Header And Logo

PostgreSQL
| The world's most advanced open source database.

Defines | Functions | Variables

sha2.c File Reference

#include "postgres.h"
#include <sys/param.h>
#include "sha2.h"
Include dependency graph for sha2.c:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Defines

#define SHA256_SHORT_BLOCK_LENGTH   (SHA256_BLOCK_LENGTH - 8)
#define SHA384_SHORT_BLOCK_LENGTH   (SHA384_BLOCK_LENGTH - 16)
#define SHA512_SHORT_BLOCK_LENGTH   (SHA512_BLOCK_LENGTH - 16)
#define REVERSE32(w, x)
#define REVERSE64(w, x)
#define ADDINC128(w, n)
#define R(b, x)   ((x) >> (b))
#define S32(b, x)   (((x) >> (b)) | ((x) << (32 - (b))))
#define S64(b, x)   (((x) >> (b)) | ((x) << (64 - (b))))
#define Ch(x, y, z)   (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x, y, z)   (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define Sigma0_256(x)   (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
#define Sigma1_256(x)   (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
#define sigma0_256(x)   (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
#define sigma1_256(x)   (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
#define Sigma0_512(x)   (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
#define Sigma1_512(x)   (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
#define sigma0_512(x)   (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
#define sigma1_512(x)   (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))

Functions

static void SHA512_Last (SHA512_CTX *)
static void SHA256_Transform (SHA256_CTX *, const uint8 *)
static void SHA512_Transform (SHA512_CTX *, const uint8 *)
void SHA256_Init (SHA256_CTX *context)
void SHA256_Update (SHA256_CTX *context, const uint8 *data, size_t len)
static void SHA256_Last (SHA256_CTX *context)
void SHA256_Final (uint8 digest[], SHA256_CTX *context)
void SHA512_Init (SHA512_CTX *context)
void SHA512_Update (SHA512_CTX *context, const uint8 *data, size_t len)
void SHA512_Final (uint8 digest[], SHA512_CTX *context)
void SHA384_Init (SHA384_CTX *context)
void SHA384_Update (SHA384_CTX *context, const uint8 *data, size_t len)
void SHA384_Final (uint8 digest[], SHA384_CTX *context)
void SHA224_Init (SHA224_CTX *context)
void SHA224_Update (SHA224_CTX *context, const uint8 *data, size_t len)
void SHA224_Final (uint8 digest[], SHA224_CTX *context)

Variables

static const uint32 K256 [64]
static const uint32 sha224_initial_hash_value [8]
static const uint32 sha256_initial_hash_value [8]
static const uint64 K512 [80]
static const uint64 sha384_initial_hash_value [8]
static const uint64 sha512_initial_hash_value [8]

Define Documentation

#define ADDINC128 (   w,
  n 
)
Value:
{ \
    (w)[0] += (uint64)(n); \
    if ((w)[0] < (n)) { \
        (w)[1]++; \
    } \
}

Definition at line 88 of file sha2.c.

Referenced by SHA512_Update().

#define Ch (   x,
  y,
  z 
)    (((x) & (y)) ^ ((~(x)) & (z)))

Definition at line 112 of file sha2.c.

Referenced by SHA256_Transform(), and SHA512_Transform().

#define Maj (   x,
  y,
  z 
)    (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

Definition at line 113 of file sha2.c.

Referenced by SHA256_Transform(), and SHA512_Transform().

#define R (   b,
  x 
)    ((x) >> (b))

Definition at line 105 of file sha2.c.

Referenced by des_cipher().

#define REVERSE32 (   w,
  x 
)
Value:
{ \
    uint32 tmp = (w); \
    tmp = (tmp >> 16) | (tmp << 16); \
    (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
}

Definition at line 68 of file sha2.c.

Referenced by SHA224_Final(), and SHA256_Final().

#define REVERSE64 (   w,
  x 
)
Value:
{ \
    uint64 tmp = (w); \
    tmp = (tmp >> 32) | (tmp << 32); \
    tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
          ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
    (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
          ((tmp & 0x0000ffff0000ffffULL) << 16); \
}

Definition at line 73 of file sha2.c.

Referenced by SHA256_Last(), SHA384_Final(), SHA512_Final(), and SHA512_Last().

