TrinityCore
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
message.h
Go to the documentation of this file.
1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // Author: [email protected] (Kenton Varda)
32 // Based on original Protocol Buffers design by
33 // Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // Defines Message, the abstract interface implemented by non-lite
36 // protocol message objects. Although it's possible to implement this
37 // interface manually, most users will use the protocol compiler to
38 // generate implementations.
39 //
40 // Example usage:
41 //
42 // Say you have a message defined as:
43 //
44 // message Foo {
45 // optional string text = 1;
46 // repeated int32 numbers = 2;
47 // }
48 //
49 // Then, if you used the protocol compiler to generate a class from the above
50 // definition, you could use it like so:
51 //
52 // string data; // Will store a serialized version of the message.
53 //
54 // {
55 // // Create a message and serialize it.
56 // Foo foo;
57 // foo.set_text("Hello World!");
58 // foo.add_numbers(1);
59 // foo.add_numbers(5);
60 // foo.add_numbers(42);
61 //
62 // foo.SerializeToString(&data);
63 // }
64 //
65 // {
66 // // Parse the serialized message and check that it contains the
67 // // correct data.
68 // Foo foo;
69 // foo.ParseFromString(data);
70 //
71 // assert(foo.text() == "Hello World!");
72 // assert(foo.numbers_size() == 3);
73 // assert(foo.numbers(0) == 1);
74 // assert(foo.numbers(1) == 5);
75 // assert(foo.numbers(2) == 42);
76 // }
77 //
78 // {
79 // // Same as the last block, but do it dynamically via the Message
80 // // reflection interface.
81 // Message* foo = new Foo;
82 // const Descriptor* descriptor = foo->GetDescriptor();
83 //
84 // // Get the descriptors for the fields we're interested in and verify
85 // // their types.
86 // const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
87 // assert(text_field != NULL);
88 // assert(text_field->type() == FieldDescriptor::TYPE_STRING);
89 // assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
90 // const FieldDescriptor* numbers_field = descriptor->
91 // FindFieldByName("numbers");
92 // assert(numbers_field != NULL);
93 // assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
94 // assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
95 //
96 // // Parse the message.
97 // foo->ParseFromString(data);
98 //
99 // // Use the reflection interface to examine the contents.
100 // const Reflection* reflection = foo->GetReflection();
101 // assert(reflection->GetString(foo, text_field) == "Hello World!");
102 // assert(reflection->FieldSize(foo, numbers_field) == 3);
103 // assert(reflection->GetRepeatedInt32(foo, numbers_field, 0) == 1);
104 // assert(reflection->GetRepeatedInt32(foo, numbers_field, 1) == 5);
105 // assert(reflection->GetRepeatedInt32(foo, numbers_field, 2) == 42);
106 //
107 // delete foo;
108 // }
109 
110 #ifndef GOOGLE_PROTOBUF_MESSAGE_H__
111 #define GOOGLE_PROTOBUF_MESSAGE_H__
112 
113 #include <iosfwd>
114 #include <string>
115 #include <vector>
116 
118 
121 
122 
123 #define GOOGLE_PROTOBUF_HAS_ONEOF
124 
125 namespace google {
126 namespace protobuf {
127 
128 // Defined in this file.
129 class Message;
130 class Reflection;
131 class MessageFactory;
132 
133 // Defined in other files.
134 class UnknownFieldSet; // unknown_field_set.h
135 namespace io {
136  class ZeroCopyInputStream; // zero_copy_stream.h
137  class ZeroCopyOutputStream; // zero_copy_stream.h
138  class CodedInputStream; // coded_stream.h
139  class CodedOutputStream; // coded_stream.h
140 }
141 
142 
143 template<typename T>
144 class RepeatedField; // repeated_field.h
145 
146 template<typename T>
147 class RepeatedPtrField; // repeated_field.h
148 
149 // A container to hold message metadata.
150 struct Metadata {
153 };
154 
155 // Abstract interface for protocol messages.
