OpenSSL  1.0.1c
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Macros
ecp_nistp256.c
Go to the documentation of this file.
1 /* crypto/ec/ecp_nistp256.c */
2 /*
3  * Written by Adam Langley (Google) for the OpenSSL project
4  */
5 /* Copyright 2011 Google Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  *
9  * you may not use this file except in compliance with the License.
10  * You may obtain a copy of the License at
11  *
12  * http://www.apache.org/licenses/LICENSE-2.0
13  *
14  * Unless required by applicable law or agreed to in writing, software
15  * distributed under the License is distributed on an "AS IS" BASIS,
16  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17  * See the License for the specific language governing permissions and
18  * limitations under the License.
19  */
20 
21 /*
22  * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication
23  *
24  * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
25  * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
26  * work which got its smarts from Daniel J. Bernstein's work on the same.
27  */
28 
29 #include <openssl/opensslconf.h>
30 #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
31 
32 #ifndef OPENSSL_SYS_VMS
33 #include <stdint.h>
34 #else
35 #include <inttypes.h>
36 #endif
37 
38 #include <string.h>
39 #include <openssl/err.h>
40 #include "ec_lcl.h"
41 
42 #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
43  /* even with gcc, the typedef won't work for 32-bit platforms */
44  typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */
45  typedef __int128_t int128_t;
46 #else
47  #error "Need GCC 3.1 or later to define type uint128_t"
48 #endif
49 
50 typedef uint8_t u8;
51 typedef uint32_t u32;
52 typedef uint64_t u64;
53 typedef int64_t s64;
54 
55 /* The underlying field.
56  *
57  * P256 operates over GF(2^256-2^224+2^192+2^96-1). We can serialise an element
58  * of this field into 32 bytes. We call this an felem_bytearray. */
59 
60 typedef u8 felem_bytearray[32];
61 
62 /* These are the parameters of P256, taken from FIPS 186-3, page 86. These
63  * values are big-endian. */
64 static const felem_bytearray nistp256_curve_params[5] = {
65  {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */
66  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
67  0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
68  0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
69  {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */
70  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
71  0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
72  0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc}, /* b */
73  {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7,
74  0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc,
75  0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
76  0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b},
77  {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */
78  0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
79  0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
80  0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96},
81  {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */
82  0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
83  0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
84  0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5}
85 };
86 
87 /* The representation of field elements.
88  * ------------------------------------
89  *
90  * We represent field elements with either four 128-bit values, eight 128-bit
91  * values, or four 64-bit values. The field element represented is:
92  * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p)
93  * or:
94  * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p)
95  *
96  * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
97  * apart, but are 128-bits wide, the most significant bits of each limb overlap
98  * with the least significant bits of the next.
99  *
100  * A field element with four limbs is an 'felem'. One with eight limbs is a
101  * 'longfelem'
102  *
103  * A field element with four, 64-bit values is called a 'smallfelem'. Small
104  * values are used as intermediate values before multiplication.
105  */
106 
107 #define NLIMBS 4
108 
109 typedef uint128_t limb;
110 typedef limb felem[NLIMBS];
111 typedef limb longfelem[NLIMBS * 2];
113 
114 /* This is the value of the prime as four 64-bit words, little-endian. */
115 static const u64 kPrime[4] = { 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul };
116 static const limb bottom32bits = 0xffffffff;
117 static const u64 bottom63bits = 0x7ffffffffffffffful;
118 
119 /* bin32_to_felem takes a little-endian byte array and converts it into felem
120  * form. This assumes that the CPU is little-endian. */
121 static void bin32_to_felem(felem out, const u8 in[32])
122  {
123  out[0] = *((u64*) &in[0]);
124  out[1] = *((u64*) &in[8]);
125  out[2] = *((u64*) &in[16]);
126  out[3] = *((u64*) &in[24]);
127  }
128 
129 /* smallfelem_to_bin32 takes a smallfelem and serialises into a little endian,
130  * 32 byte array. This assumes that the CPU is little-endian. */
131 static void smallfelem_to_bin32(u8 out[32], const smallfelem in)
132  {
133  *((u64*) &out[0]) = in[0];
134  *((u64*) &out[8]) = in[1];
135  *((u64*) &out[16]) = in[2];
136  *((u64*) &out[24]) = in[3];
137  }
138 
139 /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
140 static void flip_endian(u8 *out, const u8 *in, unsigned len)
141  {
142  unsigned i;
143  for (i = 0; i < len; ++i)
144  out[i] = in[len-1-i];
145  }
146 
147 /* BN_to_felem converts an OpenSSL BIGNUM into an felem */
148 static int BN_to_felem(felem out, const BIGNUM *bn)
149  {
150  felem_bytearray b_in;
151  felem_bytearray b_out;
152  unsigned num_bytes;
153 
154  /* BN_bn2bin eats leading zeroes */
155  memset(b_out, 0, sizeof b_out);
156  num_bytes = BN_num_bytes(bn);
157  if (num_bytes > sizeof b_out)
158  {
160  return 0;
161  }
162  if (BN_is_negative(bn))
163  {
165  return 0;
166  }
167  num_bytes = BN_bn2bin(bn, b_in);
168  flip_endian(b_out, b_in, num_bytes);
169  bin32_to_felem(out, b_out);
170  return 1;
171  }
172 
173 /* felem_to_BN converts an felem into an OpenSSL BIGNUM */
174 static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in)
175  {
176  felem_bytearray b_in, b_out;
177  smallfelem_to_bin32(b_in, in);
178  flip_endian(b_out, b_in, sizeof b_out);
179  return BN_bin2bn(b_out, sizeof b_out, out);
180  }
181 
182 
183 /* Field operations
184  * ---------------- */
185 
186 static void smallfelem_one(smallfelem out)
187  {
188  out[0] = 1;
189  out[1] = 0;
190  out[2] = 0;
191  out[3] = 0;
192  }
193 
194 static void smallfelem_assign(smallfelem out, const smallfelem in)
195  {
196  out[0] = in[0];
197  out[1] = in[1];
198  out[2] = in[2];
199  out[3] = in[3];
200  }
201 
202 static void felem_assign(felem out, const felem in)
203  {
204  out[0] = in[0];
205  out[1] = in[1];
206  out[2] = in[2];
207  out[3] = in[3];
208  }
209 
210 /* felem_sum sets out = out + in. */
211 static void felem_sum(felem out, const felem in)
212  {
213  out[0] += in[0];
214  out[1] += in[1];
215  out[2] += in[2];
216  out[3] += in[3];
217  }
218 
219 /* felem_small_sum sets out = out + in. */
220 static void felem_small_sum(felem out, const smallfelem in)
221  {
222  out[0] += in[0];
223  out[1] += in[1];
224  out[2] += in[2];
225  out[3] += in[3];
226  }
227 
228 /* felem_scalar sets out = out * scalar */
229 static void felem_scalar(felem out, const u64 scalar)
230  {
231  out[0] *= scalar;
232  out[1] *= scalar;
233  out[2] *= scalar;
234  out[3] *= scalar;
235  }
236 
237 /* longfelem_scalar sets out = out * scalar */
238 static void longfelem_scalar(longfelem out, const u64 scalar)
239  {
240  out[0] *= scalar;
241  out[1] *= scalar;
242  out[2] *= scalar;
243  out[3] *= scalar;
244  out[4] *= scalar;
245  out[5] *= scalar;
246  out[6] *= scalar;
247  out[7] *= scalar;
248  }
249 
250 #define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
251 #define two105 (((limb)1) << 105)
252 #define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)
253 
254 /* zero105 is 0 mod p */
255 static const felem zero105 = { two105m41m9, two105, two105m41p9, two105m41p9 };
256 
257 /* smallfelem_neg sets |out| to |-small|
258  * On exit:
259  * out[i] < out[i] + 2^105
260  */
261 static void smallfelem_neg(felem out, const smallfelem small)
262  {
263  /* In order to prevent underflow, we subtract from 0 mod p. */
264  out[0] = zero105[0] - small[0];
265  out[1] = zero105[1] - small[1];
266  out[2] = zero105[2] - small[2];
267  out[3] = zero105[3] - small[3];
268  }
269 
270 /* felem_diff subtracts |in| from |out|
271  * On entry:
272  * in[i] < 2^104
273  * On exit:
274  * out[i] < out[i] + 2^105
275  */
276 static void felem_diff(felem out, const felem in)
277  {
278  /* In order to prevent underflow, we add 0 mod p before subtracting. */
279  out[0] += zero105[0];
280  out[1] += zero105[1];
281  out[2] += zero105[2];
282  out[3] += zero105[3];
283 
284  out[0] -= in[0];
285  out[1] -= in[1];
286  out[2] -= in[2];
287  out[3] -= in[3];
288  }
289 
290 #define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
291 #define two107 (((limb)1) << 107)
292 #define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)
293 
294 /* zero107 is 0 mod p */
295 static const felem zero107 = { two107m43m11, two107, two107m43p11, two107m43p11 };
296 
297 /* An alternative felem_diff for larger inputs |in|
298  * felem_diff_zero107 subtracts |in| from |out|
299  * On entry:
300  * in[i] < 2^106
301  * On exit:
302  * out[i] < out[i] + 2^107
303  */
304 static void felem_diff_zero107(felem out, const felem in)
305  {
306  /* In order to prevent underflow, we add 0 mod p before subtracting. */
307  out[0] += zero107[0];
308  out[1] += zero107[1];
309  out[2] += zero107[2];
310  out[3] += zero107[3];
311 
312  out[0] -= in[0];
313  out[1] -= in[1];
314  out[2] -= in[2];
315  out[3] -= in[3];
316  }
317 
318 /* longfelem_diff subtracts |in| from |out|
319  * On entry:
320  * in[i] < 7*2^67
321  * On exit:
322  * out[i] < out[i] + 2^70 + 2^40
323  */
324 static void longfelem_diff(longfelem out, const longfelem in)
325  {
326  static const limb two70m8p6 = (((limb)1) << 70) - (((limb)1) << 8) + (((limb)1) << 6);
327  static const limb two70p40 = (((limb)1) << 70) + (((limb)1) << 40);
328  static const limb two70 = (((limb)1) << 70);
329  static const limb two70m40m38p6 = (((limb)1) << 70) - (((limb)1) << 40) - (((limb)1) << 38) + (((limb)1) << 6);
330  static const limb two70m6 = (((limb)1) << 70) - (((limb)1) << 6);
331 
332  /* add 0 mod p to avoid underflow */
333  out[0] += two70m8p6;
334  out[1] += two70p40;
335  out[2] += two70;
336  out[3] += two70m40m38p6;
337  out[4] += two70m6;
338  out[5] += two70m6;
339  out[6] += two70m6;
340  out[7] += two70m6;
341 
342  /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
343  out[0] -= in[0];
344  out[1] -= in[1];
345  out[2] -= in[2];
346  out[3] -= in[3];
347  out[4] -= in[4];
348  out[5] -= in[5];
349  out[6] -= in[6];
350  out[7] -= in[7];
351  }
352 
353 #define two64m0 (((limb)1) << 64) - 1
354 #define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
355 #define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
356 #define two64m32 (((limb)1) << 64) - (((limb)1) << 32)
357 
358 /* zero110 is 0 mod p */
359 static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 };
360 
361 /* felem_shrink converts an felem into a smallfelem. The result isn't quite
362  * minimal as the value may be greater than p.
