#include "postgres.h"
#include <sys/param.h>
#include "sha2.h"
Go to the source code of this file.
Defines | |
#define | SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) |
#define | SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) |
#define | SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) |
#define | REVERSE32(w, x) |
#define | REVERSE64(w, x) |
#define | ADDINC128(w, n) |
#define | R(b, x) ((x) >> (b)) |
#define | S32(b, x) (((x) >> (b)) | ((x) << (32 - (b)))) |
#define | S64(b, x) (((x) >> (b)) | ((x) << (64 - (b)))) |
#define | Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z))) |
#define | Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
#define | Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) |
#define | Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) |
#define | sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) |
#define | sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) |
#define | Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) |
#define | Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) |
#define | sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) |
#define | sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) |
Functions | |
static void | SHA512_Last (SHA512_CTX *) |
static void | SHA256_Transform (SHA256_CTX *, const uint8 *) |
static void | SHA512_Transform (SHA512_CTX *, const uint8 *) |
void | SHA256_Init (SHA256_CTX *context) |
void | SHA256_Update (SHA256_CTX *context, const uint8 *data, size_t len) |
static void | SHA256_Last (SHA256_CTX *context) |
void | SHA256_Final (uint8 digest[], SHA256_CTX *context) |
void | SHA512_Init (SHA512_CTX *context) |
void | SHA512_Update (SHA512_CTX *context, const uint8 *data, size_t len) |
void | SHA512_Final (uint8 digest[], SHA512_CTX *context) |
void | SHA384_Init (SHA384_CTX *context) |
void | SHA384_Update (SHA384_CTX *context, const uint8 *data, size_t len) |
void | SHA384_Final (uint8 digest[], SHA384_CTX *context) |
void | SHA224_Init (SHA224_CTX *context) |
void | SHA224_Update (SHA224_CTX *context, const uint8 *data, size_t len) |
void | SHA224_Final (uint8 digest[], SHA224_CTX *context) |
Variables | |
static const uint32 | K256 [64] |
static const uint32 | sha224_initial_hash_value [8] |
static const uint32 | sha256_initial_hash_value [8] |
static const uint64 | K512 [80] |
static const uint64 | sha384_initial_hash_value [8] |
static const uint64 | sha512_initial_hash_value [8] |
#define ADDINC128 | ( | w, | ||
n | ||||
) |
{ \
(w)[0] += (uint64)(n); \
if ((w)[0] < (n)) { \
(w)[1]++; \
} \
}
Definition at line 88 of file sha2.c.
Referenced by SHA512_Update().
#define Ch | ( | x, | ||
y, | ||||
z | ||||
) | (((x) & (y)) ^ ((~(x)) & (z))) |
Definition at line 112 of file sha2.c.
Referenced by SHA256_Transform(), and SHA512_Transform().
#define Maj | ( | x, | ||
y, | ||||
z | ||||
) | (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
Definition at line 113 of file sha2.c.
Referenced by SHA256_Transform(), and SHA512_Transform().
#define R | ( | b, | ||
x | ||||
) | ((x) >> (b)) |
Definition at line 105 of file sha2.c.
Referenced by des_cipher().
#define REVERSE32 | ( | w, | ||
x | ||||
) |
{ \ uint32 tmp = (w); \ tmp = (tmp >> 16) | (tmp << 16); \ (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ }
Definition at line 68 of file sha2.c.
Referenced by SHA224_Final(), and SHA256_Final().
#define REVERSE64 | ( | w, | ||
x | ||||
) |
{ \ uint64 tmp = (w); \ tmp = (tmp >> 32) | (tmp << 32); \ tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ ((tmp & 0x00ff00ff00ff00ffULL) << 8); \ (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ ((tmp & 0x0000ffff0000ffffULL) << 16); \ }
Definition at line 73 of file sha2.c.
Referenced by SHA256_Last(), SHA384_Final(), SHA512_Final(), and SHA512_Last().
#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) |
Definition at line 61 of file sha2.c.
Referenced by SHA256_Last().
