#include "postgres.h"
#include <float.h>
#include "access/gist.h"
#include "access/skey.h"
#include "segdata.h"
Go to the source code of this file.
bool gseg_consistent | ( | GISTENTRY * | entry, | |
SEG * | query, | |||
StrategyNumber | strategy, | |||
Oid | subtype, | |||
bool * | recheck | |||
) |
Definition at line 213 of file seg.c.
References DatumGetPointer, GIST_LEAF, gseg_internal_consistent(), gseg_leaf_consistent(), and GISTENTRY::key.
{ /* All cases served by this function are exact */ *recheck = false; /* * if entry is not leaf, use gseg_internal_consistent, else use * gseg_leaf_consistent */ if (GIST_LEAF(entry)) return (gseg_leaf_consistent((SEG *) DatumGetPointer(entry->key), query, strategy)); else return (gseg_internal_consistent((SEG *) DatumGetPointer(entry->key), query, strategy)); }
bool gseg_internal_consistent | ( | SEG * | key, | |
SEG * | query, | |||
StrategyNumber | strategy | |||
) |
Definition at line 476 of file seg.c.
References RTContainedByStrategyNumber, RTContainsStrategyNumber, RTLeftStrategyNumber, RTOldContainedByStrategyNumber, RTOldContainsStrategyNumber, RTOverlapStrategyNumber, RTOverLeftStrategyNumber, RTOverRightStrategyNumber, RTRightStrategyNumber, RTSameStrategyNumber, seg_contains(), seg_left(), seg_over_left(), seg_over_right(), seg_overlap(), and seg_right().
Referenced by gseg_consistent().
{ bool retval; #ifdef GIST_QUERY_DEBUG fprintf(stderr, "internal_consistent, %d\n", strategy); #endif switch (strategy) { case RTLeftStrategyNumber: retval = (bool) !seg_over_right(key, query); break; case RTOverLeftStrategyNumber: retval = (bool) !seg_right(key, query); break; case RTOverlapStrategyNumber: retval = (bool) seg_overlap(key, query); break; case RTOverRightStrategyNumber: retval = (bool) !seg_left(key, query); break; case RTRightStrategyNumber: retval = (bool) !seg_over_left(key, query); break; case RTSameStrategyNumber: case RTContainsStrategyNumber: case RTOldContainsStrategyNumber: retval = (bool) seg_contains(key, query); break; case RTContainedByStrategyNumber: case RTOldContainedByStrategyNumber: retval = (bool) seg_overlap(key, query); break; default: retval = FALSE; } return (retval); }
bool gseg_leaf_consistent | ( | SEG * | key, | |
SEG * | query, | |||
StrategyNumber | strategy | |||
) |
Definition at line 431 of file seg.c.
References RTContainedByStrategyNumber, RTContainsStrategyNumber, RTLeftStrategyNumber, RTOldContainedByStrategyNumber, RTOldContainsStrategyNumber, RTOverlapStrategyNumber, RTOverLeftStrategyNumber, RTOverRightStrategyNumber, RTRightStrategyNumber, RTSameStrategyNumber, seg_contained(), seg_contains(), seg_left(), seg_over_left(), seg_over_right(), seg_overlap(), seg_right(), and seg_same().
Referenced by gseg_consistent().
{ bool retval; #ifdef GIST_QUERY_DEBUG fprintf(stderr, "leaf_consistent, %d\n", strategy); #endif switch (strategy) { case RTLeftStrategyNumber: retval = (bool) seg_left(key, query); break; case RTOverLeftStrategyNumber: retval = (bool) seg_over_left(key, query); break; case RTOverlapStrategyNumber: retval = (bool) seg_overlap(key, query); break; case RTOverRightStrategyNumber: retval = (bool) seg_over_right(key, query); break; case RTRightStrategyNumber: retval = (bool) seg_right(key, query); break; case RTSameStrategyNumber: retval = (bool) seg_same(key, query); break; case RTContainsStrategyNumber: case RTOldContainsStrategyNumber: retval = (bool) seg_contains(key, query); break; case RTContainedByStrategyNumber: case RTOldContainedByStrategyNumber: retval = (bool) seg_contained(key, query); break; default: retval = FALSE; } return (retval); }
Definition at line 284 of file seg.c.
