#include "postgres.h"#include <sys/param.h>#include "sha2.h"

Go to the source code of this file.
Defines | |
| #define | SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) |
| #define | SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) |
| #define | SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) |
| #define | REVERSE32(w, x) |
| #define | REVERSE64(w, x) |
| #define | ADDINC128(w, n) |
| #define | R(b, x) ((x) >> (b)) |
| #define | S32(b, x) (((x) >> (b)) | ((x) << (32 - (b)))) |
| #define | S64(b, x) (((x) >> (b)) | ((x) << (64 - (b)))) |
| #define | Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z))) |
| #define | Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
| #define | Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) |
| #define | Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) |
| #define | sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) |
| #define | sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) |
| #define | Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) |
| #define | Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) |
| #define | sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) |
| #define | sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) |
Functions | |
| static void | SHA512_Last (SHA512_CTX *) |
| static void | SHA256_Transform (SHA256_CTX *, const uint8 *) |
| static void | SHA512_Transform (SHA512_CTX *, const uint8 *) |
| void | SHA256_Init (SHA256_CTX *context) |
| void | SHA256_Update (SHA256_CTX *context, const uint8 *data, size_t len) |
| static void | SHA256_Last (SHA256_CTX *context) |
| void | SHA256_Final (uint8 digest[], SHA256_CTX *context) |
| void | SHA512_Init (SHA512_CTX *context) |
| void | SHA512_Update (SHA512_CTX *context, const uint8 *data, size_t len) |
| void | SHA512_Final (uint8 digest[], SHA512_CTX *context) |
| void | SHA384_Init (SHA384_CTX *context) |
| void | SHA384_Update (SHA384_CTX *context, const uint8 *data, size_t len) |
| void | SHA384_Final (uint8 digest[], SHA384_CTX *context) |
| void | SHA224_Init (SHA224_CTX *context) |
| void | SHA224_Update (SHA224_CTX *context, const uint8 *data, size_t len) |
| void | SHA224_Final (uint8 digest[], SHA224_CTX *context) |
Variables | |
| static const uint32 | K256 [64] |
| static const uint32 | sha224_initial_hash_value [8] |
| static const uint32 | sha256_initial_hash_value [8] |
| static const uint64 | K512 [80] |
| static const uint64 | sha384_initial_hash_value [8] |
| static const uint64 | sha512_initial_hash_value [8] |
| #define ADDINC128 | ( | w, | ||
| n | ||||
| ) |
{ \
(w)[0] += (uint64)(n); \
if ((w)[0] < (n)) { \
(w)[1]++; \
} \
}
Definition at line 88 of file sha2.c.
Referenced by SHA512_Update().
| #define Ch | ( | x, | ||
| y, | ||||
| z | ||||
| ) | (((x) & (y)) ^ ((~(x)) & (z))) |
Definition at line 112 of file sha2.c.
Referenced by SHA256_Transform(), and SHA512_Transform().
| #define Maj | ( | x, | ||
| y, | ||||
| z | ||||
| ) | (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
Definition at line 113 of file sha2.c.
Referenced by SHA256_Transform(), and SHA512_Transform().
| #define R | ( | b, | ||
| x | ||||
| ) | ((x) >> (b)) |
Definition at line 105 of file sha2.c.
Referenced by des_cipher().
| #define REVERSE32 | ( | w, | ||
| x | ||||
| ) |
{ \
uint32 tmp = (w); \
tmp = (tmp >> 16) | (tmp << 16); \
(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
}
Definition at line 68 of file sha2.c.
Referenced by SHA224_Final(), and SHA256_Final().
| #define REVERSE64 | ( | w, | ||
| x | ||||
| ) |
{ \
uint64 tmp = (w); \
tmp = (tmp >> 32) | (tmp << 32); \
tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
((tmp & 0x00ff00ff00ff00ffULL) << 8); \
(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
((tmp & 0x0000ffff0000ffffULL) << 16); \
}
Definition at line 73 of file sha2.c.
Referenced by SHA256_Last(), SHA384_Final(), SHA512_Final(), and SHA512_Last().
| #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) |
Definition at line 61 of file sha2.c.