#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) |
Definition at line 63 of file sha2.c.
Referenced by SHA512_Last().
#define Sigma0_256 | ( | x | ) | (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) |
Definition at line 116 of file sha2.c.
Referenced by SHA256_Transform().
#define sigma0_256 | ( | x | ) | (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) |
#define Sigma0_512 | ( | x | ) | (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) |
Definition at line 122 of file sha2.c.
Referenced by SHA512_Transform().
#define sigma0_512 | ( | x | ) | (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) |
#define sigma1_256 | ( | x | ) | (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) |
#define Sigma1_256 | ( | x | ) | (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) |
Definition at line 117 of file sha2.c.
Referenced by SHA256_Transform().
#define Sigma1_512 | ( | x | ) | (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) |
Definition at line 123 of file sha2.c.
Referenced by SHA512_Transform().
#define sigma1_512 | ( | x | ) | (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) |
void SHA224_Final | ( | uint8 | digest[], | |
SHA224_CTX * | context | |||
) |
Definition at line 968 of file sha2.c.
References NULL, REVERSE32, SHA224_DIGEST_LENGTH, SHA256_Last(), and _SHA256_CTX::state.
Referenced by int_sha224_finish().
{ /* If no digest buffer is passed, we don't bother doing this: */ if (digest != NULL) { SHA256_Last(context); #ifndef WORDS_BIGENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 8; j++) { REVERSE32(context->state[j], context->state[j]); } } #endif memcpy(digest, context->state, SHA224_DIGEST_LENGTH); } /* Clean up state data: */ memset(context, 0, sizeof(*context)); }
void SHA224_Init | ( | SHA224_CTX * | context | ) |
Definition at line 952 of file sha2.c.
References _SHA256_CTX::bitcount, _SHA256_CTX::buffer, NULL, sha224_initial_hash_value, SHA256_BLOCK_LENGTH, SHA256_DIGEST_LENGTH, and _SHA256_CTX::state.
Referenced by int_sha224_reset().
{ if (context == NULL) return; memcpy(context->state, sha224_initial_hash_value, SHA256_DIGEST_LENGTH); memset(context->buffer, 0, SHA256_BLOCK_LENGTH); context->bitcount = 0; }
void SHA224_Update | ( | SHA224_CTX * | context, | |
const uint8 * | data, | |||
size_t | len | |||
) |
Definition at line 962 of file sha2.c.
References SHA256_Update.
Referenced by int_sha224_update().
{ SHA256_Update((SHA256_CTX *) context, data, len); }
void SHA256_Final | ( | uint8 | digest[], | |
SHA256_CTX * | context | |||
) |
Definition at line 551 of file sha2.c.
References NULL, REVERSE32, SHA256_DIGEST_LENGTH, SHA256_Last(), and _SHA256_CTX::state.
{ /* If no digest buffer is passed, we don't bother doing this: */ if (digest != NULL) { SHA256_Last(context); #ifndef WORDS_BIGENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 8; j++) { REVERSE32(context->state[j], context->state[j]); } } #endif memcpy(digest, context->state, SHA256_DIGEST_LENGTH); } /* Clean up state data: */ memset(context, 0, sizeof(*context)); }
void SHA256_Init | ( | SHA256_CTX * | context | ) |
Definition at line 253 of file sha2.c.
References _SHA256_CTX::bitcount, _SHA256_CTX::buffer, NULL, SHA256_BLOCK_LENGTH, SHA256_DIGEST_LENGTH, sha256_initial_hash_value, and _SHA256_CTX::state.
{ if (context == NULL) return; memcpy(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH); memset(context->buffer, 0, SHA256_BLOCK_LENGTH); context->bitcount = 0; }
static void SHA256_Last | ( | SHA256_CTX * | context | ) | [static] |
Definition at line 503 of file sha2.c.
References _SHA256_CTX::bitcount, _SHA256_CTX::buffer, REVERSE64, SHA256_BLOCK_LENGTH, SHA256_SHORT_BLOCK_LENGTH, and SHA256_Transform().