References DatumGetPointer, GISTENTRY::key, rt_seg_size(), and seg_union().
{ SEG *ud; float tmp1, tmp2; ud = seg_union((SEG *) DatumGetPointer(origentry->key), (SEG *) DatumGetPointer(newentry->key)); rt_seg_size(ud, &tmp1); rt_seg_size((SEG *) DatumGetPointer(origentry->key), &tmp2); *result = tmp1 - tmp2; #ifdef GIST_DEBUG fprintf(stderr, "penalty\n"); fprintf(stderr, "\t%g\n", *result); #endif return (result); }
GIST_SPLITVEC * gseg_picksplit | ( | GistEntryVector * | entryvec, | |
GIST_SPLITVEC * | v | |||
) |
Definition at line 329 of file seg.c.
References gseg_picksplit_item::center, gseg_picksplit_item::data, DatumGetPointer, gseg_picksplit_item_cmp(), i, gseg_picksplit_item::index, GISTENTRY::key, SEG::lower, GistEntryVector::n, palloc(), PointerGetDatum, qsort, seg_union(), GIST_SPLITVEC::spl_ldatum, GIST_SPLITVEC::spl_left, GIST_SPLITVEC::spl_nleft, GIST_SPLITVEC::spl_nright, GIST_SPLITVEC::spl_rdatum, GIST_SPLITVEC::spl_right, SEG::upper, and GistEntryVector::vector.
{ int i; SEG *datum_l, *datum_r, *seg; gseg_picksplit_item *sort_items; OffsetNumber *left, *right; OffsetNumber maxoff; OffsetNumber firstright; #ifdef GIST_DEBUG fprintf(stderr, "picksplit\n"); #endif /* Valid items in entryvec->vector[] are indexed 1..maxoff */ maxoff = entryvec->n - 1; /* * Prepare the auxiliary array and sort it. */ sort_items = (gseg_picksplit_item *) palloc(maxoff * sizeof(gseg_picksplit_item)); for (i = 1; i <= maxoff; i++) { seg = (SEG *) DatumGetPointer(entryvec->vector[i].key); /* center calculation is done this way to avoid possible overflow */ sort_items[i - 1].center = seg->lower * 0.5f + seg->upper * 0.5f; sort_items[i - 1].index = i; sort_items[i - 1].data = seg; } qsort(sort_items, maxoff, sizeof(gseg_picksplit_item), gseg_picksplit_item_cmp); /* sort items below "firstright" will go into the left side */ firstright = maxoff / 2; v->spl_left = (OffsetNumber *) palloc(maxoff * sizeof(OffsetNumber)); v->spl_right = (OffsetNumber *) palloc(maxoff * sizeof(OffsetNumber)); left = v->spl_left; v->spl_nleft = 0; right = v->spl_right; v->spl_nright = 0; /* * Emit segments to the left output page, and compute its bounding box. */ datum_l = (SEG *) palloc(sizeof(SEG)); memcpy(datum_l, sort_items[0].data, sizeof(SEG)); *left++ = sort_items[0].index; v->spl_nleft++; for (i = 1; i < firstright; i++) { datum_l = seg_union(datum_l, sort_items[i].data); *left++ = sort_items[i].index; v->spl_nleft++; } /* * Likewise for the right page. */ datum_r = (SEG *) palloc(sizeof(SEG)); memcpy(datum_r, sort_items[firstright].data, sizeof(SEG)); *right++ = sort_items[firstright].index; v->spl_nright++; for (i = firstright + 1; i < maxoff; i++) { datum_r = seg_union(datum_r, sort_items[i].data); *right++ = sort_items[i].index; v->spl_nright++; } v->spl_ldatum = PointerGetDatum(datum_l); v->spl_rdatum = PointerGetDatum(datum_r); return v; }
static int gseg_picksplit_item_cmp | ( | const void * | a, | |
const void * | b | |||
) | [static] |
Definition at line 308 of file seg.c.