#define S32 (   b,
  x 
)    (((x) >> (b)) | ((x) << (32 - (b))))

Definition at line 107 of file sha2.c.

#define S64 (   b,
  x 
)    (((x) >> (b)) | ((x) << (64 - (b))))

Definition at line 109 of file sha2.c.

#define SHA256_SHORT_BLOCK_LENGTH   (SHA256_BLOCK_LENGTH - 8)

Definition at line 61 of file sha2.c.

Referenced by SHA256_Last().

#define SHA384_SHORT_BLOCK_LENGTH   (SHA384_BLOCK_LENGTH - 16)

Definition at line 62 of file sha2.c.

#define SHA512_SHORT_BLOCK_LENGTH   (SHA512_BLOCK_LENGTH - 16)

Definition at line 63 of file sha2.c.

Referenced by SHA512_Last().

#define Sigma0_256 (   x  )     (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))

Definition at line 116 of file sha2.c.

Referenced by SHA256_Transform().

#define sigma0_256 (   x  )     (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))

Definition at line 118 of file sha2.c.

#define Sigma0_512 (   x  )     (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))

Definition at line 122 of file sha2.c.

Referenced by SHA512_Transform().

#define sigma0_512 (   x  )     (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))

Definition at line 124 of file sha2.c.

#define sigma1_256 (   x  )     (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))

Definition at line 119 of file sha2.c.

#define Sigma1_256 (   x  )     (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))

Definition at line 117 of file sha2.c.

Referenced by SHA256_Transform().

#define Sigma1_512 (   x  )     (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))

Definition at line 123 of file sha2.c.

Referenced by SHA512_Transform().

#define sigma1_512 (   x  )     (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))

Definition at line 125 of file sha2.c.


Function Documentation

void SHA224_Final ( uint8  digest[],
SHA224_CTX context 
)

Definition at line 968 of file sha2.c.

References NULL, REVERSE32, SHA224_DIGEST_LENGTH, SHA256_Last(), and _SHA256_CTX::state.

Referenced by int_sha224_finish().

{
    /* If no digest buffer is passed, we don't bother doing this: */
    if (digest != NULL)
    {
        SHA256_Last(context);

#ifndef WORDS_BIGENDIAN
        {
            /* Convert TO host byte order */
            int         j;

            for (j = 0; j < 8; j++)
            {
                REVERSE32(context->state[j], context->state[j]);
            }
        }
#endif
        memcpy(digest, context->state, SHA224_DIGEST_LENGTH);
    }

    /* Clean up state data: */
    memset(context, 0, sizeof(*context));
}

void SHA224_Init ( SHA224_CTX context  ) 

Definition at line 952 of file sha2.c.

References _SHA256_CTX::bitcount, _SHA256_CTX::buffer, NULL, sha224_initial_hash_value, SHA256_BLOCK_LENGTH, SHA256_DIGEST_LENGTH, and _SHA256_CTX::state.

Referenced by int_sha224_reset().

{
    if (context == NULL)
        return;
    memcpy(context->state, sha224_initial_hash_value, SHA256_DIGEST_LENGTH);
    memset(context->buffer, 0, SHA256_BLOCK_LENGTH);
    context->bitcount = 0;
}

void SHA224_Update ( SHA224_CTX context,
const uint8 data,
size_t  len 
)

Definition at line 962 of file sha2.c.

References SHA256_Update.

Referenced by int_sha224_update().

{
    SHA256_Update((SHA256_CTX *) context, data, len);
}

void SHA256_Final ( uint8  digest[],
SHA256_CTX context 
)

Definition at line 551 of file sha2.c.

References NULL, REVERSE32, SHA256_DIGEST_LENGTH, SHA256_Last(), and _SHA256_CTX::state.

{
    /* If no digest buffer is passed, we don't bother doing this: */
    if (digest != NULL)
    {
        SHA256_Last(context);

#ifndef WORDS_BIGENDIAN
        {
            /* Convert TO host byte order */
            int         j;

            for (j = 0; j < 8; j++)
            {
                REVERSE32(context->state[j], context->state[j]);
            }
        }
#endif
        memcpy(digest, context->state, SHA256_DIGEST_LENGTH);
    }

    /* Clean up state data: */
    memset(context, 0, sizeof(*context));
}

void SHA256_Init ( SHA256_CTX context  ) 

Definition at line 253 of file sha2.c.