Referenced by SHA224_Final(), and SHA256_Final().
{ unsigned int usedspace; usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; #ifndef WORDS_BIGENDIAN /* Convert FROM host byte order */ REVERSE64(context->bitcount, context->bitcount); #endif if (usedspace > 0) { /* Begin padding with a 1 bit: */ context->buffer[usedspace++] = 0x80; if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { /* Set-up for the last transform: */ memset(&context->buffer[usedspace], 0, SHA256_SHORT_BLOCK_LENGTH - usedspace); } else { if (usedspace < SHA256_BLOCK_LENGTH) { memset(&context->buffer[usedspace], 0, SHA256_BLOCK_LENGTH - usedspace); } /* Do second-to-last transform: */ SHA256_Transform(context, context->buffer); /* And set-up for the last transform: */ memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); } } else { /* Set-up for the last transform: */ memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); /* Begin padding with a 1 bit: */ *context->buffer = 0x80; } /* Set the bit count: */ *(uint64 *) &context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount; /* Final transform: */ SHA256_Transform(context, context->buffer); }
static void SHA256_Transform | ( | SHA256_CTX * | context, | |
const uint8 * | data | |||
) | [static] |
Definition at line 360 of file sha2.c.
References _SHA256_CTX::buffer, Ch, K256, Maj, Sigma0_256, Sigma1_256, and _SHA256_CTX::state.
Referenced by SHA256_Last(), and SHA256_Update().
{ uint32 a, b, c, d, e, f, g, h, s0, s1; uint32 T1, T2, *W256; int j; W256 = (uint32 *) context->buffer; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { W256[j] = (uint32) data[3] | ((uint32) data[2] << 8) | ((uint32) data[1] << 16) | ((uint32) data[0] << 24); data += 4; /* Apply the SHA-256 compression function to update a..h */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; T2 = Sigma0_256(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 16); do { /* Part of the message block expansion: */ s0 = W256[(j + 1) & 0x0f]; s0 = sigma0_256(s0); s1 = W256[(j + 14) & 0x0f]; s1 = sigma1_256(s1); /* Apply the SHA-256 compression function to update a..h */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0); T2 = Sigma0_256(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 64); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = T2 = 0; }
void SHA256_Update | ( | SHA256_CTX * | context, | |
const uint8 * | data, | |||
size_t | len | |||
) |
Definition at line 450 of file sha2.c.
References _SHA256_CTX::bitcount, _SHA256_CTX::buffer, SHA256_BLOCK_LENGTH, and SHA256_Transform().
{ size_t freespace, usedspace; /* Calling with no data is valid (we do nothing) */ if (len == 0) return; usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = SHA256_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ memcpy(&context->buffer[usedspace], data, freespace); context->bitcount += freespace << 3; len -= freespace; data += freespace; SHA256_Transform(context, context->buffer); } else { /* The buffer is not yet full */ memcpy(&context->buffer[usedspace], data, len); context->bitcount += len << 3; /* Clean up: */ usedspace = freespace = 0; return; } } while (len >= SHA256_BLOCK_LENGTH) { /* Process as many complete blocks as we can */ SHA256_Transform(context, data); context->bitcount += SHA256_BLOCK_LENGTH << 3; len -= SHA256_BLOCK_LENGTH; data += SHA256_BLOCK_LENGTH; } if (len > 0) { /* There's left-overs, so save 'em */ memcpy(context->buffer, data, len); context->bitcount += len << 3; } /* Clean up: */ usedspace = freespace = 0; }
void SHA384_Final | ( | uint8 | digest[], | |
SHA384_CTX * | context | |||
) |
Definition at line 924 of file sha2.c.
References NULL, REVERSE64, SHA384_DIGEST_LENGTH, SHA512_Last(), and _SHA512_CTX::state.