Referenced by SHA256_Last().
| #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) |
Definition at line 63 of file sha2.c.
Referenced by SHA512_Last().
| #define Sigma0_256 | ( | x | ) | (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) |
Definition at line 116 of file sha2.c.
Referenced by SHA256_Transform().
| #define sigma0_256 | ( | x | ) | (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) |
| #define Sigma0_512 | ( | x | ) | (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) |
Definition at line 122 of file sha2.c.
Referenced by SHA512_Transform().
| #define sigma0_512 | ( | x | ) | (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) |
| #define sigma1_256 | ( | x | ) | (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) |
| #define Sigma1_256 | ( | x | ) | (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) |
Definition at line 117 of file sha2.c.
Referenced by SHA256_Transform().
| #define Sigma1_512 | ( | x | ) | (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) |
Definition at line 123 of file sha2.c.
Referenced by SHA512_Transform().
| #define sigma1_512 | ( | x | ) | (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) |
| void SHA224_Final | ( | uint8 | digest[], | |
| SHA224_CTX * | context | |||
| ) |
Definition at line 968 of file sha2.c.
References NULL, REVERSE32, SHA224_DIGEST_LENGTH, SHA256_Last(), and _SHA256_CTX::state.
Referenced by int_sha224_finish().
{
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != NULL)
{
SHA256_Last(context);
#ifndef WORDS_BIGENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 8; j++)
{
REVERSE32(context->state[j], context->state[j]);
}
}
#endif
memcpy(digest, context->state, SHA224_DIGEST_LENGTH);
}
/* Clean up state data: */
memset(context, 0, sizeof(*context));
}
| void SHA224_Init | ( | SHA224_CTX * | context | ) |
Definition at line 952 of file sha2.c.
References _SHA256_CTX::bitcount, _SHA256_CTX::buffer, NULL, sha224_initial_hash_value, SHA256_BLOCK_LENGTH, SHA256_DIGEST_LENGTH, and _SHA256_CTX::state.
Referenced by int_sha224_reset().
{
if (context == NULL)
return;
memcpy(context->state, sha224_initial_hash_value, SHA256_DIGEST_LENGTH);
memset(context->buffer, 0, SHA256_BLOCK_LENGTH);
context->bitcount = 0;
}
| void SHA224_Update | ( | SHA224_CTX * | context, | |
| const uint8 * | data, | |||
| size_t | len | |||
| ) |
Definition at line 962 of file sha2.c.
References SHA256_Update.
Referenced by int_sha224_update().
{
SHA256_Update((SHA256_CTX *) context, data, len);
}
| void SHA256_Final | ( | uint8 | digest[], | |
| SHA256_CTX * | context | |||
| ) |
Definition at line 551 of file sha2.c.
References NULL, REVERSE32, SHA256_DIGEST_LENGTH, SHA256_Last(), and _SHA256_CTX::state.
{
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != NULL)
{
SHA256_Last(context);
#ifndef WORDS_BIGENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 8; j++)
{
REVERSE32(context->state[j], context->state[j]);
}
}
#endif
memcpy(digest, context->state, SHA256_DIGEST_LENGTH);
}
/* Clean up state data: */
memset(context, 0, sizeof(*context));
}
| void SHA256_Init | ( | SHA256_CTX * | context | ) |
Definition at line 253 of file sha2.c.
References _SHA256_CTX::bitcount, _SHA256_CTX::buffer, NULL, SHA256_BLOCK_LENGTH, SHA256_DIGEST_LENGTH, sha256_initial_hash_value, and _SHA256_CTX::state.
{
if (context == NULL)
return;
memcpy(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
memset(context->buffer, 0, SHA256_BLOCK_LENGTH);
context->bitcount = 0;
}
| static void SHA256_Last | ( | SHA256_CTX * | context | ) | [static] |
Definition at line 503 of file sha2.c.
References _SHA256_CTX::bitcount, _SHA256_CTX::buffer, REVERSE64, SHA256_BLOCK_LENGTH, SHA256_SHORT_BLOCK_LENGTH, and SHA256_Transform().