References gseg_picksplit_item::center.
Referenced by gseg_picksplit().
{ const gseg_picksplit_item *i1 = (const gseg_picksplit_item *) a; const gseg_picksplit_item *i2 = (const gseg_picksplit_item *) b; if (i1->center < i2->center) return -1; else if (i1->center == i2->center) return 0; else return 1; }
Definition at line 413 of file seg.c.
References seg_same().
{ if (seg_same(b1, b2)) *result = TRUE; else *result = FALSE; #ifdef GIST_DEBUG fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE")); #endif return (result); }
SEG * gseg_union | ( | GistEntryVector * | entryvec, | |
int * | sizep | |||
) |
Definition at line 237 of file seg.c.
References DatumGetPointer, gseg_binary_union(), i, GISTENTRY::key, GistEntryVector::n, NULL, and GistEntryVector::vector.
{ int numranges, i; SEG *out = (SEG *) NULL; SEG *tmp; #ifdef GIST_DEBUG fprintf(stderr, "union\n"); #endif numranges = entryvec->n; tmp = (SEG *) DatumGetPointer(entryvec->vector[0].key); *sizep = sizeof(SEG); for (i = 1; i < numranges; i++) { out = gseg_binary_union(tmp, (SEG *) DatumGetPointer(entryvec->vector[i].key), sizep); tmp = out; } return (out); }
PG_FUNCTION_INFO_V1 | ( | seg_upper | ) |
PG_FUNCTION_INFO_V1 | ( | seg_in | ) |
PG_FUNCTION_INFO_V1 | ( | seg_lower | ) |
PG_FUNCTION_INFO_V1 | ( | seg_center | ) |
PG_FUNCTION_INFO_V1 | ( | seg_out | ) |
PG_FUNCTION_INFO_V1 | ( | seg_size | ) |
static int restore | ( | char * | s, | |
float | val, | |||
int | n | |||
) | [static] |
Definition at line 858 of file seg.c.
References Abs, buf, i, Min, NULL, pstrdup(), and sign.
Referenced by seg_out().
{ static char efmt[8] = {'%', '-', '1', '5', '.', '#', 'e', 0}; char buf[25] = { '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '\0' }; char *p; int exp; int i, dp, sign; /* * put a cap on the number of siugnificant digits to avoid nonsense in the * output */ n = Min(n, FLT_DIG); /* remember the sign */ sign = (val < 0 ? 1 : 0); efmt[5] = '0' + (n - 1) % 10; /* makes %-15.(n-1)e -- this format * guarantees that the exponent is * always present */ sprintf(result, efmt, val); /* trim the spaces left by the %e */ for (p = result; *p != ' '; p++); *p = '\0'; /* get the exponent */ strtok(pstrdup(result), "e"); exp = atoi(strtok(NULL, "e")); if (exp == 0) { /* use the supplied mantyssa with sign */ strcpy((char *) strchr(result, 'e'), ""); } else { if (Abs(exp) <= 4) { /* * remove the decimal point from the mantyssa and write the digits * to the buf array */ for (p = result + sign, i = 10, dp = 0; *p != 'e'; p++, i++) { buf[i] = *p; if (*p == '.') { dp = i--; /* skip the decimal point */ } } if (dp == 0) dp = i--; /* no decimal point was found in the above * for() loop */ if (exp > 0) { if (dp - 10 + exp >= n) { /* * the decimal point is behind the last significant digit; * the digits in between must be converted to the exponent * and the decimal point placed after the first digit */ exp = dp - 10 + exp - n; buf[10 + n] = '\0'; /* insert the decimal point */ if (n > 1) { dp = 11; for (i = 23; i > dp; i--) buf[i] = buf[i - 1]; buf[dp] = '.'; } /* * adjust the exponent by the number of digits after the * decimal point */ if (n > 1) sprintf(&buf[11 + n], "e%d", exp + n - 1); else sprintf(&buf[11], "e%d", exp + n - 1); if (sign) { buf[9] = '-'; strcpy(result, &buf[9]); } else strcpy(result, &buf[10]); } else { /* insert the decimal point */ dp += exp; for (i = 23; i > dp; i--) buf[i] = buf[i - 1]; buf[11 + n] = '\0'; buf[dp] = '.'; if (sign) { buf[9] = '-'; strcpy(result, &buf[9]); } else strcpy(result, &buf[10]); } } else { /* exp <= 0 */ dp += exp - 1; buf[10 + n] = '\0'; buf[dp] = '.'; if (sign) { buf[dp - 2] = '-'; strcpy(result, &buf[dp - 2]); } else strcpy(result, &buf[dp - 1]); } } /* do nothing for Abs(exp) > 4; %e must be OK */ /* just get rid of zeroes after [eE]- and +zeroes after [Ee]. */ /* ... this is not done yet. */ } return (strlen(result)); }
void rt_seg_size | ( | SEG * | a, | |
float * | sz | |||
) |
Definition at line 675 of file seg.c.