156 //
157 // See also MessageLite, which contains most every-day operations. Message
158 // adds descriptors and reflection on top of that.
159 //
160 // The methods of this class that are virtual but not pure-virtual have
161 // default implementations based on reflection. Message classes which are
162 // optimized for speed will want to override these with faster implementations,
163 // but classes optimized for code size may be happy with keeping them. See
164 // the optimize_for option in descriptor.proto.
166  public:
167  inline Message() {}
168  virtual ~Message();
169 
170  // Basic Operations ------------------------------------------------
171 
172  // Construct a new instance of the same type. Ownership is passed to the
173  // caller. (This is also defined in MessageLite, but is defined again here
174  // for return-type covariance.)
175  virtual Message* New() const = 0;
176 
177  // Make this message into a copy of the given message. The given message
178  // must have the same descriptor, but need not necessarily be the same class.
179  // By default this is just implemented as "Clear(); MergeFrom(from);".
180  virtual void CopyFrom(const Message& from);
181 
182  // Merge the fields from the given message into this message. Singular
183  // fields will be overwritten, if specified in from, except for embedded
184  // messages which will be merged. Repeated fields will be concatenated.
185  // The given message must be of the same type as this message (i.e. the
186  // exact same class).
187  virtual void MergeFrom(const Message& from);
188 
189  // Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with
190  // a nice error message.
191  void CheckInitialized() const;
192 
193  // Slowly build a list of all required fields that are not set.
194  // This is much, much slower than IsInitialized() as it is implemented
195  // purely via reflection. Generally, you should not call this unless you
196  // have already determined that an error exists by calling IsInitialized().
197  void FindInitializationErrors(vector<string>* errors) const;
198 
199  // Like FindInitializationErrors, but joins all the strings, delimited by
200  // commas, and returns them.
201  string InitializationErrorString() const;
202 
203  // Clears all unknown fields from this message and all embedded messages.
204  // Normally, if unknown tag numbers are encountered when parsing a message,
205  // the tag and value are stored in the message's UnknownFieldSet and
206  // then written back out when the message is serialized. This allows servers
207  // which simply route messages to other servers to pass through messages
208  // that have new field definitions which they don't yet know about. However,
209  // this behavior can have security implications. To avoid it, call this
210  // method after parsing.
211  //
212  // See Reflection::GetUnknownFields() for more on unknown fields.
213  virtual void DiscardUnknownFields();
214 
215  // Computes (an estimate of) the total number of bytes currently used for
216  // storing the message in memory. The default implementation calls the
217  // Reflection object's SpaceUsed() method.
218  virtual int SpaceUsed() const;
219 
220  // Debugging & Testing----------------------------------------------
221 
222  // Generates a human readable form of this message, useful for debugging
223  // and other purposes.
224  string DebugString() const;
225  // Like DebugString(), but with less whitespace.
226  string ShortDebugString() const;
227  // Like DebugString(), but do not escape UTF-8 byte sequences.
228  string Utf8DebugString() const;
229  // Convenience function useful in GDB. Prints DebugString() to stdout.
230  void PrintDebugString() const;
231 
232  // Heavy I/O -------------------------------------------------------
233  // Additional parsing and serialization methods not implemented by
234  // MessageLite because they are not supported by the lite library.
235 
236  // Parse a protocol buffer from a file descriptor. If successful, the entire
237  // input will be consumed.
238  bool ParseFromFileDescriptor(int file_descriptor);
239  // Like ParseFromFileDescriptor(), but accepts messages that are missing
240  // required fields.
241  bool ParsePartialFromFileDescriptor(int file_descriptor);
242  // Parse a protocol buffer from a C++ istream. If successful, the entire
243  // input will be consumed.
244  bool ParseFromIstream(istream* input);
245  // Like ParseFromIstream(), but accepts messages that are missing
246  // required fields.
247  bool ParsePartialFromIstream(istream* input);
248 
249  // Serialize the message and write it to the given file descriptor. All
250  // required fields must be set.