363  *
364  * On entry:
365  * in[i] < 2^109
366  * On exit:
367  * out[i] < 2^64
368  */
369 static void felem_shrink(smallfelem out, const felem in)
370  {
371  felem tmp;
372  u64 a, b, mask;
373  s64 high, low;
374  static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */
375 
376  /* Carry 2->3 */
377  tmp[3] = zero110[3] + in[3] + ((u64) (in[2] >> 64));
378  /* tmp[3] < 2^110 */
379 
380  tmp[2] = zero110[2] + (u64) in[2];
381  tmp[0] = zero110[0] + in[0];
382  tmp[1] = zero110[1] + in[1];
383  /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
384 
385  /* We perform two partial reductions where we eliminate the
386  * high-word of tmp[3]. We don't update the other words till the end.
387  */
388  a = tmp[3] >> 64; /* a < 2^46 */
389  tmp[3] = (u64) tmp[3];
390  tmp[3] -= a;
391  tmp[3] += ((limb)a) << 32;
392  /* tmp[3] < 2^79 */
393 
394  b = a;
395  a = tmp[3] >> 64; /* a < 2^15 */
396  b += a; /* b < 2^46 + 2^15 < 2^47 */
397  tmp[3] = (u64) tmp[3];
398  tmp[3] -= a;
399  tmp[3] += ((limb)a) << 32;
400  /* tmp[3] < 2^64 + 2^47 */
401 
402  /* This adjusts the other two words to complete the two partial
403  * reductions. */
404  tmp[0] += b;
405  tmp[1] -= (((limb)b) << 32);
406 
407  /* In order to make space in tmp[3] for the carry from 2 -> 3, we
408  * conditionally subtract kPrime if tmp[3] is large enough. */
409  high = tmp[3] >> 64;
410  /* As tmp[3] < 2^65, high is either 1 or 0 */
411  high <<= 63;
412  high >>= 63;
413  /* high is:
414  * all ones if the high word of tmp[3] is 1
415  * all zeros if the high word of tmp[3] if 0 */
416  low = tmp[3];
417  mask = low >> 63;
418  /* mask is:
419  * all ones if the MSB of low is 1
420  * all zeros if the MSB of low if 0 */
421  low &= bottom63bits;
422  low -= kPrime3Test;
423  /* if low was greater than kPrime3Test then the MSB is zero */
424  low = ~low;
425  low >>= 63;
426  /* low is:
427  * all ones if low was > kPrime3Test
428  * all zeros if low was <= kPrime3Test */
429  mask = (mask & low) | high;
430  tmp[0] -= mask & kPrime[0];
431  tmp[1] -= mask & kPrime[1];
432  /* kPrime[2] is zero, so omitted */
433  tmp[3] -= mask & kPrime[3];
434  /* tmp[3] < 2**64 - 2**32 + 1 */
435 
436  tmp[1] += ((u64) (tmp[0] >> 64)); tmp[0] = (u64) tmp[0];
437  tmp[2] += ((u64) (tmp[1] >> 64)); tmp[1] = (u64) tmp[1];
438  tmp[3] += ((u64) (tmp[2] >> 64)); tmp[2] = (u64) tmp[2];
439  /* tmp[i] < 2^64 */
440 
441  out[0] = tmp[0];
442  out[1] = tmp[1];
443  out[2] = tmp[2];
444  out[3] = tmp[3];
445  }
446 
447 /* smallfelem_expand converts a smallfelem to an felem */
448 static void smallfelem_expand(felem out, const smallfelem in)
449  {
450  out[0] = in[0];
451  out[1] = in[1];
452  out[2] = in[2];
453  out[3] = in[3];
454  }
455 
456 /* smallfelem_square sets |out| = |small|^2
457  * On entry:
458  * small[i] < 2^64
459  * On exit:
460  * out[i] < 7 * 2^64 < 2^67
461  */
462 static void smallfelem_square(longfelem out, const smallfelem small)
463  {
464  limb a;
465  u64 high, low;
466 
467  a = ((uint128_t) small[0]) * small[0];
468  low = a;
469  high = a >> 64;
470  out[0] = low;
471  out[1] = high;
472 
473  a = ((uint128_t) small[0]) * small[1];
474  low = a;
475  high = a >> 64;
476  out[1] += low;
477  out[1] += low;
478  out[2] = high;
479 
480  a = ((uint128_t) small[0]) * small[2];
481  low = a;
482  high = a >> 64;
483  out[2] += low;
484  out[2] *= 2;
485  out[3] = high;
486 
487  a = ((uint128_t) small[0]) * small[3];
488  low = a;
489  high = a >> 64;
490  out[3] += low;
491  out[4] = high;
492 
493  a = ((uint128_t) small[1]) * small[2];
494  low = a;
495  high = a >> 64;
496  out[3] += low;
497  out[3] *= 2;
498  out[4] += high;
499 
500  a = ((uint128_t) small[1]) * small[1];
501  low = a;
502  high = a >> 64;
503  out[2] += low;
504  out[3] += high;
505 
506  a = ((uint128_t) small[1]) * small[3];
507  low = a;
508  high = a >> 64;
509  out[4] += low;
510  out[4] *= 2;
511  out[5] = high;
512 
513  a = ((uint128_t) small[2]) * small[3];
514  low = a;
515  high = a >> 64;
516  out[5] += low;
517  out[5] *= 2;
518  out[6] = high;
519  out[6] += high;
520 
521  a = ((uint128_t) small[2]) * small[2];
522  low = a;
523  high = a >> 64;
524  out[4] += low;
525  out[5] += high;
526 
527  a = ((uint128_t) small[3]) * small[3];
528  low = a;
529  high = a >> 64;
530  out[6] += low;
531  out[7] = high;
532  }
533 
534 /* felem_square sets |out| = |in|^2
535  * On entry:
536  * in[i] < 2^109
537  * On exit:
538  * out[i] < 7 * 2^64 < 2^67
539  */
540 static void felem_square(longfelem out, const felem in)
541  {
542  u64 small[4];
543  felem_shrink(small, in);
544  smallfelem_square(out, small);
545  }
546 
547 /* smallfelem_mul sets |out| = |small1| * |small2|
548  * On entry:
549  * small1[i] < 2^64
550  * small2[i] < 2^64
551  * On exit:
552  * out[i] < 7 * 2^64 < 2^67
553  */
554 static void smallfelem_mul(longfelem out, const smallfelem small1, const smallfelem small2)
555  {
556  limb a;
557  u64 high, low;
558 
559  a = ((uint128_t) small1[0]) * small2[0];
560  low = a;
561  high = a >> 64;
562  out[0] = low;
563  out[1] = high;
564 
565 
566  a = ((uint128_t) small1[0]) * small2[1];
567  low = a;
568  high = a >> 64;
569  out[1] += low;
570  out[2] = high;
571 
572  a = ((uint128_t) small1[1]) * small2[0];
573  low = a;
574  high = a >> 64;
575  out[1] += low;
576  out[2] += high;
577 
578 
579  a = ((uint128_t) small1[0]) * small2[2];
580  low = a;
581  high = a >> 64;
582  out[2] += low;
583  out[3] = high;
584 
585  a = ((uint128_t) small1[1]) * small2[1];
586  low = a;
587  high = a >> 64;
588  out[2] += low;
589  out[3] += high;
590 
591  a = ((uint128_t) small1[2]) * small2[0];
592  low = a;
593  high = a >> 64;
594  out[2] += low;
595  out[3] += high;
596 
597 
598  a = ((uint128_t) small1[0]) * small2[3];
599  low = a;
600  high = a >> 64;
601  out[3] += low;
602  out[4] = high;
603 
604  a = ((uint128_t) small1[1]) * small2[2];
605  low = a;
606  high = a >> 64;
607  out[3] += low;
608  out[4] += high;
609 
610  a = ((uint128_t) small1[2]) * small2[1];
611  low = a;
612  high = a >> 64;
613  out[3] += low;
614  out[4] += high;
615 
616  a = ((uint128_t) small1[3]) * small2[0];
617  low = a;
618  high = a >> 64;
619  out[3] += low;
620  out[4] += high;
621 
622 
623  a = ((uint128_t) small1[1]) * small2[3];
624  low = a;
625  high = a >> 64;
626  out[4] += low;
627  out[5] = high;
628 
629  a = ((uint128_t) small1[2]) * small2[2];
630  low = a;
631  high = a >> 64;
632  out[4] += low;
633  out[5] += high;
634 
635  a = ((uint128_t) small1[3]) * small2[1];
636  low = a;
637  high = a >> 64;
638  out[4] += low;
639  out[5] += high;
640 
641 
642  a = ((uint128_t) small1[2]) * small2[3];
643  low = a;
644  high = a >> 64;
645  out[5] += low;
646  out[6] = high;
647 
648  a = ((uint128_t) small1[3]) * small2[2];
649  low = a;
650  high = a >> 64;
651  out[5] += low;
652  out[6] += high;
653 
654 
655  a = ((uint128_t) small1[3]) * small2[3];
656  low = a;
657  high = a >> 64;
658  out[6] += low;
659  out[7] = high;
660  }
661 
662 /* felem_mul sets |out| = |in1| * |in2|
663  * On entry:
664  * in1[i] < 2^109
665  * in2[i] < 2^109
666  * On exit:
667  * out[i] < 7 * 2^64 < 2^67
668  */
669 static void felem_mul(longfelem out, const felem in1, const felem in2)
670  {
671  smallfelem small1, small2;
672  felem_shrink(small1, in1);
673  felem_shrink(small2, in2);
674  smallfelem_mul(out, small1, small2);
675  }
676 
677 /* felem_small_mul sets |out| = |small1| * |in2|
678  * On entry:
679  * small1[i] < 2^64
680  * in2[i] < 2^109
681  * On exit:
682  * out[i] < 7 * 2^64 < 2^67
683  */
684 static void felem_small_mul(longfelem out, const smallfelem small1, const felem in2)
685  {
686  smallfelem small2;
687  felem_shrink(small2, in2);
688  smallfelem_mul(out, small1, small2);
689  }
690 
691 #define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
692 #define two100 (((limb)1) << 100)
693 #define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
694 /* zero100 is 0 mod p */
695 static const felem zero100 = { two100m36m4, two100, two100m36p4, two100m36p4 };
696 
697 /* Internal function for the different flavours of felem_reduce.