Referenced by SHA224_Final(), and SHA256_Final().
{
unsigned int usedspace;
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
#ifndef WORDS_BIGENDIAN
/* Convert FROM host byte order */
REVERSE64(context->bitcount, context->bitcount);
#endif
if (usedspace > 0)
{
/* Begin padding with a 1 bit: */
context->buffer[usedspace++] = 0x80;
if (usedspace <= SHA256_SHORT_BLOCK_LENGTH)
{
/* Set-up for the last transform: */
memset(&context->buffer[usedspace], 0, SHA256_SHORT_BLOCK_LENGTH - usedspace);
}
else
{
if (usedspace < SHA256_BLOCK_LENGTH)
{
memset(&context->buffer[usedspace], 0, SHA256_BLOCK_LENGTH - usedspace);
}
/* Do second-to-last transform: */
SHA256_Transform(context, context->buffer);
/* And set-up for the last transform: */
memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
}
}
else
{
/* Set-up for the last transform: */
memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
/* Begin padding with a 1 bit: */
*context->buffer = 0x80;
}
/* Set the bit count: */
*(uint64 *) &context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
/* Final transform: */
SHA256_Transform(context, context->buffer);
}
| static void SHA256_Transform | ( | SHA256_CTX * | context, | |
| const uint8 * | data | |||
| ) | [static] |
Definition at line 360 of file sha2.c.
References _SHA256_CTX::buffer, Ch, K256, Maj, Sigma0_256, Sigma1_256, and _SHA256_CTX::state.
Referenced by SHA256_Last(), and SHA256_Update().
{
uint32 a,
b,
c,
d,
e,
f,
g,
h,
s0,
s1;
uint32 T1,
T2,
*W256;
int j;
W256 = (uint32 *) context->buffer;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do
{
W256[j] = (uint32) data[3] | ((uint32) data[2] << 8) |
((uint32) data[1] << 16) | ((uint32) data[0] << 24);
data += 4;
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do
{
/* Part of the message block expansion: */
s0 = W256[(j + 1) & 0x0f];
s0 = sigma0_256(s0);
s1 = W256[(j + 14) & 0x0f];
s1 = sigma1_256(s1);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
(W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0);
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 64);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
| void SHA256_Update | ( | SHA256_CTX * | context, | |
| const uint8 * | data, | |||
| size_t | len | |||
| ) |
Definition at line 450 of file sha2.c.
References _SHA256_CTX::bitcount, _SHA256_CTX::buffer, SHA256_BLOCK_LENGTH, and SHA256_Transform().
{
size_t freespace,
usedspace;
/* Calling with no data is valid (we do nothing) */
if (len == 0)
return;
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
if (usedspace > 0)
{
/* Calculate how much free space is available in the buffer */
freespace = SHA256_BLOCK_LENGTH - usedspace;
if (len >= freespace)
{
/* Fill the buffer completely and process it */
memcpy(&context->buffer[usedspace], data, freespace);
context->bitcount += freespace << 3;
len -= freespace;
data += freespace;
SHA256_Transform(context, context->buffer);
}
else
{
/* The buffer is not yet full */
memcpy(&context->buffer[usedspace], data, len);
context->bitcount += len << 3;
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= SHA256_BLOCK_LENGTH)
{
/* Process as many complete blocks as we can */
SHA256_Transform(context, data);
context->bitcount += SHA256_BLOCK_LENGTH << 3;
len -= SHA256_BLOCK_LENGTH;
data += SHA256_BLOCK_LENGTH;
}
if (len > 0)
{
/* There's left-overs, so save 'em */
memcpy(context->buffer, data, len);
context->bitcount += len << 3;
}
/* Clean up: */
usedspace = freespace = 0;
}
| void SHA384_Final | ( | uint8 | digest[], | |
| SHA384_CTX * | context | |||
| ) |
Definition at line 924 of file sha2.c.
References NULL, REVERSE64, SHA384_DIGEST_LENGTH, SHA512_Last(), and _SHA512_CTX::state.