251  bool SerializeToFileDescriptor(int file_descriptor) const;
252  // Like SerializeToFileDescriptor(), but allows missing required fields.
253  bool SerializePartialToFileDescriptor(int file_descriptor) const;
254  // Serialize the message and write it to the given C++ ostream. All
255  // required fields must be set.
256  bool SerializeToOstream(ostream* output) const;
257  // Like SerializeToOstream(), but allows missing required fields.
258  bool SerializePartialToOstream(ostream* output) const;
259 
260 
261  // Reflection-based methods ----------------------------------------
262  // These methods are pure-virtual in MessageLite, but Message provides
263  // reflection-based default implementations.
264 
265  virtual string GetTypeName() const;
266  virtual void Clear();
267  virtual bool IsInitialized() const;
268  virtual void CheckTypeAndMergeFrom(const MessageLite& other);
269  virtual bool MergePartialFromCodedStream(io::CodedInputStream* input);
270  virtual int ByteSize() const;
271  virtual void SerializeWithCachedSizes(io::CodedOutputStream* output) const;
272 
273  private:
274  // This is called only by the default implementation of ByteSize(), to
275  // update the cached size. If you override ByteSize(), you do not need
276  // to override this. If you do not override ByteSize(), you MUST override
277  // this; the default implementation will crash.
278  //
279  // The method is private because subclasses should never call it; only
280  // override it. Yes, C++ lets you do that. Crazy, huh?
281  virtual void SetCachedSize(int size) const;
282 
283  public:
284 
285  // Introspection ---------------------------------------------------
286 
287  // Typedef for backwards-compatibility.
289 
290  // Get a Descriptor for this message's type. This describes what
291  // fields the message contains, the types of those fields, etc.
292  const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
293 
294  // Get the Reflection interface for this Message, which can be used to
295  // read and modify the fields of the Message dynamically (in other words,
296  // without knowing the message type at compile time). This object remains
297  // property of the Message.
298  //
299  // This method remains virtual in case a subclass does not implement
300  // reflection and wants to override the default behavior.
301  virtual const Reflection* GetReflection() const {
302  return GetMetadata().reflection;
303  }
304 
305  protected:
306  // Get a struct containing the metadata for the Message. Most subclasses only
307  // need to implement this method, rather than the GetDescriptor() and
308  // GetReflection() wrappers.
309  virtual Metadata GetMetadata() const = 0;
310 
311 
312  private:
314 };
315 
316 // This interface contains methods that can be used to dynamically access
317 // and modify the fields of a protocol message. Their semantics are
318 // similar to the accessors the protocol compiler generates.
319 //
320 // To get the Reflection for a given Message, call Message::GetReflection().
321 //
322 // This interface is separate from Message only for efficiency reasons;
323 // the vast majority of implementations of Message will share the same
324 // implementation of Reflection (GeneratedMessageReflection,
325 // defined in generated_message.h), and all Messages of a particular class
326 // should share the same Reflection object (though you should not rely on
327 // the latter fact).
328 //
329 // There are several ways that these methods can be used incorrectly. For
330 // example, any of the following conditions will lead to undefined
331 // results (probably assertion failures):
332 // - The FieldDescriptor is not a field of this message type.
333 // - The method called is not appropriate for the field's type. For
334 // each field type in FieldDescriptor::TYPE_*, there is only one
335 // Get*() method, one Set*() method, and one Add*() method that is
336 // valid for that type. It should be obvious which (except maybe
337 // for TYPE_BYTES, which are represented using strings in C++).
338 // - A Get*() or Set*() method for singular fields is called on a repeated
339 // field.
340 // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
341 // field.
342 // - The Message object passed to any method is not of the right type for
343 // this Reflection object (i.e. message.GetReflection() != reflection).