References _SHA256_CTX::bitcount, _SHA256_CTX::buffer, NULL, SHA256_BLOCK_LENGTH, SHA256_DIGEST_LENGTH, sha256_initial_hash_value, and _SHA256_CTX::state.

{
    if (context == NULL)
        return;
    memcpy(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
    memset(context->buffer, 0, SHA256_BLOCK_LENGTH);
    context->bitcount = 0;
}

static void SHA256_Last ( SHA256_CTX context  )  [static]

Definition at line 503 of file sha2.c.

References _SHA256_CTX::bitcount, _SHA256_CTX::buffer, REVERSE64, SHA256_BLOCK_LENGTH, SHA256_SHORT_BLOCK_LENGTH, and SHA256_Transform().

Referenced by SHA224_Final(), and SHA256_Final().

{
    unsigned int usedspace;

    usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
#ifndef WORDS_BIGENDIAN
    /* Convert FROM host byte order */
    REVERSE64(context->bitcount, context->bitcount);
#endif
    if (usedspace > 0)
    {
        /* Begin padding with a 1 bit: */
        context->buffer[usedspace++] = 0x80;

        if (usedspace <= SHA256_SHORT_BLOCK_LENGTH)
        {
            /* Set-up for the last transform: */
            memset(&context->buffer[usedspace], 0, SHA256_SHORT_BLOCK_LENGTH - usedspace);
        }
        else
        {
            if (usedspace < SHA256_BLOCK_LENGTH)
            {
                memset(&context->buffer[usedspace], 0, SHA256_BLOCK_LENGTH - usedspace);
            }
            /* Do second-to-last transform: */
            SHA256_Transform(context, context->buffer);

            /* And set-up for the last transform: */
            memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
        }
    }
    else
    {
        /* Set-up for the last transform: */
        memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);

        /* Begin padding with a 1 bit: */
        *context->buffer = 0x80;
    }
    /* Set the bit count: */
    *(uint64 *) &context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;

    /* Final transform: */
    SHA256_Transform(context, context->buffer);
}

static void SHA256_Transform ( SHA256_CTX context,
const uint8 data 
) [static]

Definition at line 360 of file sha2.c.

References _SHA256_CTX::buffer, Ch, K256, Maj, Sigma0_256, Sigma1_256, and _SHA256_CTX::state.

Referenced by SHA256_Last(), and SHA256_Update().

{
    uint32      a,
                b,
                c,
                d,
                e,
                f,
                g,
                h,
                s0,
                s1;
    uint32      T1,
                T2,
               *W256;
    int         j;

    W256 = (uint32 *) context->buffer;

    /* Initialize registers with the prev. intermediate value */
    a = context->state[0];
    b = context->state[1];
    c = context->state[2];
    d = context->state[3];
    e = context->state[4];
    f = context->state[5];
    g = context->state[6];
    h = context->state[7];

    j = 0;
    do
    {
        W256[j] = (uint32) data[3] | ((uint32) data[2] << 8) |
            ((uint32) data[1] << 16) | ((uint32) data[0] << 24);
        data += 4;
        /* Apply the SHA-256 compression function to update a..h */
        T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
        T2 = Sigma0_256(a) + Maj(a, b, c);
        h = g;
        g = f;
        f = e;
        e = d + T1;
        d = c;
        c = b;
        b = a;
        a = T1 + T2;

        j++;
    } while (j < 16);

    do
    {
        /* Part of the message block expansion: */
        s0 = W256[(j + 1) & 0x0f];
        s0 = sigma0_256(s0);
        s1 = W256[(j + 14) & 0x0f];
        s1 = sigma1_256(s1);

        /* Apply the SHA-256 compression function to update a..h */
        T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
            (W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0);
        T2 = Sigma0_256(a) + Maj(a, b, c);
        h = g;
        g = f;
        f = e;
        e = d + T1;
        d = c;
        c = b;
        b = a;
        a = T1 + T2;

        j++;
    } while (j < 64);

    /* Compute the current intermediate hash value */
    context->state[0] += a;
    context->state[1] += b;
    context->state[2] += c;
    context->state[3] += d;
    context->state[4] += e;
    context->state[5] += f;
    context->state[6] += g;
    context->state[7] += h;

    /* Clean up */
    a = b = c = d = e = f = g = h = T1 = T2 = 0;
}

void SHA256_Update ( SHA256_CTX context,
const uint8 data,
size_t  len 
)

Definition at line 450 of file sha2.c.

