
Go to the source code of this file.
Defines | |
| #define | PX_MAX_CRYPT 128 |
| #define | PX_MAX_SALT_LEN 128 |
| #define | PX_XDES_ROUNDS (29 * 25) |
| #define | PX_BF_ROUNDS 6 |
Functions | |
| char * | px_crypt (const char *psw, const char *salt, char *buf, unsigned buflen) |
| int | px_gen_salt (const char *salt_type, char *dst, int rounds) |
| char * | _crypt_gensalt_traditional_rn (unsigned long count, const char *input, int size, char *output, int output_size) |
| char * | _crypt_gensalt_extended_rn (unsigned long count, const char *input, int size, char *output, int output_size) |
| char * | _crypt_gensalt_md5_rn (unsigned long count, const char *input, int size, char *output, int output_size) |
| char * | _crypt_gensalt_blowfish_rn (unsigned long count, const char *input, int size, char *output, int output_size) |
| char * | _crypt_blowfish_rn (const char *key, const char *setting, char *output, int size) |
| char * | px_crypt_des (const char *key, const char *setting) |
| char * | px_crypt_md5 (const char *pw, const char *salt, char *dst, unsigned dstlen) |
| #define PX_BF_ROUNDS 6 |
Definition at line 46 of file px-crypt.h.
| #define PX_MAX_CRYPT 128 |
Definition at line 36 of file px-crypt.h.
Referenced by pg_crypt().
| #define PX_MAX_SALT_LEN 128 |
Definition at line 39 of file px-crypt.h.
Referenced by pg_gen_salt(), pg_gen_salt_rounds(), and px_gen_salt().
| #define PX_XDES_ROUNDS (29 * 25) |
Definition at line 43 of file px-crypt.h.
| char* _crypt_blowfish_rn | ( | const char * | key, | |
| const char * | setting, | |||
| char * | output, | |||
| int | size | |||
| ) |
Definition at line 578 of file crypt-blowfish.c.
References BF_atoi64, BF_body, BF_decode(), BF_encode(), BF_itoa64, BF_magic_w, BF_N, BF_set_key(), BF_swap(), i, and BF_ctx::S.
Referenced by run_crypt_bf().
{
struct
{
BF_ctx ctx;
BF_key expanded_key;
union
{
BF_word salt[4];
BF_word output[6];
} binary;
} data;
BF_word L,
R;
BF_word tmp1,
tmp2,
tmp3,
tmp4;
BF_word *ptr;
BF_word count;
int i;
if (size < 7 + 22 + 31 + 1)
return NULL;
if (setting[0] != '$' ||
setting[1] != '2' ||
(setting[2] != 'a' && setting[2] != 'x') ||
setting[3] != '$' ||
setting[4] < '0' || setting[4] > '3' ||
setting[5] < '0' || setting[5] > '9' ||
(setting[4] == '3' && setting[5] > '1') ||
setting[6] != '$')
{
return NULL;
}
count = (BF_word) 1 << ((setting[4] - '0') * 10 + (setting[5] - '0'));
if (count < 16 || BF_decode(data.binary.salt, &setting[7], 16))
{
memset(data.binary.salt, 0, sizeof(data.binary.salt));
return NULL;
}
BF_swap(data.binary.salt, 4);
BF_set_key(key, data.expanded_key, data.ctx.P, setting[2] == 'x');
memcpy(data.ctx.S, BF_init_state.S, sizeof(data.ctx.S));
L = R = 0;
for (i = 0; i < BF_N + 2; i += 2)
{
L ^= data.binary.salt[i & 2];
R ^= data.binary.salt[(i & 2) + 1];
BF_ENCRYPT;
data.ctx.P[i] = L;
data.ctx.P[i + 1] = R;
}
ptr = data.ctx.S[0];
do
{
ptr += 4;
L ^= data.binary.salt[(BF_N + 2) & 3];
R ^= data.binary.salt[(BF_N + 3) & 3];
BF_ENCRYPT;
*(ptr - 4) = L;
*(ptr - 3) = R;
L ^= data.binary.salt[(BF_N + 4) & 3];
R ^= data.binary.salt[(BF_N + 5) & 3];