344 //
345 // You might wonder why there is not any abstract representation for a field
346 // of arbitrary type. E.g., why isn't there just a "GetField()" method that
347 // returns "const Field&", where "Field" is some class with accessors like
348 // "GetInt32Value()". The problem is that someone would have to deal with
349 // allocating these Field objects. For generated message classes, having to
350 // allocate space for an additional object to wrap every field would at least
351 // double the message's memory footprint, probably worse. Allocating the
352 // objects on-demand, on the other hand, would be expensive and prone to
353 // memory leaks. So, instead we ended up with this flat interface.
354 //
355 // TODO(kenton): Create a utility class which callers can use to read and
356 // write fields from a Reflection without paying attention to the type.
358  public:
359  inline Reflection() {}
360  virtual ~Reflection();
361 
362  // Get the UnknownFieldSet for the message. This contains fields which
363  // were seen when the Message was parsed but were not recognized according
364  // to the Message's definition.
365  virtual const UnknownFieldSet& GetUnknownFields(
366  const Message& message) const = 0;
367  // Get a mutable pointer to the UnknownFieldSet for the message. This
368  // contains fields which were seen when the Message was parsed but were not
369  // recognized according to the Message's definition.
370  virtual UnknownFieldSet* MutableUnknownFields(Message* message) const = 0;
371 
372  // Estimate the amount of memory used by the message object.
373  virtual int SpaceUsed(const Message& message) const = 0;
374 
375  // Check if the given non-repeated field is set.
376  virtual bool HasField(const Message& message,
377  const FieldDescriptor* field) const = 0;
378 
379  // Get the number of elements of a repeated field.
380  virtual int FieldSize(const Message& message,
381  const FieldDescriptor* field) const = 0;
382 
383  // Clear the value of a field, so that HasField() returns false or
384  // FieldSize() returns zero.
385  virtual void ClearField(Message* message,
386  const FieldDescriptor* field) const = 0;
387 
388  // Check if the oneof is set. Returns ture if any field in oneof
389  // is set, false otherwise.
390  // TODO(jieluo) - make it pure virtual after updating all
391  // the subclasses.
392  virtual bool HasOneof(const Message& /*message*/,
393  const OneofDescriptor* /*oneof_descriptor*/) const {
394  return false;
395  }
396 
397  virtual void ClearOneof(Message* /*message*/,
398  const OneofDescriptor* /*oneof_descriptor*/) const {}
399 
400  // Returns the field descriptor if the oneof is set. NULL otherwise.
401  // TODO(jieluo) - make it pure virtual.
403  const Message& /*message*/,
404  const OneofDescriptor* /*oneof_descriptor*/) const {
405  return NULL;
406  }
407 
408  // Removes the last element of a repeated field.
409  // We don't provide a way to remove any element other than the last
410  // because it invites inefficient use, such as O(n^2) filtering loops
411  // that should have been O(n). If you want to remove an element other
412  // than the last, the best way to do it is to re-arrange the elements
413  // (using Swap()) so that the one you want removed is at the end, then
414  // call RemoveLast().
415  virtual void RemoveLast(Message* message,
416  const FieldDescriptor* field) const = 0;
417  // Removes the last element of a repeated message field, and returns the
418  // pointer to the caller. Caller takes ownership of the returned pointer.
419  virtual Message* ReleaseLast(Message* message,
420  const FieldDescriptor* field) const = 0;
421 
422  // Swap the complete contents of two messages.
423  virtual void Swap(Message* message1, Message* message2) const = 0;
424 
425  // Swap fields listed in fields vector of two messages.
426  virtual void SwapFields(Message* message1,
427  Message* message2,
428  const vector<const FieldDescriptor*>& fields)
429  const = 0;
430 
431  // Swap two elements of a repeated field.
432  virtual void SwapElements(Message* message,
433  const FieldDescriptor* field,
434  int index1,
435  int index2) const = 0;
436 
437  // List all fields of the message which are currently set. This includes
438  // extensions. Singular fields will only be listed if HasField(field) would
439  // return true and repeated fields will only be listed if FieldSize(field)
440  // would return non-zero. Fields (both normal fields and extension fields)
441  // will be listed ordered by field number.