{
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != NULL)
{
SHA512_Last((SHA512_CTX *) context);
/* Save the hash data for output: */
#ifndef WORDS_BIGENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 6; j++)
{
REVERSE64(context->state[j], context->state[j]);
}
}
#endif
memcpy(digest, context->state, SHA384_DIGEST_LENGTH);
}
/* Zero out state data */
memset(context, 0, sizeof(*context));
}
| void SHA384_Init | ( | SHA384_CTX * | context | ) |
Definition at line 908 of file sha2.c.
References _SHA512_CTX::bitcount, _SHA512_CTX::buffer, NULL, SHA384_BLOCK_LENGTH, sha384_initial_hash_value, SHA512_DIGEST_LENGTH, and _SHA512_CTX::state.
{
if (context == NULL)
return;
memcpy(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
memset(context->buffer, 0, SHA384_BLOCK_LENGTH);
context->bitcount[0] = context->bitcount[1] = 0;
}
| void SHA384_Update | ( | SHA384_CTX * | context, | |
| const uint8 * | data, | |||
| size_t | len | |||
| ) |
Definition at line 918 of file sha2.c.
References SHA512_Update.
{
SHA512_Update((SHA512_CTX *) context, data, len);
}
| void SHA512_Final | ( | uint8 | digest[], | |
| SHA512_CTX * | context | |||
| ) |
Definition at line 879 of file sha2.c.
References NULL, REVERSE64, SHA512_DIGEST_LENGTH, SHA512_Last(), and _SHA512_CTX::state.
{
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != NULL)
{
SHA512_Last(context);
/* Save the hash data for output: */
#ifndef WORDS_BIGENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 8; j++)
{
REVERSE64(context->state[j], context->state[j]);
}
}
#endif
memcpy(digest, context->state, SHA512_DIGEST_LENGTH);
}
/* Zero out state data */
memset(context, 0, sizeof(*context));
}
| void SHA512_Init | ( | SHA512_CTX * | context | ) |
Definition at line 579 of file sha2.c.
References _SHA512_CTX::bitcount, _SHA512_CTX::buffer, NULL, SHA512_BLOCK_LENGTH, SHA512_DIGEST_LENGTH, sha512_initial_hash_value, and _SHA512_CTX::state.
{
if (context == NULL)
return;
memcpy(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
memset(context->buffer, 0, SHA512_BLOCK_LENGTH);
context->bitcount[0] = context->bitcount[1] = 0;
}
| static void SHA512_Last | ( | SHA512_CTX * | context | ) | [static] |
Definition at line 829 of file sha2.c.
References _SHA512_CTX::bitcount, _SHA512_CTX::buffer, REVERSE64, SHA512_BLOCK_LENGTH, SHA512_SHORT_BLOCK_LENGTH, and SHA512_Transform().
Referenced by SHA384_Final(), and SHA512_Final().
{
unsigned int usedspace;
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
#ifndef WORDS_BIGENDIAN
/* Convert FROM host byte order */
REVERSE64(context->bitcount[0], context->bitcount[0]);
REVERSE64(context->bitcount[1], context->bitcount[1]);
#endif
if (usedspace > 0)
{
/* Begin padding with a 1 bit: */
context->buffer[usedspace++] = 0x80;
if (usedspace <= SHA512_SHORT_BLOCK_LENGTH)
{
/* Set-up for the last transform: */
memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
}
else
{
if (usedspace < SHA512_BLOCK_LENGTH)
{
memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
}
/* Do second-to-last transform: */
SHA512_Transform(context, context->buffer);
/* And set-up for the last transform: */
memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
}
}
else
{
/* Prepare for final transform: */
memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
/* Begin padding with a 1 bit: */
*context->buffer = 0x80;
}
/* Store the length of input data (in bits): */
*(uint64 *) &context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
*(uint64 *) &context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8] = context->bitcount[0];
/* Final transform: */
SHA512_Transform(context, context->buffer);
}
| static void SHA512_Transform | ( | SHA512_CTX * | context, | |
| const uint8 * | data | |||
| ) | [static] |
Definition at line 686 of file sha2.c.
References _SHA512_CTX::buffer, Ch, K512, Maj, Sigma0_512, Sigma1_512, and _SHA512_CTX::state.