BF_ENCRYPT;
*(ptr - 2) = L;
*(ptr - 1) = R;
} while (ptr < &data.ctx.S[3][0xFF]);
do
{
data.ctx.P[0] ^= data.expanded_key[0];
data.ctx.P[1] ^= data.expanded_key[1];
data.ctx.P[2] ^= data.expanded_key[2];
data.ctx.P[3] ^= data.expanded_key[3];
data.ctx.P[4] ^= data.expanded_key[4];
data.ctx.P[5] ^= data.expanded_key[5];
data.ctx.P[6] ^= data.expanded_key[6];
data.ctx.P[7] ^= data.expanded_key[7];
data.ctx.P[8] ^= data.expanded_key[8];
data.ctx.P[9] ^= data.expanded_key[9];
data.ctx.P[10] ^= data.expanded_key[10];
data.ctx.P[11] ^= data.expanded_key[11];
data.ctx.P[12] ^= data.expanded_key[12];
data.ctx.P[13] ^= data.expanded_key[13];
data.ctx.P[14] ^= data.expanded_key[14];
data.ctx.P[15] ^= data.expanded_key[15];
data.ctx.P[16] ^= data.expanded_key[16];
data.ctx.P[17] ^= data.expanded_key[17];
BF_body();
tmp1 = data.binary.salt[0];
tmp2 = data.binary.salt[1];
tmp3 = data.binary.salt[2];
tmp4 = data.binary.salt[3];
data.ctx.P[0] ^= tmp1;
data.ctx.P[1] ^= tmp2;
data.ctx.P[2] ^= tmp3;
data.ctx.P[3] ^= tmp4;
data.ctx.P[4] ^= tmp1;
data.ctx.P[5] ^= tmp2;
data.ctx.P[6] ^= tmp3;
data.ctx.P[7] ^= tmp4;
data.ctx.P[8] ^= tmp1;
data.ctx.P[9] ^= tmp2;
data.ctx.P[10] ^= tmp3;
data.ctx.P[11] ^= tmp4;
data.ctx.P[12] ^= tmp1;
data.ctx.P[13] ^= tmp2;
data.ctx.P[14] ^= tmp3;
data.ctx.P[15] ^= tmp4;
data.ctx.P[16] ^= tmp1;
data.ctx.P[17] ^= tmp2;
BF_body();
} while (--count);
for (i = 0; i < 6; i += 2)
{
L = BF_magic_w[i];
R = BF_magic_w[i + 1];
count = 64;
do
{
BF_ENCRYPT;
} while (--count);
data.binary.output[i] = L;
data.binary.output[i + 1] = R;
}
memcpy(output, setting, 7 + 22 - 1);
output[7 + 22 - 1] = BF_itoa64[(int)
BF_atoi64[(int) setting[7 + 22 - 1] - 0x20] & 0x30];
/* This has to be bug-compatible with the original implementation, so
* only encode 23 of the 24 bytes. :-) */
BF_swap(data.binary.output, 6);
BF_encode(&output[7 + 22], data.binary.output, 23);
output[7 + 22 + 31] = '\0';
/* Overwrite the most obvious sensitive data we have on the stack. Note
* that this does not guarantee there's no sensitive data left on the
* stack and/or in registers; I'm not aware of portable code that does. */
memset(&data, 0, sizeof(data));
return output;
}
| char* _crypt_gensalt_blowfish_rn | ( | unsigned long | count, | |
| const char * | input, | |||
| int | size, | |||
| char * | output, | |||
| int | output_size | |||
| ) |
Definition at line 161 of file crypt-gensalt.c.
References BF_encode().
{
if (size < 16 || output_size < 7 + 22 + 1 ||
(count && (count < 4 || count > 31)))
{
if (output_size > 0)
output[0] = '\0';
return NULL;
}
if (!count)
count = 5;
output[0] = '$';
output[1] = '2';
output[2] = 'a';
output[3] = '$';
output[4] = '0' + count / 10;
output[5] = '0' + count % 10;
output[6] = '$';
BF_encode(&output[7], (const BF_word *) input, 16);
output[7 + 22] = '\0';
return output;
}
| char* _crypt_gensalt_extended_rn | ( | unsigned long | count, | |
| const char * | input, | |||
| int | size, | |||
| char * | output, | |||
| int | output_size | |||
| ) |
Definition at line 43 of file crypt-gensalt.c.
References _crypt_itoa64, and value.