References Abs, SEG::lower, NULL, and SEG::upper.
Referenced by gseg_penalty().
Datum seg_center | ( | PG_FUNCTION_ARGS | ) |
Definition at line 178 of file seg.c.
References SEG::lower, PG_GETARG_POINTER, PG_RETURN_FLOAT4, and SEG::upper.
{ SEG *seg = (SEG *) PG_GETARG_POINTER(0); PG_RETURN_FLOAT4(((float) seg->lower + (float) seg->upper) / 2.0); }
Definition at line 698 of file seg.c.
References elog, ERROR, SEG::l_ext, SEG::l_sigd, SEG::lower, SEG::u_ext, SEG::u_sigd, and SEG::upper.
Referenced by seg_different(), seg_ge(), seg_gt(), seg_le(), seg_lt(), and seg_same().
{ /* * First compare on lower boundary position */ if (a->lower < b->lower) return -1; if (a->lower > b->lower) return 1; /* * a->lower == b->lower, so consider type of boundary. * * A '-' lower bound is < any other kind (this could only be relevant if * -HUGE_VAL is used as a regular data value). A '<' lower bound is < any * other kind except '-'. A '>' lower bound is > any other kind. */ if (a->l_ext != b->l_ext) { if (a->l_ext == '-') return -1; if (b->l_ext == '-') return 1; if (a->l_ext == '<') return -1; if (b->l_ext == '<') return 1; if (a->l_ext == '>') return 1; if (b->l_ext == '>') return -1; } /* * For other boundary types, consider # of significant digits first. */ if (a->l_sigd < b->l_sigd) /* (a) is blurred and is likely to include (b) */ return -1; if (a->l_sigd > b->l_sigd) /* (a) is less blurred and is likely to be * included in (b) */ return 1; /* * For same # of digits, an approximate boundary is more blurred than * exact. */ if (a->l_ext != b->l_ext) { if (a->l_ext == '~') /* (a) is approximate, while (b) is exact */ return -1; if (b->l_ext == '~') return 1; /* can't get here unless data is corrupt */ elog(ERROR, "bogus lower boundary types %d %d", (int) a->l_ext, (int) b->l_ext); } /* at this point, the lower boundaries are identical */ /* * First compare on upper boundary position */ if (a->upper < b->upper) return -1; if (a->upper > b->upper) return 1; /* * a->upper == b->upper, so consider type of boundary. * * A '-' upper bound is > any other kind (this could only be relevant if * HUGE_VAL is used as a regular data value). A '<' upper bound is < any * other kind. A '>' upper bound is > any other kind except '-'. */ if (a->u_ext != b->u_ext) { if (a->u_ext == '-') return 1; if (b->u_ext == '-') return -1; if (a->u_ext == '<') return -1; if (b->u_ext == '<') return 1; if (a->u_ext == '>') return 1; if (b->u_ext == '>') return -1; } /* * For other boundary types, consider # of significant digits first. Note * result here is converse of the lower-boundary case. */ if (a->u_sigd < b->u_sigd) /* (a) is blurred and is likely to include (b) */ return 1; if (a->u_sigd > b->u_sigd) /* (a) is less blurred and is likely to be * included in (b) */ return -1; /* * For same # of digits, an approximate boundary is more blurred than * exact. Again, result is converse of lower-boundary case. */ if (a->u_ext != b->u_ext) { if (a->u_ext == '~') /* (a) is approximate, while (b) is exact */ return 1; if (b->u_ext == '~') return -1; /* can't get here unless data is corrupt */ elog(ERROR, "bogus upper boundary types %d %d", (int) a->u_ext, (int) b->u_ext); } return 0; }
Definition at line 537 of file seg.c.