References _SHA256_CTX::bitcount, _SHA256_CTX::buffer, SHA256_BLOCK_LENGTH, and SHA256_Transform().

{
    size_t      freespace,
                usedspace;

    /* Calling with no data is valid (we do nothing) */
    if (len == 0)
        return;

    usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
    if (usedspace > 0)
    {
        /* Calculate how much free space is available in the buffer */
        freespace = SHA256_BLOCK_LENGTH - usedspace;

        if (len >= freespace)
        {
            /* Fill the buffer completely and process it */
            memcpy(&context->buffer[usedspace], data, freespace);
            context->bitcount += freespace << 3;
            len -= freespace;
            data += freespace;
            SHA256_Transform(context, context->buffer);
        }
        else
        {
            /* The buffer is not yet full */
            memcpy(&context->buffer[usedspace], data, len);
            context->bitcount += len << 3;
            /* Clean up: */
            usedspace = freespace = 0;
            return;
        }
    }
    while (len >= SHA256_BLOCK_LENGTH)
    {
        /* Process as many complete blocks as we can */
        SHA256_Transform(context, data);
        context->bitcount += SHA256_BLOCK_LENGTH << 3;
        len -= SHA256_BLOCK_LENGTH;
        data += SHA256_BLOCK_LENGTH;
    }
    if (len > 0)
    {
        /* There's left-overs, so save 'em */
        memcpy(context->buffer, data, len);
        context->bitcount += len << 3;
    }
    /* Clean up: */
    usedspace = freespace = 0;
}

void SHA384_Final ( uint8  digest[],
SHA384_CTX context 
)

Definition at line 924 of file sha2.c.

References NULL, REVERSE64, SHA384_DIGEST_LENGTH, SHA512_Last(), and _SHA512_CTX::state.

{
    /* If no digest buffer is passed, we don't bother doing this: */
    if (digest != NULL)
    {
        SHA512_Last((SHA512_CTX *) context);

        /* Save the hash data for output: */
#ifndef WORDS_BIGENDIAN
        {
            /* Convert TO host byte order */
            int         j;

            for (j = 0; j < 6; j++)
            {
                REVERSE64(context->state[j], context->state[j]);
            }
        }
#endif
        memcpy(digest, context->state, SHA384_DIGEST_LENGTH);
    }

    /* Zero out state data */
    memset(context, 0, sizeof(*context));
}

void SHA384_Init ( SHA384_CTX context  ) 

Definition at line 908 of file sha2.c.

References _SHA512_CTX::bitcount, _SHA512_CTX::buffer, NULL, SHA384_BLOCK_LENGTH, sha384_initial_hash_value, SHA512_DIGEST_LENGTH, and _SHA512_CTX::state.

{
    if (context == NULL)
        return;
    memcpy(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
    memset(context->buffer, 0, SHA384_BLOCK_LENGTH);
    context->bitcount[0] = context->bitcount[1] = 0;
}

void SHA384_Update ( SHA384_CTX context,
const uint8 data,
size_t  len 
)

Definition at line 918 of file sha2.c.

References SHA512_Update.

{
    SHA512_Update((SHA512_CTX *) context, data, len);
}

void SHA512_Final ( uint8  digest[],
SHA512_CTX context 
)

Definition at line 879 of file sha2.c.

References NULL, REVERSE64, SHA512_DIGEST_LENGTH, SHA512_Last(), and _SHA512_CTX::state.

{
    /* If no digest buffer is passed, we don't bother doing this: */
    if (digest != NULL)
    {
        SHA512_Last(context);

        /* Save the hash data for output: */
#ifndef WORDS_BIGENDIAN
        {
            /* Convert TO host byte order */
            int         j;

            for (j = 0; j < 8; j++)
            {
                REVERSE64(context->state[j], context->state[j]);
            }
        }
#endif
        memcpy(digest, context->state, SHA512_DIGEST_LENGTH);
    }

    /* Zero out state data */
    memset(context, 0, sizeof(*context));
}

void SHA512_Init ( SHA512_CTX context  ) 

Definition at line 579 of file sha2.c.