698  * felem_reduce_ reduces the higher coefficients in[4]-in[7].
699  * On entry:
700  * out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
701  * out[1] >= in[7] + 2^32*in[4]
702  * out[2] >= in[5] + 2^32*in[5]
703  * out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
704  * On exit:
705  * out[0] <= out[0] + in[4] + 2^32*in[5]
706  * out[1] <= out[1] + in[5] + 2^33*in[6]
707  * out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
708  * out[3] <= out[3] + 2^32*in[4] + 3*in[7]
709  */
710 static void felem_reduce_(felem out, const longfelem in)
711  {
712  int128_t c;
713  /* combine common terms from below */
714  c = in[4] + (in[5] << 32);
715  out[0] += c;
716  out[3] -= c;
717 
718  c = in[5] - in[7];
719  out[1] += c;
720  out[2] -= c;
721 
722  /* the remaining terms */
723  /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
724  out[1] -= (in[4] << 32);
725  out[3] += (in[4] << 32);
726 
727  /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
728  out[2] -= (in[5] << 32);
729 
730  /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
731  out[0] -= in[6];
732  out[0] -= (in[6] << 32);
733  out[1] += (in[6] << 33);
734  out[2] += (in[6] * 2);
735  out[3] -= (in[6] << 32);
736 
737  /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
738  out[0] -= in[7];
739  out[0] -= (in[7] << 32);
740  out[2] += (in[7] << 33);
741  out[3] += (in[7] * 3);
742  }
743 
744 /* felem_reduce converts a longfelem into an felem.
745  * To be called directly after felem_square or felem_mul.
746  * On entry:
747  * in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
748  * in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
749  * On exit:
750  * out[i] < 2^101
751  */
752 static void felem_reduce(felem out, const longfelem in)
753  {
754  out[0] = zero100[0] + in[0];
755  out[1] = zero100[1] + in[1];
756  out[2] = zero100[2] + in[2];
757  out[3] = zero100[3] + in[3];
758 
759  felem_reduce_(out, in);
760 
761  /* out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
762  * out[1] > 2^100 - 2^64 - 7*2^96 > 0
763  * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
764  * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
765  *
766  * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
767  * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
768  * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
769  * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101
770  */
771  }
772 
773 /* felem_reduce_zero105 converts a larger longfelem into an felem.
774  * On entry:
775  * in[0] < 2^71
776  * On exit:
777  * out[i] < 2^106
778  */
779 static void felem_reduce_zero105(felem out, const longfelem in)
780  {
781  out[0] = zero105[0] + in[0];
782  out[1] = zero105[1] + in[1];
783  out[2] = zero105[2] + in[2];
784  out[3] = zero105[3] + in[3];
785 
786  felem_reduce_(out, in);
787 
788  /* out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
789  * out[1] > 2^105 - 2^71 - 2^103 > 0
790  * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
791  * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
792  *
793  * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
794  * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
795  * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
796  * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106
797  */
798  }
799 
800 /* subtract_u64 sets *result = *result - v and *carry to one if the subtraction
801  * underflowed. */
802 static void subtract_u64(u64* result, u64* carry, u64 v)
803  {
804  uint128_t r = *result;
805  r -= v;
806  *carry = (r >> 64) & 1;
807  *result = (u64) r;
808  }
809 
810 /* felem_contract converts |in| to its unique, minimal representation.
811  * On entry:
812  * in[i] < 2^109
813  */
814 static void felem_contract(smallfelem out, const felem in)
815  {
816  unsigned i;
817  u64 all_equal_so_far = 0, result = 0, carry;
818 
819  felem_shrink(out, in);
820  /* small is minimal except that the value might be > p */
821 
822  all_equal_so_far--;
823  /* We are doing a constant time test if out >= kPrime. We need to
824  * compare each u64, from most-significant to least significant. For
825  * each one, if all words so far have been equal (m is all ones) then a
826  * non-equal result is the answer. Otherwise we continue. */
827  for (i = 3; i < 4; i--)
828  {
829  u64 equal;
830  uint128_t a = ((uint128_t) kPrime[i]) - out[i];
831  /* if out[i] > kPrime[i] then a will underflow and the high
832  * 64-bits will all be set. */
833  result |= all_equal_so_far & ((u64) (a >> 64));
834 
835  /* if kPrime[i] == out[i] then |equal| will be all zeros and
836  * the decrement will make it all ones. */
837  equal = kPrime[i] ^ out[i];
838  equal--;
839  equal &= equal << 32;
840  equal &= equal << 16;
841  equal &= equal << 8;
842  equal &= equal << 4;
843  equal &= equal << 2;
844  equal &= equal << 1;
845  equal = ((s64) equal) >> 63;
846 
847  all_equal_so_far &= equal;
848  }
849 
850  /* if all_equal_so_far is still all ones then the two values are equal
851  * and so out >= kPrime is true. */
852  result |= all_equal_so_far;
853 
854  /* if out >= kPrime then we subtract kPrime. */
855  subtract_u64(&out[0], &carry, result & kPrime[0]);
856  subtract_u64(&out[1], &carry, carry);
857  subtract_u64(&out[2], &carry, carry);
858  subtract_u64(&out[3], &carry, carry);
859 
860  subtract_u64(&out[1], &carry, result & kPrime[1]);
861  subtract_u64(&out[2], &carry, carry);
862  subtract_u64(&out[3], &carry, carry);
863 
864  subtract_u64(&out[2], &carry, result & kPrime[2]);
865  subtract_u64(&out[3], &carry, carry);
866 
867  subtract_u64(&out[3], &carry, result & kPrime[3]);
868  }
869 
870 static void smallfelem_square_contract(smallfelem out, const smallfelem in)
871  {
872  longfelem longtmp;
873  felem tmp;
874 
875  smallfelem_square(longtmp, in);
876  felem_reduce(tmp, longtmp);
877  felem_contract(out, tmp);
878  }
879 
880 static void smallfelem_mul_contract(smallfelem out, const smallfelem in1, const smallfelem in2)
881  {
882  longfelem longtmp;
883  felem tmp;
884 
885  smallfelem_mul(longtmp, in1, in2);
886  felem_reduce(tmp, longtmp);
887  felem_contract(out, tmp);
888  }
889 
890 /* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
891  * otherwise.