{ /* If no digest buffer is passed, we don't bother doing this: */ if (digest != NULL) { SHA512_Last((SHA512_CTX *) context); /* Save the hash data for output: */ #ifndef WORDS_BIGENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 6; j++) { REVERSE64(context->state[j], context->state[j]); } } #endif memcpy(digest, context->state, SHA384_DIGEST_LENGTH); } /* Zero out state data */ memset(context, 0, sizeof(*context)); }
void SHA384_Init | ( | SHA384_CTX * | context | ) |
Definition at line 908 of file sha2.c.
References _SHA512_CTX::bitcount, _SHA512_CTX::buffer, NULL, SHA384_BLOCK_LENGTH, sha384_initial_hash_value, SHA512_DIGEST_LENGTH, and _SHA512_CTX::state.
{ if (context == NULL) return; memcpy(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH); memset(context->buffer, 0, SHA384_BLOCK_LENGTH); context->bitcount[0] = context->bitcount[1] = 0; }
void SHA384_Update | ( | SHA384_CTX * | context, | |
const uint8 * | data, | |||
size_t | len | |||
) |
Definition at line 918 of file sha2.c.
References SHA512_Update.
{ SHA512_Update((SHA512_CTX *) context, data, len); }
void SHA512_Final | ( | uint8 | digest[], | |
SHA512_CTX * | context | |||
) |
Definition at line 879 of file sha2.c.
References NULL, REVERSE64, SHA512_DIGEST_LENGTH, SHA512_Last(), and _SHA512_CTX::state.
{ /* If no digest buffer is passed, we don't bother doing this: */ if (digest != NULL) { SHA512_Last(context); /* Save the hash data for output: */ #ifndef WORDS_BIGENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 8; j++) { REVERSE64(context->state[j], context->state[j]); } } #endif memcpy(digest, context->state, SHA512_DIGEST_LENGTH); } /* Zero out state data */ memset(context, 0, sizeof(*context)); }
void SHA512_Init | ( | SHA512_CTX * | context | ) |
Definition at line 579 of file sha2.c.
References _SHA512_CTX::bitcount, _SHA512_CTX::buffer, NULL, SHA512_BLOCK_LENGTH, SHA512_DIGEST_LENGTH, sha512_initial_hash_value, and _SHA512_CTX::state.
{ if (context == NULL) return; memcpy(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH); memset(context->buffer, 0, SHA512_BLOCK_LENGTH); context->bitcount[0] = context->bitcount[1] = 0; }
static void SHA512_Last | ( | SHA512_CTX * | context | ) | [static] |
Definition at line 829 of file sha2.c.
References _SHA512_CTX::bitcount, _SHA512_CTX::buffer, REVERSE64, SHA512_BLOCK_LENGTH, SHA512_SHORT_BLOCK_LENGTH, and SHA512_Transform().
Referenced by SHA384_Final(), and SHA512_Final().
{ unsigned int usedspace; usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; #ifndef WORDS_BIGENDIAN /* Convert FROM host byte order */ REVERSE64(context->bitcount[0], context->bitcount[0]); REVERSE64(context->bitcount[1], context->bitcount[1]); #endif if (usedspace > 0) { /* Begin padding with a 1 bit: */ context->buffer[usedspace++] = 0x80; if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { /* Set-up for the last transform: */ memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace); } else { if (usedspace < SHA512_BLOCK_LENGTH) { memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace); } /* Do second-to-last transform: */ SHA512_Transform(context, context->buffer); /* And set-up for the last transform: */ memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2); } } else { /* Prepare for final transform: */ memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); /* Begin padding with a 1 bit: */ *context->buffer = 0x80; } /* Store the length of input data (in bits): */ *(uint64 *) &context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1]; *(uint64 *) &context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8] = context->bitcount[0]; /* Final transform: */ SHA512_Transform(context, context->buffer); }
static void SHA512_Transform | ( | SHA512_CTX * | context, | |
const uint8 * | data | |||
) | [static] |
Definition at line 686 of file sha2.c.