{
unsigned long value;
/* Even iteration counts make it easier to detect weak DES keys from a look
* at the hash, so they should be avoided */
if (size < 3 || output_size < 1 + 4 + 4 + 1 ||
(count && (count > 0xffffff || !(count & 1))))
{
if (output_size > 0)
output[0] = '\0';
return NULL;
}
if (!count)
count = 725;
output[0] = '_';
output[1] = _crypt_itoa64[count & 0x3f];
output[2] = _crypt_itoa64[(count >> 6) & 0x3f];
output[3] = _crypt_itoa64[(count >> 12) & 0x3f];
output[4] = _crypt_itoa64[(count >> 18) & 0x3f];
value = (unsigned long) (unsigned char) input[0] |
((unsigned long) (unsigned char) input[1] << 8) |
((unsigned long) (unsigned char) input[2] << 16);
output[5] = _crypt_itoa64[value & 0x3f];
output[6] = _crypt_itoa64[(value >> 6) & 0x3f];
output[7] = _crypt_itoa64[(value >> 12) & 0x3f];
output[8] = _crypt_itoa64[(value >> 18) & 0x3f];
output[9] = '\0';
return output;
}
| char* _crypt_gensalt_md5_rn | ( | unsigned long | count, | |
| const char * | input, | |||
| int | size, | |||
| char * | output, | |||
| int | output_size | |||
| ) |
Definition at line 79 of file crypt-gensalt.c.
References _crypt_itoa64, and value.
{
unsigned long value;
if (size < 3 || output_size < 3 + 4 + 1 || (count && count != 1000))
{
if (output_size > 0)
output[0] = '\0';
return NULL;
}
output[0] = '$';
output[1] = '1';
output[2] = '$';
value = (unsigned long) (unsigned char) input[0] |
((unsigned long) (unsigned char) input[1] << 8) |
((unsigned long) (unsigned char) input[2] << 16);
output[3] = _crypt_itoa64[value & 0x3f];
output[4] = _crypt_itoa64[(value >> 6) & 0x3f];
output[5] = _crypt_itoa64[(value >> 12) & 0x3f];
output[6] = _crypt_itoa64[(value >> 18) & 0x3f];
output[7] = '\0';
if (size >= 6 && output_size >= 3 + 4 + 4 + 1)
{
value = (unsigned long) (unsigned char) input[3] |
((unsigned long) (unsigned char) input[4] << 8) |
((unsigned long) (unsigned char) input[5] << 16);
output[7] = _crypt_itoa64[value & 0x3f];
output[8] = _crypt_itoa64[(value >> 6) & 0x3f];
output[9] = _crypt_itoa64[(value >> 12) & 0x3f];
output[10] = _crypt_itoa64[(value >> 18) & 0x3f];
output[11] = '\0';
}
return output;
}
| char* _crypt_gensalt_traditional_rn | ( | unsigned long | count, | |
| const char * | input, | |||
| int | size, | |||
| char * | output, | |||
| int | output_size | |||
| ) |
Definition at line 25 of file crypt-gensalt.c.
References _crypt_itoa64.
{
if (size < 2 || output_size < 2 + 1 || (count && count != 25))
{
if (output_size > 0)
output[0] = '\0';
return NULL;
}
output[0] = _crypt_itoa64[(unsigned int) input[0] & 0x3f];
output[1] = _crypt_itoa64[(unsigned int) input[1] & 0x3f];
output[2] = '\0';
return output;
}
| char* px_crypt | ( | const char * | psw, | |
| const char * | salt, | |||
| char * | buf, | |||
| unsigned | buflen | |||
| ) |
Definition at line 91 of file px-crypt.c.
References px_crypt_algo::crypt, px_crypt_algo::id, px_crypt_algo::id_len, and NULL.
Referenced by pg_crypt().
{
const struct px_crypt_algo *c;
for (c = px_crypt_list; c->id; c++)
{
if (!c->id_len)
break;
if (strncmp(salt, c->id, c->id_len) == 0)
break;
}
if (c->crypt == NULL)
return NULL;
return c->crypt(psw, salt, buf, len);
}
| char* px_crypt_des | ( | const char * | key, | |
| const char * | setting | |||
| ) |
Definition at line 649 of file crypt-des.c.
References _crypt_a64, _PASSWORD_EFMT1, ascii_to_bin(), des_cipher(), des_init(), des_initialised, des_setkey(), do_des(), i, NULL, output(), and setup_salt().
Referenced by run_crypt_des().
{
int i;
uint32 count,
salt,
l,
r0,
r1,
keybuf[2];
char *p;
uint8 *q;
static char output[21];
if (!des_initialised)
des_init();
/*
* Copy the key, shifting each character up by one bit and padding with
* zeros.