Referenced by SHA512_Last(), and SHA512_Update().
{
uint64 a,
b,
c,
d,
e,
f,
g,
h,
s0,
s1;
uint64 T1,
T2,
*W512 = (uint64 *) context->buffer;
int j;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do
{
W512[j] = (uint64) data[7] | ((uint64) data[6] << 8) |
((uint64) data[5] << 16) | ((uint64) data[4] << 24) |
((uint64) data[3] << 32) | ((uint64) data[2] << 40) |
((uint64) data[1] << 48) | ((uint64) data[0] << 56);
data += 8;
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do
{
/* Part of the message block expansion: */
s0 = W512[(j + 1) & 0x0f];
s0 = sigma0_512(s0);
s1 = W512[(j + 14) & 0x0f];
s1 = sigma1_512(s1);
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
(W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0);
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 80);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
| void SHA512_Update | ( | SHA512_CTX * | context, | |
| const uint8 * | data, | |||
| size_t | len | |||
| ) |
Definition at line 776 of file sha2.c.
References ADDINC128, _SHA512_CTX::bitcount, _SHA512_CTX::buffer, SHA512_BLOCK_LENGTH, and SHA512_Transform().
{
size_t freespace,
usedspace;
/* Calling with no data is valid (we do nothing) */
if (len == 0)
return;
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
if (usedspace > 0)
{
/* Calculate how much free space is available in the buffer */
freespace = SHA512_BLOCK_LENGTH - usedspace;
if (len >= freespace)
{
/* Fill the buffer completely and process it */
memcpy(&context->buffer[usedspace], data, freespace);
ADDINC128(context->bitcount, freespace << 3);
len -= freespace;
data += freespace;
SHA512_Transform(context, context->buffer);
}
else
{
/* The buffer is not yet full */
memcpy(&context->buffer[usedspace], data, len);
ADDINC128(context->bitcount, len << 3);
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= SHA512_BLOCK_LENGTH)
{
/* Process as many complete blocks as we can */
SHA512_Transform(context, data);
ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
len -= SHA512_BLOCK_LENGTH;
data += SHA512_BLOCK_LENGTH;
}
if (len > 0)
{
/* There's left-overs, so save 'em */
memcpy(context->buffer, data, len);
ADDINC128(context->bitcount, len << 3);
}
/* Clean up: */
usedspace = freespace = 0;
}
{
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
}
Definition at line 139 of file sha2.c.
Referenced by SHA256_Transform().
const uint64 K512[80] [static] |
Definition at line 183 of file sha2.c.
Referenced by SHA512_Transform().
const uint32 sha224_initial_hash_value[8] [static] |
{
0xc1059ed8UL,
0x367cd507UL,
0x3070dd17UL,
0xf70e5939UL,
0xffc00b31UL,
0x68581511UL,
0x64f98fa7UL,
0xbefa4fa4UL
}
Definition at line 159 of file sha2.c.
Referenced by SHA224_Init().
const uint32 sha256_initial_hash_value[8] [static] |
{
0x6a09e667UL,
0xbb67ae85UL,
0x3c6ef372UL,
0xa54ff53aUL,
0x510e527fUL,
0x9b05688cUL,
0x1f83d9abUL,
0x5be0cd19UL
}
Definition at line 171 of file sha2.c.
Referenced by SHA256_Init().
const uint64 sha384_initial_hash_value[8] [static] |
{
0xcbbb9d5dc1059ed8ULL,
0x629a292a367cd507ULL,
0x9159015a3070dd17ULL,
0x152fecd8f70e5939ULL,
0x67332667ffc00b31ULL,
0x8eb44a8768581511ULL,
0xdb0c2e0d64f98fa7ULL,
0x47b5481dbefa4fa4ULL
}
Definition at line 227 of file sha2.c.
Referenced by SHA384_Init().
const uint64 sha512_initial_hash_value[8] [static] |
{
0x6a09e667f3bcc908ULL,
0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL,
0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL,
0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL,
0x5be0cd19137e2179ULL
}
Definition at line 239 of file sha2.c.
Referenced by SHA512_Init().
1.7.1