References _SHA512_CTX::buffer, Ch, K512, Maj, Sigma0_512, Sigma1_512, and _SHA512_CTX::state.
Referenced by SHA512_Last(), and SHA512_Update().
{ uint64 a, b, c, d, e, f, g, h, s0, s1; uint64 T1, T2, *W512 = (uint64 *) context->buffer; int j; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { W512[j] = (uint64) data[7] | ((uint64) data[6] << 8) | ((uint64) data[5] << 16) | ((uint64) data[4] << 24) | ((uint64) data[3] << 32) | ((uint64) data[2] << 40) | ((uint64) data[1] << 48) | ((uint64) data[0] << 56); data += 8; /* Apply the SHA-512 compression function to update a..h */ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; T2 = Sigma0_512(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 16); do { /* Part of the message block expansion: */ s0 = W512[(j + 1) & 0x0f]; s0 = sigma0_512(s0); s1 = W512[(j + 14) & 0x0f]; s1 = sigma1_512(s1); /* Apply the SHA-512 compression function to update a..h */ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0); T2 = Sigma0_512(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 80); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = T2 = 0; }
void SHA512_Update | ( | SHA512_CTX * | context, | |
const uint8 * | data, | |||
size_t | len | |||
) |
Definition at line 776 of file sha2.c.
References ADDINC128, _SHA512_CTX::bitcount, _SHA512_CTX::buffer, SHA512_BLOCK_LENGTH, and SHA512_Transform().
{ size_t freespace, usedspace; /* Calling with no data is valid (we do nothing) */ if (len == 0) return; usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = SHA512_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ memcpy(&context->buffer[usedspace], data, freespace); ADDINC128(context->bitcount, freespace << 3); len -= freespace; data += freespace; SHA512_Transform(context, context->buffer); } else { /* The buffer is not yet full */ memcpy(&context->buffer[usedspace], data, len); ADDINC128(context->bitcount, len << 3); /* Clean up: */ usedspace = freespace = 0; return; } } while (len >= SHA512_BLOCK_LENGTH) { /* Process as many complete blocks as we can */ SHA512_Transform(context, data); ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); len -= SHA512_BLOCK_LENGTH; data += SHA512_BLOCK_LENGTH; } if (len > 0) { /* There's left-overs, so save 'em */ memcpy(context->buffer, data, len); ADDINC128(context->bitcount, len << 3); } /* Clean up: */ usedspace = freespace = 0; }
{ 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }
Definition at line 139 of file sha2.c.
Referenced by SHA256_Transform().
const uint64 K512[80] [static] |
Definition at line 183 of file sha2.c.
Referenced by SHA512_Transform().
const uint32 sha224_initial_hash_value[8] [static] |
{ 0xc1059ed8UL, 0x367cd507UL, 0x3070dd17UL, 0xf70e5939UL, 0xffc00b31UL, 0x68581511UL, 0x64f98fa7UL, 0xbefa4fa4UL }
Definition at line 159 of file sha2.c.
Referenced by SHA224_Init().
const uint32 sha256_initial_hash_value[8] [static] |
{ 0x6a09e667UL, 0xbb67ae85UL, 0x3c6ef372UL, 0xa54ff53aUL, 0x510e527fUL, 0x9b05688cUL, 0x1f83d9abUL, 0x5be0cd19UL }
Definition at line 171 of file sha2.c.
Referenced by SHA256_Init().
const uint64 sha384_initial_hash_value[8] [static] |
{ 0xcbbb9d5dc1059ed8ULL, 0x629a292a367cd507ULL, 0x9159015a3070dd17ULL, 0x152fecd8f70e5939ULL, 0x67332667ffc00b31ULL, 0x8eb44a8768581511ULL, 0xdb0c2e0d64f98fa7ULL, 0x47b5481dbefa4fa4ULL }
Definition at line 227 of file sha2.c.
Referenced by SHA384_Init().
const uint64 sha512_initial_hash_value[8] [static] |
{ 0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL }
Definition at line 239 of file sha2.c.
Referenced by SHA512_Init().