442  virtual void ListFields(const Message& message,
443  vector<const FieldDescriptor*>* output) const = 0;
444 
445  // Singular field getters ------------------------------------------
446  // These get the value of a non-repeated field. They return the default
447  // value for fields that aren't set.
448 
449  virtual int32 GetInt32 (const Message& message,
450  const FieldDescriptor* field) const = 0;
451  virtual int64 GetInt64 (const Message& message,
452  const FieldDescriptor* field) const = 0;
453  virtual uint32 GetUInt32(const Message& message,
454  const FieldDescriptor* field) const = 0;
455  virtual uint64 GetUInt64(const Message& message,
456  const FieldDescriptor* field) const = 0;
457  virtual float GetFloat (const Message& message,
458  const FieldDescriptor* field) const = 0;
459  virtual double GetDouble(const Message& message,
460  const FieldDescriptor* field) const = 0;
461  virtual bool GetBool (const Message& message,
462  const FieldDescriptor* field) const = 0;
463  virtual string GetString(const Message& message,
464  const FieldDescriptor* field) const = 0;
465  virtual const EnumValueDescriptor* GetEnum(
466  const Message& message, const FieldDescriptor* field) const = 0;
467  // See MutableMessage() for the meaning of the "factory" parameter.
468  virtual const Message& GetMessage(const Message& message,
469  const FieldDescriptor* field,
470  MessageFactory* factory = NULL) const = 0;
471 
472  // Get a string value without copying, if possible.
473  //
474  // GetString() necessarily returns a copy of the string. This can be
475  // inefficient when the string is already stored in a string object in the
476  // underlying message. GetStringReference() will return a reference to the
477  // underlying string in this case. Otherwise, it will copy the string into
478  // *scratch and return that.
479  //
480  // Note: It is perfectly reasonable and useful to write code like:
481  // str = reflection->GetStringReference(field, &str);
482  // This line would ensure that only one copy of the string is made
483  // regardless of the field's underlying representation. When initializing
484  // a newly-constructed string, though, it's just as fast and more readable
485  // to use code like:
486  // string str = reflection->GetString(field);
487  virtual const string& GetStringReference(const Message& message,
488  const FieldDescriptor* field,
489  string* scratch) const = 0;
490 
491 
492  // Singular field mutators -----------------------------------------
493  // These mutate the value of a non-repeated field.
494 
495  virtual void SetInt32 (Message* message,
496  const FieldDescriptor* field, int32 value) const = 0;
497  virtual void SetInt64 (Message* message,
498  const FieldDescriptor* field, int64 value) const = 0;
499  virtual void SetUInt32(Message* message,
500  const FieldDescriptor* field, uint32 value) const = 0;
501  virtual void SetUInt64(Message* message,
502  const FieldDescriptor* field, uint64 value) const = 0;
503  virtual void SetFloat (Message* message,
504  const FieldDescriptor* field, float value) const = 0;
505  virtual void SetDouble(Message* message,
506  const FieldDescriptor* field, double value) const = 0;
507  virtual void SetBool (Message* message,
508  const FieldDescriptor* field, bool value) const = 0;
509  virtual void SetString(Message* message,
510  const FieldDescriptor* field,
511  const string& value) const = 0;
512  virtual void SetEnum (Message* message,
513  const FieldDescriptor* field,
514  const EnumValueDescriptor* value) const = 0;
515  // Get a mutable pointer to a field with a message type. If a MessageFactory
516  // is provided, it will be used to construct instances of the sub-message;
517  // otherwise, the default factory is used. If the field is an extension that
518  // does not live in the same pool as the containing message's descriptor (e.g.
519  // it lives in an overlay pool), then a MessageFactory must be provided.