References _SHA512_CTX::bitcount, _SHA512_CTX::buffer, NULL, SHA512_BLOCK_LENGTH, SHA512_DIGEST_LENGTH, sha512_initial_hash_value, and _SHA512_CTX::state.

{
    if (context == NULL)
        return;
    memcpy(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
    memset(context->buffer, 0, SHA512_BLOCK_LENGTH);
    context->bitcount[0] = context->bitcount[1] = 0;
}

static void SHA512_Last ( SHA512_CTX context  )  [static]

Definition at line 829 of file sha2.c.

References _SHA512_CTX::bitcount, _SHA512_CTX::buffer, REVERSE64, SHA512_BLOCK_LENGTH, SHA512_SHORT_BLOCK_LENGTH, and SHA512_Transform().

Referenced by SHA384_Final(), and SHA512_Final().

{
    unsigned int usedspace;

    usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
#ifndef WORDS_BIGENDIAN
    /* Convert FROM host byte order */
    REVERSE64(context->bitcount[0], context->bitcount[0]);
    REVERSE64(context->bitcount[1], context->bitcount[1]);
#endif
    if (usedspace > 0)
    {
        /* Begin padding with a 1 bit: */
        context->buffer[usedspace++] = 0x80;

        if (usedspace <= SHA512_SHORT_BLOCK_LENGTH)
        {
            /* Set-up for the last transform: */
            memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
        }
        else
        {
            if (usedspace < SHA512_BLOCK_LENGTH)
            {
                memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
            }
            /* Do second-to-last transform: */
            SHA512_Transform(context, context->buffer);

            /* And set-up for the last transform: */
            memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
        }
    }
    else
    {
        /* Prepare for final transform: */
        memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);

        /* Begin padding with a 1 bit: */
        *context->buffer = 0x80;
    }
    /* Store the length of input data (in bits): */
    *(uint64 *) &context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
    *(uint64 *) &context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8] = context->bitcount[0];

    /* Final transform: */
    SHA512_Transform(context, context->buffer);
}

static void SHA512_Transform ( SHA512_CTX context,
const uint8 data 
) [static]

Definition at line 686 of file sha2.c.

References _SHA512_CTX::buffer, Ch, K512, Maj, Sigma0_512, Sigma1_512, and _SHA512_CTX::state.

Referenced by SHA512_Last(), and SHA512_Update().

{
    uint64      a,
                b,
                c,
                d,
                e,
                f,
                g,
                h,
                s0,
                s1;
    uint64      T1,
                T2,
               *W512 = (uint64 *) context->buffer;
    int         j;

    /* Initialize registers with the prev. intermediate value */
    a = context->state[0];
    b = context->state[1];
    c = context->state[2];
    d = context->state[3];
    e = context->state[4];
    f = context->state[5];
    g = context->state[6];
    h = context->state[7];

    j = 0;
    do
    {
        W512[j] = (uint64) data[7] | ((uint64) data[6] << 8) |
            ((uint64) data[5] << 16) | ((uint64) data[4] << 24) |
            ((uint64) data[3] << 32) | ((uint64) data[2] << 40) |
            ((uint64) data[1] << 48) | ((uint64) data[0] << 56);
        data += 8;
        /* Apply the SHA-512 compression function to update a..h */
        T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
        T2 = Sigma0_512(a) + Maj(a, b, c);
        h = g;
        g = f;
        f = e;
        e = d + T1;
        d = c;
        c = b;
        b = a;
        a = T1 + T2;

        j++;
    } while (j < 16);

    do
    {
        /* Part of the message block expansion: */
        s0 = W512[(j + 1) & 0x0f];
        s0 = sigma0_512(s0);
        s1 = W512[(j + 14) & 0x0f];
        s1 = sigma1_512(s1);

        /* Apply the SHA-512 compression function to update a..h */
        T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
            (W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0);
        T2 = Sigma0_512(a) + Maj(a, b, c);
        h = g;
        g = f;
        f = e;
        e = d + T1;
        d = c;
        c = b;
        b = a;
        a = T1 + T2;

        j++;
    } while (j < 80);

    /* Compute the current intermediate hash value */
    context->state[0] += a;
    context->state[1] += b;
    context->state[2] += c;
    context->state[3] += d;
    context->state[4] += e;
    context->state[5] += f;
    context->state[6] += g;
    context->state[7] += h;

    /* Clean up */
    a = b = c = d = e = f = g = h = T1 = T2 = 0;
}

void SHA512_Update ( SHA512_CTX context,
const uint8 data,
size_t  len 
)

Definition at line 776 of file sha2.c.

