3 + a*x^2 + b.
549  */
550 int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
551  {
552  int ret = -1;
553  BN_CTX *new_ctx = NULL;
554  BIGNUM *lh, *y2;
555  int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
556  int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
557 
558  if (EC_POINT_is_at_infinity(group, point))
559  return 1;
560 
561  field_mul = group->meth->field_mul;
562  field_sqr = group->meth->field_sqr;
563 
564  /* only support affine coordinates */
565  if (!point->Z_is_one) return -1;
566 
567  if (ctx == NULL)
568  {
569  ctx = new_ctx = BN_CTX_new();
570  if (ctx == NULL)
571  return -1;
572  }
573 
574  BN_CTX_start(ctx);
575  y2 = BN_CTX_get(ctx);
576  lh = BN_CTX_get(ctx);
577  if (lh == NULL) goto err;
578 
579  /* We have a curve defined by a Weierstrass equation
580  * y^2 + x*y = x^3 + a*x^2 + b.
581  * <=> x^3 + a*x^2 + x*y + b + y^2 = 0
582  * <=> ((x + a) * x + y ) * x + b + y^2 = 0
583  */
584  if (!BN_GF2m_add(lh, &point->X, &group->a)) goto err;
585  if (!field_mul(group, lh, lh, &point->X, ctx)) goto err;
586  if (!BN_GF2m_add(lh, lh, &point->Y)) goto err;
587  if (!field_mul(group, lh, lh, &point->X, ctx)) goto err;
588  if (!BN_GF2m_add(lh, lh, &group->b)) goto err;
589  if (!field_sqr(group, y2, &point->Y, ctx)) goto err;
590  if (!BN_GF2m_add(lh, lh, y2)) goto err;
591  ret = BN_is_zero(lh);
592  err:
593  if (ctx) BN_CTX_end(ctx);
594  if (new_ctx) BN_CTX_free(new_ctx);
595  return ret;
596  }
597 
598 
599 /* Indicates whether two points are equal.
600  * Return values:
601  * -1 error
602  * 0 equal (in affine coordinates)
603  * 1 not equal
604  */
605 int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
606  {
607  BIGNUM *aX, *aY, *bX, *bY;
608  BN_CTX *new_ctx = NULL;
609  int ret = -1;
610 
611  if (EC_POINT_is_at_infinity(group, a))
612  {
613  return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
614  }
615 
616  if (EC_POINT_is_at_infinity(group, b))
617  return 1;
618 
619  if (a->Z_is_one && b->Z_is_one)
620  {
621  return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
622  }
623 
624  if (ctx == NULL)
625  {
626  ctx = new_ctx = BN_CTX_new();
627  if (ctx == NULL)
628  return -1;
629  }
630 
631  BN_CTX_start(ctx);
632  aX = BN_CTX_get(ctx);
633  aY = BN_CTX_get(ctx);
634  bX = BN_CTX_get(ctx);
635  bY = BN_CTX_get(ctx);
636  if (bY == NULL) goto err;
637 
638  if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) goto err;
639  if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) goto err;
640  ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
641 
642  err:
643  if (ctx) BN_CTX_end(ctx);
644  if (new_ctx) BN_CTX_free(new_ctx);
645  return ret;
646  }
647 
648 
649 /* Forces the given EC_POINT to internally use affine coordinates. */
651  {
652  BN_CTX *new_ctx = NULL;
653  BIGNUM *x, *y;
654  int ret = 0;
655 
656  if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
657  return 1;
658 
659  if (ctx == NULL)
660  {
661  ctx = new_ctx = BN_CTX_new();
662  if (ctx == NULL)
663  return 0;
664  }
665 
666  BN_CTX_start(ctx);
667  x = BN_CTX_get(ctx);
668  y = BN_CTX_get(ctx);
669  if (y == NULL) goto err;
670 
671  if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err;
672  if (!BN_copy(&point->X, x)) goto err;
673  if (!BN_copy(&point->Y, y)) goto err;
674  if (!BN_one(&point->Z)) goto err;
675 
676  ret = 1;
677 
678  err:
679  if (ctx) BN_CTX_end(ctx);
680  if (new_ctx) BN_CTX_free(new_ctx);
681  return ret;
682  }
683 
684 
685 /* Forces each of the EC_POINTs in the given array to use affine coordinates. */
687  {
688  size_t i;
689 
690  for (i = 0; i < num; i++)
691  {
692  if (!group->meth->make_affine(group, points[i], ctx)) return 0;
693  }
694 
695  return 1;
696  }
697 
698 
699 /* Wrapper to simple binary polynomial field multiplication implementation. */
700 int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
701  {
702  return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
703  }
704 
705 
706 /* Wrapper to simple binary polynomial field squaring implementation. */
708  {
709  return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
710  }
711 
712 
713 /* Wrapper to simple binary polynomial field division implementation. */
714 int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
715  {
716  return BN_GF2m_mod_div(r, a, b, &group->field, ctx);
717  }
718 
719 #endif