520  // If you have no idea what that meant, then you probably don't need to worry
521  // about it (don't provide a MessageFactory). WARNING: If the
522  // FieldDescriptor is for a compiled-in extension, then
523  // factory->GetPrototype(field->message_type() MUST return an instance of the
524  // compiled-in class for this type, NOT DynamicMessage.
525  virtual Message* MutableMessage(Message* message,
526  const FieldDescriptor* field,
527  MessageFactory* factory = NULL) const = 0;
528  // Replaces the message specified by 'field' with the already-allocated object
529  // sub_message, passing ownership to the message. If the field contained a
530  // message, that message is deleted. If sub_message is NULL, the field is
531  // cleared.
532  virtual void SetAllocatedMessage(Message* message,
533  Message* sub_message,
534  const FieldDescriptor* field) const = 0;
535  // Releases the message specified by 'field' and returns the pointer,
536  // ReleaseMessage() will return the message the message object if it exists.
537  // Otherwise, it may or may not return NULL. In any case, if the return value
538  // is non-NULL, the caller takes ownership of the pointer.
539  // If the field existed (HasField() is true), then the returned pointer will
540  // be the same as the pointer returned by MutableMessage().
541  // This function has the same effect as ClearField().
542  virtual Message* ReleaseMessage(Message* message,
543  const FieldDescriptor* field,
544  MessageFactory* factory = NULL) const = 0;
545 
546 
547  // Repeated field getters ------------------------------------------
548  // These get the value of one element of a repeated field.
549 
550  virtual int32 GetRepeatedInt32 (const Message& message,
551  const FieldDescriptor* field,
552  int index) const = 0;
553  virtual int64 GetRepeatedInt64 (const Message& message,
554  const FieldDescriptor* field,
555  int index) const = 0;
556  virtual uint32 GetRepeatedUInt32(const Message& message,
557  const FieldDescriptor* field,
558  int index) const = 0;
559  virtual uint64 GetRepeatedUInt64(const Message& message,
560  const FieldDescriptor* field,
561  int index) const = 0;
562  virtual float GetRepeatedFloat (const Message& message,
563  const FieldDescriptor* field,
564  int index) const = 0;
565  virtual double GetRepeatedDouble(const Message& message,
566  const FieldDescriptor* field,
567  int index) const = 0;
568  virtual bool GetRepeatedBool (const Message& message,
569  const FieldDescriptor* field,
570  int index) const = 0;
571  virtual string GetRepeatedString(const Message& message,
572  const FieldDescriptor* field,
573  int index) const = 0;
574  virtual const EnumValueDescriptor* GetRepeatedEnum(
575  const Message& message,
576  const FieldDescriptor* field, int index) const = 0;
577  virtual const Message& GetRepeatedMessage(
578  const Message& message,
579  const FieldDescriptor* field, int index) const = 0;
580 
581  // See GetStringReference(), above.
582  virtual const string& GetRepeatedStringReference(
583  const Message& message, const FieldDescriptor* field,
584  int index, string* scratch) const = 0;
585 
586 
587  // Repeated field mutators -----------------------------------------
588  // These mutate the value of one element of a repeated field.
589 
590  virtual void SetRepeatedInt32 (Message* message,
591  const FieldDescriptor* field,
592  int index, int32 value) const = 0;
593  virtual void SetRepeatedInt64 (Message* message,
594  const FieldDescriptor* field,
595  int index, int64 value) const = 0;
596  virtual void SetRepeatedUInt32(Message* message,
597  const FieldDescriptor* field,
598  int index, uint32 value) const = 0;
599  virtual void SetRepeatedUInt64(Message* message,
600  const FieldDescriptor* field,
601  int index, uint64 value) const = 0;
602  virtual void SetRepeatedFloat (Message* message,
603  const FieldDescriptor* field,
604  int index, float value) const = 0;
605  virtual void SetRepeatedDouble(Message* message,
606  const FieldDescriptor* field,
607  int index, double value) const = 0;
608  virtual void SetRepeatedBool (Message* message,
609  const FieldDescriptor* field,
610  int index, bool value) const = 0;
611  virtual void SetRepeatedString(Message* message,
612  const FieldDescriptor* field,
613  int index, const string& value) const = 0;
614  virtual void SetRepeatedEnum(Message* message,
615  const FieldDescriptor* field, int index,
616  const EnumValueDescriptor* value) const = 0;
617  // Get a mutable pointer to an element of a repeated field with a message
618  // type.