*/
q = (uint8 *) keybuf;
while (q - (uint8 *) keybuf - 8)
{
*q++ = *key << 1;
if (*key != '\0')
key++;
}
if (des_setkey((char *) keybuf))
return (NULL);
#ifndef DISABLE_XDES
if (*setting == _PASSWORD_EFMT1)
{
/*
* "new"-style: setting - underscore, 4 bytes of count, 4 bytes of
* salt key - unlimited characters
*/
for (i = 1, count = 0L; i < 5; i++)
count |= ascii_to_bin(setting[i]) << (i - 1) * 6;
for (i = 5, salt = 0L; i < 9; i++)
salt |= ascii_to_bin(setting[i]) << (i - 5) * 6;
while (*key)
{
/*
* Encrypt the key with itself.
*/
if (des_cipher((char *) keybuf, (char *) keybuf, 0L, 1))
return (NULL);
/*
* And XOR with the next 8 characters of the key.
*/
q = (uint8 *) keybuf;
while (q - (uint8 *) keybuf - 8 && *key)
*q++ ^= *key++ << 1;
if (des_setkey((char *) keybuf))
return (NULL);
}
strncpy(output, setting, 9);
/*
* Double check that we weren't given a short setting. If we were, the
* above code will probably have created weird values for count and
* salt, but we don't really care. Just make sure the output string
* doesn't have an extra NUL in it.
*/
output[9] = '\0';
p = output + strlen(output);
}
else
#endif /* !DISABLE_XDES */
{
/*
* "old"-style: setting - 2 bytes of salt key - up to 8 characters
*/
count = 25;
salt = (ascii_to_bin(setting[1]) << 6)
| ascii_to_bin(setting[0]);
output[0] = setting[0];
/*
* If the encrypted password that the salt was extracted from is only
* 1 character long, the salt will be corrupted. We need to ensure
* that the output string doesn't have an extra NUL in it!
*/
output[1] = setting[1] ? setting[1] : output[0];
p = output + 2;
}
setup_salt(salt);
/*
* Do it.
*/
if (do_des(0L, 0L, &r0, &r1, count))
return (NULL);
/*
* Now encode the result...
*/
l = (r0 >> 8);
*p++ = _crypt_a64[(l >> 18) & 0x3f];
*p++ = _crypt_a64[(l >> 12) & 0x3f];
*p++ = _crypt_a64[(l >> 6) & 0x3f];
*p++ = _crypt_a64[l & 0x3f];
l = (r0 << 16) | ((r1 >> 16) & 0xffff);
*p++ = _crypt_a64[(l >> 18) & 0x3f];
*p++ = _crypt_a64[(l >> 12) & 0x3f];
*p++ = _crypt_a64[(l >> 6) & 0x3f];
*p++ = _crypt_a64[l & 0x3f];
l = r1 << 2;
*p++ = _crypt_a64[(l >> 12) & 0x3f];
*p++ = _crypt_a64[(l >> 6) & 0x3f];
*p++ = _crypt_a64[l & 0x3f];
*p = 0;
return (output);
}
| char* px_crypt_md5 | ( | const char * | pw, | |
| const char * | salt, | |||
| char * | dst, | |||
| unsigned | dstlen | |||
| ) |
Definition at line 34 of file crypt-md5.c.
References _crypt_to64(), i, MD5_SIZE, px_find_digest(), px_md_finish, px_md_free, px_md_reset, and px_md_update.
Referenced by run_crypt_md5().
{
static char *magic = "$1$"; /* This string is magic for this algorithm.