892  * On entry:
893  * small[i] < 2^64
894  */
895 static limb smallfelem_is_zero(const smallfelem small)
896  {
897  limb result;
898  u64 is_p;
899 
900  u64 is_zero = small[0] | small[1] | small[2] | small[3];
901  is_zero--;
902  is_zero &= is_zero << 32;
903  is_zero &= is_zero << 16;
904  is_zero &= is_zero << 8;
905  is_zero &= is_zero << 4;
906  is_zero &= is_zero << 2;
907  is_zero &= is_zero << 1;
908  is_zero = ((s64) is_zero) >> 63;
909 
910  is_p = (small[0] ^ kPrime[0]) |
911  (small[1] ^ kPrime[1]) |
912  (small[2] ^ kPrime[2]) |
913  (small[3] ^ kPrime[3]);
914  is_p--;
915  is_p &= is_p << 32;
916  is_p &= is_p << 16;
917  is_p &= is_p << 8;
918  is_p &= is_p << 4;
919  is_p &= is_p << 2;
920  is_p &= is_p << 1;
921  is_p = ((s64) is_p) >> 63;
922 
923  is_zero |= is_p;
924 
925  result = is_zero;
926  result |= ((limb) is_zero) << 64;
927  return result;
928  }
929 
930 static int smallfelem_is_zero_int(const smallfelem small)
931  {
932  return (int) (smallfelem_is_zero(small) & ((limb)1));
933  }
934 
935 /* felem_inv calculates |out| = |in|^{-1}
936  *
937  * Based on Fermat's Little Theorem:
938  * a^p = a (mod p)
939  * a^{p-1} = 1 (mod p)
940  * a^{p-2} = a^{-1} (mod p)
941  */
942 static void felem_inv(felem out, const felem in)
943  {
944  felem ftmp, ftmp2;
945  /* each e_I will hold |in|^{2^I - 1} */
946  felem e2, e4, e8, e16, e32, e64;
947  longfelem tmp;
948  unsigned i;
949 
950  felem_square(tmp, in); felem_reduce(ftmp, tmp); /* 2^1 */
951  felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
952  felem_assign(e2, ftmp);
953  felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
954  felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^4 - 2^2 */
955  felem_mul(tmp, ftmp, e2); felem_reduce(ftmp, tmp); /* 2^4 - 2^0 */
956  felem_assign(e4, ftmp);
957  felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^5 - 2^1 */
958  felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^6 - 2^2 */
959  felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^7 - 2^3 */
960  felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^8 - 2^4 */
961  felem_mul(tmp, ftmp, e4); felem_reduce(ftmp, tmp); /* 2^8 - 2^0 */
962  felem_assign(e8, ftmp);
963  for (i = 0; i < 8; i++) {
964  felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
965  } /* 2^16 - 2^8 */
966  felem_mul(tmp, ftmp, e8); felem_reduce(ftmp, tmp); /* 2^16 - 2^0 */
967  felem_assign(e16, ftmp);
968  for (i = 0; i < 16; i++) {
969  felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
970  } /* 2^32 - 2^16 */
971  felem_mul(tmp, ftmp, e16); felem_reduce(ftmp, tmp); /* 2^32 - 2^0 */
972  felem_assign(e32, ftmp);
973  for (i = 0; i < 32; i++) {
974  felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
975  } /* 2^64 - 2^32 */
976  felem_assign(e64, ftmp);
977  felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp); /* 2^64 - 2^32 + 2^0 */
978  for (i = 0; i < 192; i++) {
979  felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
980  } /* 2^256 - 2^224 + 2^192 */
981 
982  felem_mul(tmp, e64, e32); felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */
983  for (i = 0; i < 16; i++) {
984  felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
985  } /* 2^80 - 2^16 */
986  felem_mul(tmp, ftmp2, e16); felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */
987  for (i = 0; i < 8; i++) {
988  felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
989  } /* 2^88 - 2^8 */
990  felem_mul(tmp, ftmp2, e8); felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */
991  for (i = 0; i < 4; i++) {
992  felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
993  } /* 2^92 - 2^4 */
994  felem_mul(tmp, ftmp2, e4); felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */
995  felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */
996  felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */
997  felem_mul(tmp, ftmp2, e2); felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */
998  felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */
999  felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */
1000  felem_mul(tmp, ftmp2, in); felem_reduce(ftmp2, tmp); /* 2^96 - 3 */
1001 
1002  felem_mul(tmp, ftmp2, ftmp); felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
1003  }
1004 
1005 static void smallfelem_inv_contract(smallfelem out, const smallfelem in)
1006  {
1007  felem tmp;
1008 
1009  smallfelem_expand(tmp, in);
1010  felem_inv(tmp, tmp);
1011  felem_contract(out, tmp);
1012  }
1013 
1014 /* Group operations
1015  * ----------------
1016  *
1017  * Building on top of the field operations we have the operations on the
1018  * elliptic curve group itself. Points on the curve are represented in Jacobian
1019  * coordinates */
1020 
1021 /* point_double calculates 2*(x_in, y_in, z_in)
1022  *
1023  * The method is taken from:
1024  * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1025  *
1026  * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1027  * while x_out == y_in is not (maybe this works, but it's not tested). */
1028 static void
1029 point_double(felem x_out, felem y_out, felem z_out,
1030  const felem x_in, const felem y_in, const felem z_in)
1031  {
1032  longfelem tmp, tmp2;
1033  felem delta, gamma, beta, alpha, ftmp, ftmp2;
1034  smallfelem small1, small2;
1035 
1036  felem_assign(ftmp, x_in);
1037  /* ftmp[i] < 2^106 */
1038  felem_assign(ftmp2, x_in);
1039  /* ftmp2[i] < 2^106 */
1040 
1041  /* delta = z^2 */
1042  felem_square(tmp, z_in);
1043  felem_reduce(delta, tmp);
1044  /* delta[i] < 2^101 */
1045 
1046  /* gamma = y^2 */
1047  felem_square(tmp, y_in);
1048  felem_reduce(gamma, tmp);
1049  /* gamma[i] < 2^101 */
1050  felem_shrink(small1, gamma);
1051 
1052  /* beta = x*gamma */
1053  felem_small_mul(tmp, small1, x_in);
1054  felem_reduce(beta, tmp);
1055  /* beta[i] < 2^101 */
1056 
1057  /* alpha = 3*(x-delta)*(x+delta) */
1058  felem_diff(ftmp, delta);
1059  /* ftmp[i] < 2^105 + 2^106 < 2^107 */
1060  felem_sum(ftmp2, delta);
1061  /* ftmp2[i] < 2^105 + 2^106 < 2^107 */
1062  felem_scalar(ftmp2, 3);
1063  /* ftmp2[i] < 3 * 2^107 < 2^109 */
1064  felem_mul(tmp, ftmp, ftmp2);
1065  felem_reduce(alpha, tmp);
1066  /* alpha[i] < 2^101 */
1067  felem_shrink(small2, alpha);
1068 
1069  /* x' = alpha^2 - 8*beta */
1070  smallfelem_square(tmp, small2);
1071  felem_reduce(x_out, tmp);
1072  felem_assign(ftmp, beta);
1073  felem_scalar(ftmp, 8);
1074  /* ftmp[i] < 8 * 2^101 = 2^104 */
1075  felem_diff(x_out, ftmp);
1076  /* x_out[i] < 2^105 + 2^101 < 2^106 */
1077 
1078  /* z' = (y + z)^2 - gamma - delta */
1079  felem_sum(delta, gamma);
1080  /* delta[i] < 2^101 + 2^101 = 2^102 */
1081  felem_assign(ftmp, y_in);
1082  felem_sum(ftmp, z_in);
1083  /* ftmp[i] < 2^106 + 2^106 = 2^107 */
1084  felem_square(tmp, ftmp);
1085  felem_reduce(z_out, tmp);
1086  felem_diff(z_out, delta);
1087  /* z_out[i] < 2^105 + 2^101 < 2^106 */
1088 
1089  /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1090  felem_scalar(beta, 4);
1091  /* beta[i] < 4 * 2^101 = 2^103 */
1092  felem_diff_zero107(beta, x_out);
1093  /* beta[i] < 2^107 + 2^103 < 2^108 */
1094  felem_small_mul(tmp, small2, beta);
1095  /* tmp[i] < 7 * 2^64 < 2^67 */
1096  smallfelem_square(tmp2, small1);
1097  /* tmp2[i] < 7 * 2^64 */
1098  longfelem_scalar(tmp2, 8);
1099  /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
1100  longfelem_diff(tmp, tmp2);
1101  /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1102  felem_reduce_zero105(y_out, tmp);
1103  /* y_out[i] < 2^106 */
1104  }
1105 
1106 /* point_double_small is the same as point_double, except that it operates on
1107  * smallfelems */
1108 static void
1109 point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out,
1110  const smallfelem x_in, const smallfelem y_in, const smallfelem z_in)
1111  {
1112  felem felem_x_out, felem_y_out, felem_z_out;
1113  felem felem_x_in, felem_y_in, felem_z_in;
1114 
1115  smallfelem_expand(felem_x_in, x_in);
1116  smallfelem_expand(felem_y_in, y_in);
1117  smallfelem_expand(felem_z_in, z_in);
1118  point_double(felem_x_out, felem_y_out, felem_z_out,