References seg_contains().
Referenced by gseg_leaf_consistent().
{ return (seg_contains(b, a)); }
Definition at line 531 of file seg.c.
References SEG::lower, and SEG::upper.
Referenced by gseg_internal_consistent(), gseg_leaf_consistent(), and seg_contained().
Definition at line 1011 of file seg.c.
References SEG::lower, and SEG::upper.
Definition at line 1017 of file seg.c.
References SEG::lower, and SEG::upper.
Definition at line 1005 of file seg.c.
References SEG::lower, and SEG::upper.
Datum seg_in | ( | PG_FUNCTION_ARGS | ) |
Definition at line 121 of file seg.c.
References palloc(), PG_GETARG_CSTRING, PG_RETURN_POINTER, seg_scanner_finish(), seg_scanner_init(), seg_yyerror(), and seg_yyparse().
{ char *str = PG_GETARG_CSTRING(0); SEG *result = palloc(sizeof(SEG)); seg_scanner_init(str); if (seg_yyparse(result) != 0) seg_yyerror("bogus input"); seg_scanner_finish(); PG_RETURN_POINTER(result); }
Definition at line 637 of file seg.c.
References SEG::l_ext, SEG::l_sigd, SEG::lower, palloc(), SEG::u_ext, SEG::u_sigd, and SEG::upper.
{ SEG *n; n = (SEG *) palloc(sizeof(*n)); /* take min of upper endpoints */ if (a->upper < b->upper) { n->upper = a->upper; n->u_sigd = a->u_sigd; n->u_ext = a->u_ext; } else { n->upper = b->upper; n->u_sigd = b->u_sigd; n->u_ext = b->u_ext; } /* take max of lower endpoints */ if (a->lower > b->lower) { n->lower = a->lower; n->l_sigd = a->l_sigd; n->l_ext = a->l_ext; } else { n->lower = b->lower; n->l_sigd = b->l_sigd; n->l_ext = b->l_ext; } return (n); }
Definition at line 575 of file seg.c.
References SEG::lower, and SEG::upper.
Referenced by gseg_internal_consistent(), and gseg_leaf_consistent().
Datum seg_lower | ( | PG_FUNCTION_ARGS | ) |
Definition at line 186 of file seg.c.
References SEG::lower, PG_GETARG_POINTER, and PG_RETURN_FLOAT4.
{ SEG *seg = (SEG *) PG_GETARG_POINTER(0); PG_RETURN_FLOAT4(seg->lower); }
Datum seg_out | ( | PG_FUNCTION_ARGS | ) |
Definition at line 137 of file seg.c.
References SEG::l_ext, SEG::l_sigd, SEG::lower, palloc(), PG_GETARG_POINTER, PG_RETURN_CSTRING, restore(), SEG::u_ext, SEG::u_sigd, and SEG::upper.