* Having it this way, we can get better later
* on */
static char *p;
static const char *sp,
*ep;
unsigned char final[MD5_SIZE];
int sl,
pl,
i;
PX_MD *ctx,
*ctx1;
int err;
unsigned long l;
if (!passwd || dstlen < 120)
return NULL;
/* Refine the Salt first */
sp = salt;
/* If it starts with the magic string, then skip that */
if (strncmp(sp, magic, strlen(magic)) == 0)
sp += strlen(magic);
/* It stops at the first '$', max 8 chars */
for (ep = sp; *ep && *ep != '$' && ep < (sp + 8); ep++)
continue;
/* get the length of the true salt */
sl = ep - sp;
/* */
err = px_find_digest("md5", &ctx);
if (err)
return NULL;
err = px_find_digest("md5", &ctx1);
/* The password first, since that is what is most unknown */
px_md_update(ctx, (const uint8 *) pw, strlen(pw));
/* Then our magic string */
px_md_update(ctx, (uint8 *) magic, strlen(magic));
/* Then the raw salt */
px_md_update(ctx, (const uint8 *) sp, sl);
/* Then just as many characters of the MD5(pw,salt,pw) */
px_md_update(ctx1, (const uint8 *) pw, strlen(pw));
px_md_update(ctx1, (const uint8 *) sp, sl);
px_md_update(ctx1, (const uint8 *) pw, strlen(pw));
px_md_finish(ctx1, final);
for (pl = strlen(pw); pl > 0; pl -= MD5_SIZE)
px_md_update(ctx, final, pl > MD5_SIZE ? MD5_SIZE : pl);
/* Don't leave anything around in vm they could use. */
memset(final, 0, sizeof final);
/* Then something really weird... */
for (i = strlen(pw); i; i >>= 1)
if (i & 1)
px_md_update(ctx, final, 1);
else
px_md_update(ctx, (const uint8 *) pw, 1);
/* Now make the output string */
strcpy(passwd, magic);
strncat(passwd, sp, sl);
strcat(passwd, "$");
px_md_finish(ctx, final);
/*
* and now, just to make sure things don't run too fast On a 60 Mhz
* Pentium this takes 34 msec, so you would need 30 seconds to build a
* 1000 entry dictionary...
*/
for (i = 0; i < 1000; i++)
{
px_md_reset(ctx1);
if (i & 1)
px_md_update(ctx1, (const uint8 *) pw, strlen(pw));
else
px_md_update(ctx1, final, MD5_SIZE);
if (i % 3)
px_md_update(ctx1, (const uint8 *) sp, sl);
if (i % 7)
px_md_update(ctx1, (const uint8 *) pw, strlen(pw));
if (i & 1)
px_md_update(ctx1, final, MD5_SIZE);
else
px_md_update(ctx1, (const uint8 *) pw, strlen(pw));
px_md_finish(ctx1, final);
}
p = passwd + strlen(passwd);
l = (final[0] << 16) | (final[6] << 8) | final[12];
_crypt_to64(p, l, 4);
p += 4;
l = (final[1] << 16) | (final[7] << 8) | final[13];
_crypt_to64(p, l, 4);
p += 4;
l = (final[2] << 16) | (final[8] << 8) | final[14];
_crypt_to64(p, l, 4);
p += 4;
l = (final[3] << 16) | (final[9] << 8) | final[15];
_crypt_to64(p, l, 4);
p += 4;
l = (final[4] << 16) | (final[10] << 8) | final[5];
_crypt_to64(p, l, 4);
p += 4;
l = final[11];
_crypt_to64(p, l, 2);
p += 2;
*p = '\0';
/* Don't leave anything around in vm they could use. */
memset(final, 0, sizeof final);
px_md_free(ctx1);
px_md_free(ctx);
return passwd;
}
| int px_gen_salt | ( | const char * | salt_type, | |
| char * | dst, | |||
| int | rounds | |||
| ) |
Definition at line 133 of file px-crypt.c.
References generator::def_rounds, generator::gen, generator::input_len, generator::max_rounds, generator::min_rounds, generator::name, NULL, pg_strcasecmp(), px_get_pseudo_random_bytes(), and PX_MAX_SALT_LEN.
Referenced by pg_gen_salt(), and pg_gen_salt_rounds().
{
int res;
struct generator *g;
char *p;
char rbuf[16];
for (g = gen_list; g->name; g++)
if (pg_strcasecmp(g->name, salt_type) == 0)
break;
if (g->name == NULL)
return PXE_UNKNOWN_SALT_ALGO;
if (g->def_rounds)
{
if (rounds == 0)
rounds = g->def_rounds;
if (rounds < g->min_rounds || rounds > g->max_rounds)
return PXE_BAD_SALT_ROUNDS;
}
res = px_get_pseudo_random_bytes((uint8 *) rbuf, g->input_len);
if (res < 0)
return res;
p = g->gen(rounds, rbuf, g->input_len, buf, PX_MAX_SALT_LEN);
memset(rbuf, 0, sizeof(rbuf));
if (p == NULL)
return PXE_BAD_SALT_ROUNDS;
return strlen(p);
}
1.7.1