References ADDINC128, _SHA512_CTX::bitcount, _SHA512_CTX::buffer, SHA512_BLOCK_LENGTH, and SHA512_Transform().

{
    size_t      freespace,
                usedspace;

    /* Calling with no data is valid (we do nothing) */
    if (len == 0)
        return;

    usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
    if (usedspace > 0)
    {
        /* Calculate how much free space is available in the buffer */
        freespace = SHA512_BLOCK_LENGTH - usedspace;

        if (len >= freespace)
        {
            /* Fill the buffer completely and process it */
            memcpy(&context->buffer[usedspace], data, freespace);
            ADDINC128(context->bitcount, freespace << 3);
            len -= freespace;
            data += freespace;
            SHA512_Transform(context, context->buffer);
        }
        else
        {
            /* The buffer is not yet full */
            memcpy(&context->buffer[usedspace], data, len);
            ADDINC128(context->bitcount, len << 3);
            /* Clean up: */
            usedspace = freespace = 0;
            return;
        }
    }
    while (len >= SHA512_BLOCK_LENGTH)
    {
        /* Process as many complete blocks as we can */
        SHA512_Transform(context, data);
        ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
        len -= SHA512_BLOCK_LENGTH;
        data += SHA512_BLOCK_LENGTH;
    }
    if (len > 0)
    {
        /* There's left-overs, so save 'em */
        memcpy(context->buffer, data, len);
        ADDINC128(context->bitcount, len << 3);
    }
    /* Clean up: */
    usedspace = freespace = 0;
}


Variable Documentation

const uint32 K256[64] [static]
Initial value:
 {
    0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
    0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
    0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
    0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
    0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
    0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
    0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
    0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
    0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
    0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
    0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
    0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
    0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
    0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
    0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
    0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
}

Definition at line 139 of file sha2.c.

Referenced by SHA256_Transform().

const uint64 K512[80] [static]

Definition at line 183 of file sha2.c.

Referenced by SHA512_Transform().

const uint32 sha224_initial_hash_value[8] [static]
Initial value:
 {
    0xc1059ed8UL,
    0x367cd507UL,
    0x3070dd17UL,
    0xf70e5939UL,
    0xffc00b31UL,
    0x68581511UL,
    0x64f98fa7UL,
    0xbefa4fa4UL
}

Definition at line 159 of file sha2.c.

Referenced by SHA224_Init().

const uint32 sha256_initial_hash_value[8] [static]
Initial value:
 {
    0x6a09e667UL,
    0xbb67ae85UL,
    0x3c6ef372UL,
    0xa54ff53aUL,
    0x510e527fUL,
    0x9b05688cUL,
    0x1f83d9abUL,
    0x5be0cd19UL
}

Definition at line 171 of file sha2.c.

Referenced by SHA256_Init().

const uint64 sha384_initial_hash_value[8] [static]
Initial value:
 {
    0xcbbb9d5dc1059ed8ULL,
    0x629a292a367cd507ULL,
    0x9159015a3070dd17ULL,
    0x152fecd8f70e5939ULL,
    0x67332667ffc00b31ULL,
    0x8eb44a8768581511ULL,
    0xdb0c2e0d64f98fa7ULL,
    0x47b5481dbefa4fa4ULL
}

Definition at line 227 of file sha2.c.

Referenced by SHA384_Init().

const uint64 sha512_initial_hash_value[8] [static]
Initial value:
 {
    0x6a09e667f3bcc908ULL,
    0xbb67ae8584caa73bULL,
    0x3c6ef372fe94f82bULL,
    0xa54ff53a5f1d36f1ULL,
    0x510e527fade682d1ULL,
    0x9b05688c2b3e6c1fULL,
    0x1f83d9abfb41bd6bULL,
    0x5be0cd19137e2179ULL
}

Definition at line 239 of file sha2.c.

Referenced by SHA512_Init().