619  virtual Message* MutableRepeatedMessage(
620  Message* message, const FieldDescriptor* field, int index) const = 0;
621 
622 
623  // Repeated field adders -------------------------------------------
624  // These add an element to a repeated field.
625 
626  virtual void AddInt32 (Message* message,
627  const FieldDescriptor* field, int32 value) const = 0;
628  virtual void AddInt64 (Message* message,
629  const FieldDescriptor* field, int64 value) const = 0;
630  virtual void AddUInt32(Message* message,
631  const FieldDescriptor* field, uint32 value) const = 0;
632  virtual void AddUInt64(Message* message,
633  const FieldDescriptor* field, uint64 value) const = 0;
634  virtual void AddFloat (Message* message,
635  const FieldDescriptor* field, float value) const = 0;
636  virtual void AddDouble(Message* message,
637  const FieldDescriptor* field, double value) const = 0;
638  virtual void AddBool (Message* message,
639  const FieldDescriptor* field, bool value) const = 0;
640  virtual void AddString(Message* message,
641  const FieldDescriptor* field,
642  const string& value) const = 0;
643  virtual void AddEnum (Message* message,
644  const FieldDescriptor* field,
645  const EnumValueDescriptor* value) const = 0;
646  // See MutableMessage() for comments on the "factory" parameter.
647  virtual Message* AddMessage(Message* message,
648  const FieldDescriptor* field,
649  MessageFactory* factory = NULL) const = 0;
650 
651 
652  // Repeated field accessors -------------------------------------------------
653  // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
654  // access to the data in a RepeatedField. The methods below provide aggregate
655  // access by exposing the RepeatedField object itself with the Message.
656  // Applying these templates to inappropriate types will lead to an undefined
657  // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
658  // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
659  //
660  // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
661 
662  // for T = Cord and all protobuf scalar types except enums.
663  template<typename T>
664  const RepeatedField<T>& GetRepeatedField(
665  const Message&, const FieldDescriptor*) const;
666 
667  // for T = Cord and all protobuf scalar types except enums.
668  template<typename T>
669  RepeatedField<T>* MutableRepeatedField(
670  Message*, const FieldDescriptor*) const;
671 
672  // for T = string, google::protobuf::internal::StringPieceField
673  // google::protobuf::Message & descendants.
674  template<typename T>
675  const RepeatedPtrField<T>& GetRepeatedPtrField(
676  const Message&, const FieldDescriptor*) const;
677 
678  // for T = string, google::protobuf::internal::StringPieceField
679  // google::protobuf::Message & descendants.
680  template<typename T>
681  RepeatedPtrField<T>* MutableRepeatedPtrField(
682  Message*, const FieldDescriptor*) const;
683 
684  // Extensions ----------------------------------------------------------------
685 
686  // Try to find an extension of this message type by fully-qualified field
687  // name. Returns NULL if no extension is known for this name or number.
688  virtual const FieldDescriptor* FindKnownExtensionByName(
689  const string& name) const = 0;
690 
691  // Try to find an extension of this message type by field number.
692  // Returns NULL if no extension is known for this name or number.
693  virtual const FieldDescriptor* FindKnownExtensionByNumber(
694  int number) const = 0;
695 
696  // ---------------------------------------------------------------------------
697 
698  protected:
699  // Obtain a pointer to a Repeated Field Structure and do some type checking:
700  // on field->cpp_type(),
701  // on field->field_option().ctype() (if ctype >= 0)
702  // of field->message_type() (if message_type != NULL).
703  // We use 1 routine rather than 4 (const vs mutable) x (scalar vs pointer).