1119  felem_x_in, felem_y_in, felem_z_in);
1120  felem_shrink(x_out, felem_x_out);
1121  felem_shrink(y_out, felem_y_out);
1122  felem_shrink(z_out, felem_z_out);
1123  }
1124 
1125 /* copy_conditional copies in to out iff mask is all ones. */
1126 static void
1127 copy_conditional(felem out, const felem in, limb mask)
1128  {
1129  unsigned i;
1130  for (i = 0; i < NLIMBS; ++i)
1131  {
1132  const limb tmp = mask & (in[i] ^ out[i]);
1133  out[i] ^= tmp;
1134  }
1135  }
1136 
1137 /* copy_small_conditional copies in to out iff mask is all ones. */
1138 static void
1139 copy_small_conditional(felem out, const smallfelem in, limb mask)
1140  {
1141  unsigned i;
1142  const u64 mask64 = mask;
1143  for (i = 0; i < NLIMBS; ++i)
1144  {
1145  out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask);
1146  }
1147  }
1148 
1149 /* point_add calcuates (x1, y1, z1) + (x2, y2, z2)
1150  *
1151  * The method is taken from:
1152  * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1153  * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1154  *
1155  * This function includes a branch for checking whether the two input points
1156  * are equal, (while not equal to the point at infinity). This case never
1157  * happens during single point multiplication, so there is no timing leak for
1158  * ECDH or ECDSA signing. */
1159 static void point_add(felem x3, felem y3, felem z3,
1160  const felem x1, const felem y1, const felem z1,
1161  const int mixed, const smallfelem x2, const smallfelem y2, const smallfelem z2)
1162  {
1163  felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1164  longfelem tmp, tmp2;
1165  smallfelem small1, small2, small3, small4, small5;
1166  limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1167 
1168  felem_shrink(small3, z1);
1169 
1170  z1_is_zero = smallfelem_is_zero(small3);
1171  z2_is_zero = smallfelem_is_zero(z2);
1172 
1173  /* ftmp = z1z1 = z1**2 */
1174  smallfelem_square(tmp, small3);
1175  felem_reduce(ftmp, tmp);
1176  /* ftmp[i] < 2^101 */
1177  felem_shrink(small1, ftmp);
1178 
1179  if(!mixed)
1180  {
1181  /* ftmp2 = z2z2 = z2**2 */
1182  smallfelem_square(tmp, z2);
1183  felem_reduce(ftmp2, tmp);
1184  /* ftmp2[i] < 2^101 */
1185  felem_shrink(small2, ftmp2);
1186 
1187  felem_shrink(small5, x1);
1188 
1189  /* u1 = ftmp3 = x1*z2z2 */
1190  smallfelem_mul(tmp, small5, small2);
1191  felem_reduce(ftmp3, tmp);
1192  /* ftmp3[i] < 2^101 */
1193 
1194  /* ftmp5 = z1 + z2 */
1195  felem_assign(ftmp5, z1);
1196  felem_small_sum(ftmp5, z2);
1197  /* ftmp5[i] < 2^107 */
1198 
1199  /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
1200  felem_square(tmp, ftmp5);
1201  felem_reduce(ftmp5, tmp);
1202  /* ftmp2 = z2z2 + z1z1 */
1203  felem_sum(ftmp2, ftmp);
1204  /* ftmp2[i] < 2^101 + 2^101 = 2^102 */
1205  felem_diff(ftmp5, ftmp2);
1206  /* ftmp5[i] < 2^105 + 2^101 < 2^106 */
1207 
1208  /* ftmp2 = z2 * z2z2 */
1209  smallfelem_mul(tmp, small2, z2);
1210  felem_reduce(ftmp2, tmp);
1211 
1212  /* s1 = ftmp2 = y1 * z2**3 */
1213  felem_mul(tmp, y1, ftmp2);
1214  felem_reduce(ftmp6, tmp);
1215  /* ftmp6[i] < 2^101 */
1216  }
1217  else
1218  {
1219  /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
1220 
1221  /* u1 = ftmp3 = x1*z2z2 */
1222  felem_assign(ftmp3, x1);
1223  /* ftmp3[i] < 2^106 */
1224 
1225  /* ftmp5 = 2z1z2 */
1226  felem_assign(ftmp5, z1);
1227  felem_scalar(ftmp5, 2);
1228  /* ftmp5[i] < 2*2^106 = 2^107 */
1229 
1230  /* s1 = ftmp2 = y1 * z2**3 */
1231  felem_assign(ftmp6, y1);
1232  /* ftmp6[i] < 2^106 */
1233  }
1234 
1235  /* u2 = x2*z1z1 */
1236  smallfelem_mul(tmp, x2, small1);
1237  felem_reduce(ftmp4, tmp);
1238 
1239  /* h = ftmp4 = u2 - u1 */
1240  felem_diff_zero107(ftmp4, ftmp3);
1241  /* ftmp4[i] < 2^107 + 2^101 < 2^108 */
1242  felem_shrink(small4, ftmp4);
1243 
1244  x_equal = smallfelem_is_zero(small4);
1245 
1246  /* z_out = ftmp5 * h */
1247  felem_small_mul(tmp, small4, ftmp5);
1248  felem_reduce(z_out, tmp);
1249  /* z_out[i] < 2^101 */
1250 
1251  /* ftmp = z1 * z1z1 */
1252  smallfelem_mul(tmp, small1, small3);
1253  felem_reduce(ftmp, tmp);
1254 
1255  /* s2 = tmp = y2 * z1**3 */
1256  felem_small_mul(tmp, y2, ftmp);
1257  felem_reduce(ftmp5, tmp);
1258 
1259  /* r = ftmp5 = (s2 - s1)*2 */
1260  felem_diff_zero107(ftmp5, ftmp6);
1261  /* ftmp5[i] < 2^107 + 2^107 = 2^108*/
1262  felem_scalar(ftmp5, 2);
1263  /* ftmp5[i] < 2^109 */
1264  felem_shrink(small1, ftmp5);
1265  y_equal = smallfelem_is_zero(small1);
1266 
1267  if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)
1268  {
1269  point_double(x3, y3, z3, x1, y1, z1);
1270  return;
1271  }
1272 
1273  /* I = ftmp = (2h)**2 */
1274  felem_assign(ftmp, ftmp4);
1275  felem_scalar(ftmp, 2);
1276  /* ftmp[i] < 2*2^108 = 2^109 */
1277  felem_square(tmp, ftmp);
1278  felem_reduce(ftmp, tmp);
1279 
1280  /* J = ftmp2 = h * I */
1281  felem_mul(tmp, ftmp4, ftmp);
1282  felem_reduce(ftmp2, tmp);
1283 
1284  /* V = ftmp4 = U1 * I */
1285  felem_mul(tmp, ftmp3, ftmp);
1286  felem_reduce(ftmp4, tmp);
1287 
1288  /* x_out = r**2 - J - 2V */
1289  smallfelem_square(tmp, small1);
1290  felem_reduce(x_out, tmp);
1291  felem_assign(ftmp3, ftmp4);
1292  felem_scalar(ftmp4, 2);
1293  felem_sum(ftmp4, ftmp2);
1294  /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
1295  felem_diff(x_out, ftmp4);
1296  /* x_out[i] < 2^105 + 2^101 */
1297 
1298  /* y_out = r(V-x_out) - 2 * s1 * J */
1299  felem_diff_zero107(ftmp3, x_out);
1300  /* ftmp3[i] < 2^107 + 2^101 < 2^108 */
1301  felem_small_mul(tmp, small1, ftmp3);
1302  felem_mul(tmp2, ftmp6, ftmp2);
1303  longfelem_scalar(tmp2, 2);
1304  /* tmp2[i] < 2*2^67 = 2^68 */
1305  longfelem_diff(tmp, tmp2);
1306  /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1307  felem_reduce_zero105(y_out, tmp);
1308  /* y_out[i] < 2^106 */
1309 
1310  copy_small_conditional(x_out, x2, z1_is_zero);
1311  copy_conditional(x_out, x1, z2_is_zero);
1312  copy_small_conditional(y_out, y2, z1_is_zero);
1313  copy_conditional(y_out, y1, z2_is_zero);
1314  copy_small_conditional(z_out, z2, z1_is_zero);
1315  copy_conditional(z_out, z1, z2_is_zero);
1316  felem_assign(x3, x_out);
1317  felem_assign(y3, y_out);
1318  felem_assign(z3, z_out);
1319  }
1320 
1321 /* point_add_small is the same as point_add, except that it operates on
1322  * smallfelems */
1323 static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
1324  smallfelem x1, smallfelem y1, smallfelem z1,
1325  smallfelem x2, smallfelem y2, smallfelem z2)
1326  {
1327  felem felem_x3, felem_y3, felem_z3;
1328  felem felem_x1, felem_y1, felem_z1;
1329  smallfelem_expand(felem_x1, x1);
1330  smallfelem_expand(felem_y1, y1);
1331  smallfelem_expand(felem_z1, z1);
1332  point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0, x2, y2, z2);
1333  felem_shrink(x3, felem_x3);
1334  felem_shrink(y3, felem_y3);
1335  felem_shrink(z3, felem_z3);
1336  }
1337 
1338 /* Base point pre computation
1339  * --------------------------
1340  *
1341  * Two different sorts of precomputed tables are used in the following code.
1342  * Each contain various points on the curve, where each point is three field
1343  * elements (x, y, z).
1344  *
1345  * For the base point table, z is usually 1 (0 for the point at infinity).
1346  * This table has 2 * 16 elements, starting with the following:
1347  * index | bits | point
1348  * ------+---------+------------------------------
1349  * 0 | 0 0 0 0 | 0G
1350  * 1 | 0 0 0 1 | 1G
1351  * 2 | 0 0 1 0 | 2^64G
1352  * 3 | 0 0 1 1 | (2^64 + 1)G
1353  * 4 | 0 1 0 0 | 2^128G
1354  * 5 | 0 1 0 1 | (2^128 + 1)G
1355  * 6 | 0 1 1 0 | (2^128 + 2^64)G
1356  * 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
1357  * 8 | 1 0 0 0 | 2^192G
1358  * 9 | 1 0 0 1 | (2^192 + 1)G
1359  * 10 | 1 0 1 0 | (2^192 + 2^64)G
1360  * 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
1361  * 12 | 1 1 0 0 | (2^192 + 2^128)G
1362  * 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
1363  * 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
1364  * 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
1365  * followed by a copy of this with each element multiplied by 2^32.