{ SEG *seg = (SEG *) PG_GETARG_POINTER(0); char *result; char *p; p = result = (char *) palloc(40); if (seg->l_ext == '>' || seg->l_ext == '<' || seg->l_ext == '~') p += sprintf(p, "%c", seg->l_ext); if (seg->lower == seg->upper && seg->l_ext == seg->u_ext) { /* * indicates that this interval was built by seg_in off a single point */ p += restore(p, seg->lower, seg->l_sigd); } else { if (seg->l_ext != '-') { /* print the lower boundary if exists */ p += restore(p, seg->lower, seg->l_sigd); p += sprintf(p, " "); } p += sprintf(p, ".."); if (seg->u_ext != '-') { /* print the upper boundary if exists */ p += sprintf(p, " "); if (seg->u_ext == '>' || seg->u_ext == '<' || seg->l_ext == '~') p += sprintf(p, "%c", seg->u_ext); p += restore(p, seg->upper, seg->u_sigd); } } PG_RETURN_CSTRING(result); }
Definition at line 567 of file seg.c.
References SEG::upper.
Referenced by gseg_internal_consistent(), and gseg_leaf_consistent().
Definition at line 591 of file seg.c.
References SEG::lower.
Referenced by gseg_internal_consistent(), and gseg_leaf_consistent().
Definition at line 555 of file seg.c.
References SEG::lower, and SEG::upper.
Referenced by gseg_internal_consistent(), and gseg_leaf_consistent().
Definition at line 583 of file seg.c.
References SEG::lower, and SEG::upper.
Referenced by gseg_internal_consistent(), and gseg_leaf_consistent().
Definition at line 547 of file seg.c.
References seg_cmp().
Referenced by gseg_leaf_consistent(), and gseg_same().
{ return seg_cmp(a, b) == 0; }
void seg_scanner_finish | ( | void | ) |
Referenced by seg_in().
void seg_scanner_init | ( | const char * | str | ) |
Referenced by seg_in().
Datum seg_size | ( | PG_FUNCTION_ARGS | ) |
Definition at line 686 of file seg.c.
References Abs, SEG::lower, PG_GETARG_POINTER, PG_RETURN_FLOAT4, and SEG::upper.
{ SEG *seg = (SEG *) PG_GETARG_POINTER(0); PG_RETURN_FLOAT4((float) Abs(seg->upper - seg->lower)); }
Definition at line 598 of file seg.c.
References SEG::l_ext, SEG::l_sigd, SEG::lower, palloc(), SEG::u_ext, SEG::u_sigd, and SEG::upper.
Referenced by gseg_binary_union(), gseg_penalty(), and gseg_picksplit().
{ SEG *n; n = (SEG *) palloc(sizeof(*n)); /* take max of upper endpoints */ if (a->upper > b->upper) { n->upper = a->upper; n->u_sigd = a->u_sigd; n->u_ext = a->u_ext; } else { n->upper = b->upper; n->u_sigd = b->u_sigd; n->u_ext = b->u_ext; } /* take min of lower endpoints */ if (a->lower < b->lower) { n->lower = a->lower; n->l_sigd = a->l_sigd; n->l_ext = a->l_ext; } else { n->lower = b->lower; n->l_sigd = b->l_sigd; n->l_ext = b->l_ext; } return (n); }
Datum seg_upper | ( | PG_FUNCTION_ARGS | ) |
Definition at line 194 of file seg.c.
References PG_GETARG_POINTER, PG_RETURN_FLOAT4, and SEG::upper.
{ SEG *seg = (SEG *) PG_GETARG_POINTER(0); PG_RETURN_FLOAT4(seg->upper); }
void seg_yyerror | ( | const char * | message | ) |
Referenced by seg_in().
int seg_yyparse | ( | ) |
Referenced by seg_in().
int significant_digits | ( | char * | s | ) |
Definition at line 1026 of file seg.c.
{ char *p = s; int n, c, zeroes; zeroes = 1; /* skip leading zeroes and sign */ for (c = *p; (c == '0' || c == '+' || c == '-') && c != 0; c = *(++p)); /* skip decimal point and following zeroes */ for (c = *p; (c == '0' || c == '.') && c != 0; c = *(++p)) { if (c != '.') zeroes++; } /* count significant digits (n) */ for (c = *p, n = 0; c != 0; c = *(++p)) { if (!((c >= '0' && c <= '9') || (c == '.'))) break; if (c != '.') n++; } if (!n) return (zeroes); return (n); }