1366  *
1367  * The reason for this is so that we can clock bits into four different
1368  * locations when doing simple scalar multiplies against the base point,
1369  * and then another four locations using the second 16 elements.
1370  *
1371  * Tables for other points have table[i] = iG for i in 0 .. 16. */
1372 
1373 /* gmul is the table of precomputed base points */
1374 static const smallfelem gmul[2][16][3] =
1375 {{{{0, 0, 0, 0},
1376  {0, 0, 0, 0},
1377  {0, 0, 0, 0}},
1378  {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2, 0x6b17d1f2e12c4247},
1379  {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16, 0x4fe342e2fe1a7f9b},
1380  {1, 0, 0, 0}},
1381  {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de, 0x0fa822bc2811aaa5},
1382  {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b, 0xbff44ae8f5dba80d},
1383  {1, 0, 0, 0}},
1384  {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789, 0x300a4bbc89d6726f},
1385  {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f, 0x72aac7e0d09b4644},
1386  {1, 0, 0, 0}},
1387  {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e, 0x447d739beedb5e67},
1388  {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7, 0x2d4825ab834131ee},
1389  {1, 0, 0, 0}},
1390  {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60, 0xef9519328a9c72ff},
1391  {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c, 0x611e9fc37dbb2c9b},
1392  {1, 0, 0, 0}},
1393  {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf, 0x550663797b51f5d8},
1394  {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5, 0x157164848aecb851},
1395  {1, 0, 0, 0}},
1396  {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391, 0xeb5d7745b21141ea},
1397  {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee, 0xeafd72ebdbecc17b},
1398  {1, 0, 0, 0}},
1399  {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5, 0xa6d39677a7849276},
1400  {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf, 0x674f84749b0b8816},
1401  {1, 0, 0, 0}},
1402  {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb, 0x4e769e7672c9ddad},
1403  {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281, 0x42b99082de830663},
1404  {1, 0, 0, 0}},
1405  {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478, 0x78878ef61c6ce04d},
1406  {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def, 0xb6cb3f5d7b72c321},
1407  {1, 0, 0, 0}},
1408  {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae, 0x0c88bc4d716b1287},
1409  {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa, 0xdd5ddea3f3901dc6},
1410  {1, 0, 0, 0}},
1411  {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3, 0x68f344af6b317466},
1412  {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3, 0x31b9c405f8540a20},
1413  {1, 0, 0, 0}},
1414  {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0, 0x4052bf4b6f461db9},
1415  {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8, 0xfecf4d5190b0fc61},
1416  {1, 0, 0, 0}},
1417  {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a, 0x1eddbae2c802e41a},
1418  {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0, 0x43104d86560ebcfc},
1419  {1, 0, 0, 0}},
1420  {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a, 0xb48e26b484f7a21c},
1421  {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668, 0xfac015404d4d3dab},
1422  {1, 0, 0, 0}}},
1423  {{{0, 0, 0, 0},
1424  {0, 0, 0, 0},
1425  {0, 0, 0, 0}},
1426  {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da, 0x7fe36b40af22af89},
1427  {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1, 0xe697d45825b63624},
1428  {1, 0, 0, 0}},
1429  {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902, 0x4a5b506612a677a6},
1430  {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40, 0xeb13461ceac089f1},
1431  {1, 0, 0, 0}},
1432  {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857, 0x0781b8291c6a220a},
1433  {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434, 0x690cde8df0151593},
1434  {1, 0, 0, 0}},
1435  {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326, 0x8a535f566ec73617},
1436  {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf, 0x0455c08468b08bd7},
1437  {1, 0, 0, 0}},
1438  {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279, 0x06bada7ab77f8276},
1439  {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70, 0x5b476dfd0e6cb18a},
1440  {1, 0, 0, 0}},
1441  {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8, 0x3e29864e8a2ec908},
1442  {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed, 0x239b90ea3dc31e7e},
1443  {1, 0, 0, 0}},
1444  {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4, 0x820f4dd949f72ff7},
1445  {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3, 0x140406ec783a05ec},
1446  {1, 0, 0, 0}},
1447  {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe, 0x68f6b8542783dfee},
1448  {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028, 0xcbe1feba92e40ce6},
1449  {1, 0, 0, 0}},
1450  {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927, 0xd0b2f94d2f420109},
1451  {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a, 0x971459828b0719e5},
1452  {1, 0, 0, 0}},
1453  {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687, 0x961610004a866aba},
1454  {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c, 0x7acb9fadcee75e44},
1455  {1, 0, 0, 0}},
1456  {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea, 0x24eb9acca333bf5b},
1457  {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d, 0x69f891c5acd079cc},
1458  {1, 0, 0, 0}},
1459  {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514, 0xe51f547c5972a107},
1460  {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06, 0x1c309a2b25bb1387},
1461  {1, 0, 0, 0}},
1462  {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828, 0x20b87b8aa2c4e503},
1463  {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044, 0xf5c6fa49919776be},
1464  {1, 0, 0, 0}},
1465  {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56, 0x1ed7d1b9332010b9},
1466  {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24, 0x3a2b03f03217257a},
1467  {1, 0, 0, 0}},
1468  {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b, 0x15fee545c78dd9f6},
1469  {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb, 0x4ab5b6b2b8753f81},
1470  {1, 0, 0, 0}}}};
1471 
1472 /* select_point selects the |idx|th point from a precomputation table and
1473  * copies it to out. */
1474 static void select_point(const u64 idx, unsigned int size, const smallfelem pre_comp[16][3], smallfelem out[3])
1475  {
1476  unsigned i, j;
1477  u64 *outlimbs = &out[0][0];
1478  memset(outlimbs, 0, 3 * sizeof(smallfelem));
1479 
1480  for (i = 0; i < size; i++)
1481  {
1482  const u64 *inlimbs = (u64*) &pre_comp[i][0][0];
1483  u64 mask = i ^ idx;
1484  mask |= mask >> 4;
1485  mask |= mask >> 2;
1486  mask |= mask >> 1;
1487  mask &= 1;
1488  mask--;
1489  for (j = 0; j < NLIMBS * 3; j++)
1490  outlimbs[j] |= inlimbs[j] & mask;
1491  }
1492  }
1493 
1494 /* get_bit returns the |i|th bit in |in| */
1495 static char get_bit(const felem_bytearray in, int i)
1496  {
1497  if ((i < 0) || (i >= 256))
1498  return 0;
1499  return (in[i >> 3] >> (i & 7)) & 1;
1500  }
1501 
1502 /* Interleaved point multiplication using precomputed point multiples:
1503  * The small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[],
1504  * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
1505  * of the generator, using certain (large) precomputed multiples in g_pre_comp.
1506  * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
1507 static void batch_mul(felem x_out, felem y_out, felem z_out,
1508  const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar,
1509  const int mixed, const smallfelem pre_comp[][17][3], const smallfelem g_pre_comp[2][16][3])
1510  {
1511  int i, skip;
1512  unsigned num, gen_mul = (g_scalar != NULL);
1513  felem nq[3], ftmp;
1514  smallfelem tmp[3];
1515  u64 bits;
1516  u8 sign, digit;
1517 
1518  /* set nq to the point at infinity */
1519  memset(nq, 0, 3 * sizeof(felem));
1520 
1521  /* Loop over all scalars msb-to-lsb, interleaving additions
1522  * of multiples of the generator (two in each of the last 32 rounds)
1523  * and additions of other points multiples (every 5th round).
1524  */
1525  skip = 1; /* save two point operations in the first round */
1526  for (i = (num_points ? 255 : 31); i >= 0; --i)
1527  {
1528  /* double */
1529  if (!skip)
1530  point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1531 
1532  /* add multiples of the generator */
1533  if (gen_mul && (i <= 31))
1534  {
1535  /* first, look 32 bits upwards */
1536  bits = get_bit(g_scalar, i + 224) << 3;
1537  bits |= get_bit(g_scalar, i + 160) << 2;
1538  bits |= get_bit(g_scalar, i + 96) << 1;
1539  bits |= get_bit(g_scalar, i + 32);
1540  /* select the point to add, in constant time */
1541  select_point(bits, 16, g_pre_comp[1], tmp);
1542 
1543  if (!skip)
1544  {
1545  point_add(nq[0], nq[1], nq[2],
1546  nq[0], nq[1], nq[2],
1547  1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1548  }
1549  else
1550  {
1551  smallfelem_expand(nq[0], tmp[0]);
1552  smallfelem_expand(nq[1], tmp[1]);
1553  smallfelem_expand(nq[2], tmp[2]);
1554  skip = 0;
1555  }
1556 
1557  /* second, look at the current position */
1558  bits = get_bit(g_scalar, i + 192) << 3;
1559  bits |= get_bit(g_scalar, i + 128) << 2;
1560  bits |= get_bit(g_scalar, i + 64) << 1;
1561  bits |= get_bit(g_scalar, i);
1562  /* select the point to add, in constant time */
1563  select_point(bits, 16, g_pre_comp[0], tmp);
1564  point_add(nq[0], nq[1], nq[2],
1565  nq[0], nq[1], nq[2],
1566  1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1567  }
1568 
1569  /* do other additions every 5 doublings */
1570  if (num_points && (i % 5 == 0))
1571  {
1572  /* loop over all scalars */
1573  for (num = 0; num < num_points; ++num)
1574  {
1575  bits = get_bit(scalars[num], i + 4) << 5;
1576  bits |= get_bit(scalars[num], i + 3) << 4;
1577  bits |= get_bit(scalars[num], i + 2) << 3;
1578  bits |= get_bit(scalars[num], i + 1) << 2;
1579  bits |= get_bit(scalars[num], i) << 1;
1580  bits |= get_bit(scalars[num], i - 1);
1581  ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1582 
1583  /* select the point to add or subtract, in constant time */
1584  select_point(digit, 17, pre_comp[num], tmp);
1585  smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative point */
1586  copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1));
1587  felem_contract(tmp[1], ftmp);
1588 
1589  if (!skip)
1590  {
1591  point_add(nq[0], nq[1], nq[2],
1592  nq[0], nq[1], nq[2],
1593  mixed, tmp[0], tmp[1], tmp[2]);
1594  }
1595  else
1596  {
1597  smallfelem_expand(nq[0], tmp[0]);
1598  smallfelem_expand(nq[1], tmp[1]);
1599  smallfelem_expand(nq[2], tmp[2]);
1600  skip = 0;
1601  }
1602  }
1603  }
1604  }
1605  felem_assign(x_out, nq[0]);
1606  felem_assign(y_out, nq[1]);
1607  felem_assign(z_out, nq[2]);
1608  }
1609 
1610 /* Precomputation for the group generator. */
1611 typedef struct {
1612  smallfelem g_pre_comp[2][16][3];
1615 
1617  {
1618  static const EC_METHOD ret = {
1638  0 /* point_set_compressed_coordinates */,
1639  0 /* point2oct */,
1640  0 /* oct2point */,
1654  0 /* field_div */,
1655  0 /* field_encode */,
1656  0 /* field_decode */,
1657  0 /* field_set_to_one */ };
1658 
1659  return &ret;
1660  }
1661 
1662 /******************************************************************************/
1663 /* FUNCTIONS TO MANAGE PRECOMPUTATION
1664  */
1665 
1666 static NISTP256_PRE_COMP *nistp256_pre_comp_new()
1667  {
1668  NISTP256_PRE_COMP *ret = NULL;
1669  ret = (NISTP256_PRE_COMP *) OPENSSL_malloc(sizeof *ret);
1670  if (!ret)
1671  {
1673  return ret;
1674  }
1675  memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp));
1676  ret->references = 1;
1677  return ret;
1678  }
1679 
1680 static void *nistp256_pre_comp_dup(void *src_)
1681  {
1682  NISTP256_PRE_COMP *src = src_;
1683 
1684  /* no need to actually copy, these objects never change! */
1686 
1687  return src_;
1688  }
1689 
1690 static void nistp256_pre_comp_free(void *pre_)
1691  {
1692  int i;
1693  NISTP256_PRE_COMP *pre = pre_;
1694 
1695  if (!pre)
1696  return;
1697 
1699  if (i > 0)
1700  return;
1701 
1702  OPENSSL_free(pre);
1703  }
1704 
1705 static void nistp256_pre_comp_clear_free(void *pre_)
1706  {
1707  int i;
1708  NISTP256_PRE_COMP *pre = pre_;
1709 
1710  if (!pre)
1711  return;
1712 
1714  if (i > 0)
1715  return;
1716 
1717  OPENSSL_cleanse(pre, sizeof *pre);
1718  OPENSSL_free(pre);
1719  }
1720 
1721 /******************************************************************************/
1722 /* OPENSSL EC_METHOD FUNCTIONS
1723  */
1724 
1726  {
1727  int ret;
1728  ret = ec_GFp_simple_group_init(group);
1729  group->a_is_minus3 = 1;
1730  return ret;
1731  }
1732 
1734  const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
1735  {
1736  int ret = 0;
1737  BN_CTX *new_ctx = NULL;
1738  BIGNUM *curve_p, *curve_a, *curve_b;
1739 
1740  if (ctx == NULL)
1741  if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1742  BN_CTX_start(ctx);
1743  if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
1744  ((curve_a = BN_CTX_get(ctx)) == NULL) ||
1745  ((curve_b = BN_CTX_get(ctx)) == NULL)) goto err;
1746  BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p);
1747  BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a);
1748  BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b);
1749  if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) ||
1750  (BN_cmp(curve_b, b)))
1751  {
1754  goto err;
1755  }
1757  ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1758 err:
1759  BN_CTX_end(ctx);
1760  if (new_ctx != NULL)
1761  BN_CTX_free(new_ctx);
1762  return ret;
1763  }
1764 
1765 /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
1766  * (X', Y') = (X/Z^2, Y/Z^3) */
1768  const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1769  {
1770  felem z1, z2, x_in, y_in;
1771  smallfelem x_out, y_out;
1772  longfelem tmp;
1773 
1774  if (EC_POINT_is_at_infinity(group, point))
1775  {
1778  return 0;
1779  }
1780  if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) ||
1781  (!BN_to_felem(z1, &point->Z))) return 0;
1782  felem_inv(z2, z1);
1783  felem_square(tmp, z2); felem_reduce(z1, tmp);
1784  felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp);
1785  felem_contract(x_out, x_in);
1786  if (x != NULL)
1787  {
1788  if (!smallfelem_to_BN(x, x_out)) {
1790  ERR_R_BN_LIB);
1791  return 0;
1792  }
1793  }
1794  felem_mul(tmp, z1, z2); felem_reduce(z1, tmp);
1795  felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp);
1796  felem_contract(y_out, y_in);
1797  if (y != NULL)
1798  {
1799  if (!smallfelem_to_BN(y, y_out))
1800  {
1802  ERR_R_BN_LIB);
1803  return 0;
1804  }
1805  }
1806  return 1;
1807  }
1808 
1809 static void make_points_affine(size_t num, smallfelem points[/* num */][3], smallfelem tmp_smallfelems[/* num+1 */])
1810  {
1811  /* Runs in constant time, unless an input is the point at infinity
1812  * (which normally shouldn't happen). */
1814  num,
1815  points,
1816  sizeof(smallfelem),
1817  tmp_smallfelems,
1818  (void (*)(void *)) smallfelem_one,
1819  (int (*)(const void *)) smallfelem_is_zero_int,
1820  (void (*)(void *, const void *)) smallfelem_assign,
1821  (void (*)(void *, const void *)) smallfelem_square_contract,
1822  (void (*)(void *, const void *, const void *)) smallfelem_mul_contract,
1823  (void (*)(void *, const void *)) smallfelem_inv_contract,
1824  (void (*)(void *, const void *)) smallfelem_assign /* nothing to contract */);
1825  }
1826 
1827 /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values
1828  * Result is stored in r (r can equal one of the inputs). */
1830  const BIGNUM *scalar, size_t num, const EC_POINT *points[],
1831  const BIGNUM *scalars[], BN_CTX *ctx)
1832  {
1833  int ret = 0;
1834  int j;
1835  int mixed = 0;
1836  BN_CTX *new_ctx = NULL;
1837  BIGNUM *x, *y, *z, *tmp_scalar;
1838  felem_bytearray g_secret;
1839  felem_bytearray *secrets = NULL;
1840  smallfelem (*pre_comp)[17][3] = NULL;
1841  smallfelem *tmp_smallfelems = NULL;
1842  felem_bytearray tmp;
1843  unsigned i, num_bytes;
1844  int have_pre_comp = 0;
1845  size_t num_points = num;
1846  smallfelem x_in, y_in, z_in;
1847  felem x_out, y_out, z_out;
1848  NISTP256_PRE_COMP *pre = NULL;
1849  const smallfelem (*g_pre_comp)[16][3] = NULL;
1850  EC_POINT *generator = NULL;
1851  const EC_POINT *p = NULL;
1852  const BIGNUM *p_scalar = NULL;
1853 
1854  if (ctx == NULL)
1855  if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1856  BN_CTX_start(ctx);
1857  if (((x = BN_CTX_get(ctx)) == NULL) ||
1858  ((y = BN_CTX_get(ctx)) == NULL) ||
1859  ((z = BN_CTX_get(ctx)) == NULL) ||
1860  ((tmp_scalar = BN_CTX_get(ctx)) == NULL))
1861  goto err;
1862 
1863  if (scalar != NULL)
1864  {
1865  pre = EC_EX_DATA_get_data(group->extra_data,
1866  nistp256_pre_comp_dup, nistp256_pre_comp_free,
1867  nistp256_pre_comp_clear_free);
1868  if (pre)
1869  /* we have precomputation, try to use it */
1870  g_pre_comp = (const smallfelem (*)[16][3]) pre->g_pre_comp;
1871  else
1872  /* try to use the standard precomputation */
1873  g_pre_comp = &gmul[0];
1874  generator = EC_POINT_new(group);
1875  if (generator == NULL)
1876  goto err;
1877  /* get the generator from precomputation */
1878  if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) ||
1879  !smallfelem_to_BN(y, g_pre_comp[0][1][1]) ||
1880  !smallfelem_to_BN(z, g_pre_comp[0][1][2]))
1881  {
1883  goto err;
1884  }
1886  generator, x, y, z, ctx))
1887  goto err;
1888  if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1889  /* precomputation matches generator */
1890  have_pre_comp = 1;
1891  else
1892  /* we don't have valid precomputation:
1893  * treat the generator as a random point */
1894  num_points++;
1895  }
1896  if (num_points > 0)
1897  {
1898  if (num_points >= 3)
1899  {
1900  /* unless we precompute multiples for just one or two points,
1901  * converting those into affine form is time well spent */
1902  mixed = 1;
1903  }
1904  secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
1905  pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(smallfelem));
1906  if (mixed)
1907  tmp_smallfelems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(smallfelem));
1908  if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_smallfelems == NULL)))
1909  {
1911  goto err;
1912  }
1913 
1914  /* we treat NULL scalars as 0, and NULL points as points at infinity,
1915  * i.e., they contribute nothing to the linear combination */
1916  memset(secrets, 0, num_points * sizeof(felem_bytearray));
1917  memset(pre_comp, 0, num_points * 17 * 3 * sizeof(smallfelem));
1918  for (i = 0; i < num_points; ++i)
1919  {
1920  if (i == num)
1921  /* we didn't have a valid precomputation, so we pick
1922  * the generator */
1923  {
1924  p = EC_GROUP_get0_generator(group);
1925  p_scalar = scalar;
1926  }
1927  else
1928  /* the i^th point */
1929  {
1930  p = points[i];
1931  p_scalar = scalars[i];
1932  }
1933  if ((p_scalar != NULL) && (p != NULL))
1934  {
1935  /* reduce scalar to 0 <= scalar < 2^256 */
1936  if ((BN_num_bits(p_scalar) > 256) || (BN_is_negative(p_scalar)))
1937  {
1938  /* this is an unusual input, and we don't guarantee
1939  * constant-timeness */
1940  if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx))
1941  {
1943  goto err;
1944  }
1945  num_bytes = BN_bn2bin(tmp_scalar, tmp);
1946  }
1947  else
1948  num_bytes = BN_bn2bin(p_scalar, tmp);
1949  flip_endian(secrets[i], tmp, num_bytes);
1950  /* precompute multiples */
1951  if ((!BN_to_felem(x_out, &p->X)) ||
1952  (!BN_to_felem(y_out, &p->Y)) ||
1953  (!BN_to_felem(z_out, &p->Z))) goto err;
1954  felem_shrink(pre_comp[i][1][0], x_out);
1955  felem_shrink(pre_comp[i][1][1], y_out);
1956  felem_shrink(pre_comp[i][1][2], z_out);
1957  for (j = 2; j <= 16; ++j)
1958  {
1959  if (j & 1)
1960  {
1961  point_add_small(
1962  pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1963  pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2],
1964  pre_comp[i][j-1][0], pre_comp[i][j-1][1], pre_comp[i][j-1][2]);
1965  }
1966  else
1967  {
1968  point_double_small(
1969  pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1970  pre_comp[i][j/2][0], pre_comp[i][j/2][1], pre_comp[i][j/2][2]);
1971  }
1972  }
1973  }
1974  }
1975  if (mixed)
1976  make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems);
1977  }
1978 
1979  /* the scalar for the generator */
1980  if ((scalar != NULL) && (have_pre_comp))
1981  {
1982  memset(g_secret, 0, sizeof(g_secret));
1983  /* reduce scalar to 0 <= scalar < 2^256 */
1984  if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar)))
1985  {
1986  /* this is an unusual input, and we don't guarantee
1987  * constant-timeness */
1988  if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx))
1989  {
1991  goto err;
1992  }
1993  num_bytes = BN_bn2bin(tmp_scalar, tmp);
1994  }
1995  else
1996  num_bytes = BN_bn2bin(scalar, tmp);
1997  flip_endian(g_secret, tmp, num_bytes);
1998  /* do the multiplication with generator precomputation*/
1999  batch_mul(x_out, y_out, z_out,
2000  (const felem_bytearray (*)) secrets, num_points,
2001  g_secret,
2002  mixed, (const smallfelem (*)[17][3]) pre_comp,
2003  g_pre_comp);
2004  }
2005  else
2006  /* do the multiplication without generator precomputation */
2007  batch_mul(x_out, y_out, z_out,
2008  (const felem_bytearray (*)) secrets, num_points,
2009  NULL, mixed, (const smallfelem (*)[17][3]) pre_comp, NULL);
2010  /* reduce the output to its unique minimal representation */
2011  felem_contract(x_in, x_out);
2012  felem_contract(y_in, y_out);
2013  felem_contract(z_in, z_out);
2014  if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) ||
2015  (!smallfelem_to_BN(z, z_in)))
2016  {
2018  goto err;
2019  }
2020  ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
2021 
2022 err:
2023  BN_CTX_end(ctx);
2024  if (generator != NULL)
2025  EC_POINT_free(generator);
2026  if (new_ctx != NULL)
2027  BN_CTX_free(new_ctx);
2028  if (secrets != NULL)
2029  OPENSSL_free(secrets);
2030  if (pre_comp != NULL)
2031  OPENSSL_free(pre_comp);
2032  if (tmp_smallfelems != NULL)
2033  OPENSSL_free(tmp_smallfelems);
2034  return ret;
2035  }
2036 
2038  {
2039  int ret = 0;
2040  NISTP256_PRE_COMP *pre = NULL;
2041  int i, j;
2042  BN_CTX *new_ctx = NULL;
2043  BIGNUM *x, *y;
2044  EC_POINT *generator = NULL;
2045  smallfelem tmp_smallfelems[32];
2046  felem x_tmp, y_tmp, z_tmp;
2047 
2048  /* throw away old precomputation */
2049  EC_EX_DATA_free_data(&group->extra_data, nistp256_pre_comp_dup,
2050  nistp256_pre_comp_free, nistp256_pre_comp_clear_free);
2051  if (ctx == NULL)
2052  if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
2053  BN_CTX_start(ctx);
2054  if (((x = BN_CTX_get(ctx)) == NULL) ||
2055  ((y = BN_CTX_get(ctx)) == NULL))
2056  goto err;
2057  /* get the generator */
2058  if (group->generator == NULL) goto err;
2059  generator = EC_POINT_new(group);
2060  if (generator == NULL)
2061  goto err;
2062  BN_bin2bn(nistp256_curve_params[3], sizeof (felem_bytearray), x);
2063  BN_bin2bn(nistp256_curve_params[4], sizeof (felem_bytearray), y);
2064  if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
2065  goto err;
2066  if ((pre = nistp256_pre_comp_new()) == NULL)
2067  goto err;
2068  /* if the generator is the standard one, use built-in precomputation */
2069  if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
2070  {
2071  memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2072  ret = 1;
2073  goto err;
2074  }
2075  if ((!BN_to_felem(x_tmp, &group->generator->X)) ||
2076  (!BN_to_felem(y_tmp, &group->generator->Y)) ||
2077  (!BN_to_felem(z_tmp, &group->generator->Z)))
2078  goto err;
2079  felem_shrink(pre->g_pre_comp[0][1][0], x_tmp);
2080  felem_shrink(pre->g_pre_comp[0][1][1], y_tmp);
2081  felem_shrink(pre->g_pre_comp[0][1][2], z_tmp);
2082  /* compute 2^64*G, 2^128*G, 2^192*G for the first table,
2083  * 2^32*G, 2^96*G, 2^160*G, 2^224*G for the second one
2084  */
2085  for (i = 1; i <= 8; i <<= 1)
2086  {
2087  point_double_small(
2088  pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
2089  pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
2090  for (j = 0; j < 31; ++j)
2091  {
2092  point_double_small(
2093  pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
2094  pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
2095  }
2096  if (i == 8)
2097  break;
2098  point_double_small(
2099  pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
2100  pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
2101  for (j = 0; j < 31; ++j)
2102  {
2103  point_double_small(
2104  pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
2105  pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2]);
2106  }
2107  }
2108  for (i = 0; i < 2; i++)
2109  {
2110  /* g_pre_comp[i][0] is the point at infinity */
2111  memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
2112  /* the remaining multiples */
2113  /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */
2114  point_add_small(
2115  pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], pre->g_pre_comp[i][6][2],
2116  pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
2117  pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]);
2118  /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */
2119  point_add_small(
2120  pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], pre->g_pre_comp[i][10][2],
2121  pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2122  pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]);
2123  /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */
2124  point_add_small(
2125  pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
2126  pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2127  pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2]);
2128  /* 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G */
2129  point_add_small(
2130  pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], pre->g_pre_comp[i][14][2],
2131  pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
2132  pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]);
2133  for (j = 1; j < 8; ++j)
2134  {
2135  /* odd multiples: add G resp. 2^32*G */
2136  point_add_small(
2137  pre->g_pre_comp[i][2*j+1][0], pre->g_pre_comp[i][2*j+1][1], pre->g_pre_comp[i][2*j+1][2],
2138  pre->g_pre_comp[i][2*j][0], pre->g_pre_comp[i][2*j][1], pre->g_pre_comp[i][2*j][2],
2139  pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], pre->g_pre_comp[i][1][2]);
2140  }
2141  }
2142  make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems);
2143 
2144  if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp256_pre_comp_dup,
2145  nistp256_pre_comp_free, nistp256_pre_comp_clear_free))
2146  goto err;
2147  ret = 1;
2148  pre = NULL;
2149  err:
2150  BN_CTX_end(ctx);
2151  if (generator != NULL)
2152  EC_POINT_free(generator);
2153  if (new_ctx != NULL)
2154  BN_CTX_free(new_ctx);
2155  if (pre)
2156  nistp256_pre_comp_free(pre);
2157  return ret;
2158  }
2159 
2161  {
2162  if (EC_EX_DATA_get_data(group->extra_data, nistp256_pre_comp_dup,
2163  nistp256_pre_comp_free, nistp256_pre_comp_clear_free)
2164  != NULL)
2165  return 1;
2166  else
2167  return 0;
2168  }
2169 #else
2170 static void *dummy=&dummy;
2171 #endif