704  virtual void* MutableRawRepeatedField(
705  Message* message, const FieldDescriptor* field, FieldDescriptor::CppType,
706  int ctype, const Descriptor* message_type) const = 0;
707 
708  private:
709  // Special version for specialized implementations of string. We can't call
710  // MutableRawRepeatedField directly here because we don't have access to
711  // FieldOptions::* which are defined in descriptor.pb.h. Including that
712  // file here is not possible because it would cause a circular include cycle.
713  void* MutableRawRepeatedString(
714  Message* message, const FieldDescriptor* field, bool is_string) const;
715 
717 };
718 
719 // Abstract interface for a factory for message objects.
721  public:
722  inline MessageFactory() {}
723  virtual ~MessageFactory();
724 
725  // Given a Descriptor, gets or constructs the default (prototype) Message
726  // of that type. You can then call that message's New() method to construct
727  // a mutable message of that type.
728  //
729  // Calling this method twice with the same Descriptor returns the same
730  // object. The returned object remains property of the factory. Also, any
731  // objects created by calling the prototype's New() method share some data
732  // with the prototype, so these must be destroyed before the MessageFactory
733  // is destroyed.
734  //
735  // The given descriptor must outlive the returned message, and hence must
736  // outlive the MessageFactory.
737  //
738  // Some implementations do not support all types. GetPrototype() will
739  // return NULL if the descriptor passed in is not supported.
740  //
741  // This method may or may not be thread-safe depending on the implementation.
742  // Each implementation should document its own degree thread-safety.
743  virtual const Message* GetPrototype(const Descriptor* type) = 0;
744 
745  // Gets a MessageFactory which supports all generated, compiled-in messages.
746  // In other words, for any compiled-in type FooMessage, the following is true:
747  // MessageFactory::generated_factory()->GetPrototype(
748  // FooMessage::descriptor()) == FooMessage::default_instance()
749  // This factory supports all types which are found in
750  // DescriptorPool::generated_pool(). If given a descriptor from any other
751  // pool, GetPrototype() will return NULL. (You can also check if a
752  // descriptor is for a generated message by checking if
753  // descriptor->file()->pool() == DescriptorPool::generated_pool().)
754  //
755  // This factory is 100% thread-safe; calling GetPrototype() does not modify
756  // any shared data.
757  //
758  // This factory is a singleton. The caller must not delete the object.
759  static MessageFactory* generated_factory();
760 
761  // For internal use only: Registers a .proto file at static initialization
762  // time, to be placed in generated_factory. The first time GetPrototype()
763  // is called with a descriptor from this file, |register_messages| will be
764  // called, with the file name as the parameter. It must call
765  // InternalRegisterGeneratedMessage() (below) to register each message type
766  // in the file. This strange mechanism is necessary because descriptors are
767  // built lazily, so we can't register types by their descriptor until we
768  // know that the descriptor exists. |filename| must be a permanent string.
769  static void InternalRegisterGeneratedFile(
770  const char* filename, void (*register_messages)(const string&));
771 
772  // For internal use only: Registers a message type. Called only by the
773  // functions which are registered with InternalRegisterGeneratedFile(),
774  // above.
775  static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
776  const Message* prototype);
777 
778 
779  private:
781 };
782 
783 #define DECLARE_GET_REPEATED_FIELD(TYPE) \
784 template<> \
785 LIBPROTOBUF_EXPORT \
786 const RepeatedField<TYPE>& Reflection::GetRepeatedField<TYPE>( \
787  const Message& message, const FieldDescriptor* field) const; \
788  \
789 template<> \
790 RepeatedField<TYPE>* Reflection::MutableRepeatedField<TYPE>( \
791  Message* message, const FieldDescriptor* field) const;
792 
800 
801 #undef DECLARE_GET_REPEATED_FIELD
802 
803 // =============================================================================
804 // Implementation details for {Get,Mutable}RawRepeatedPtrField. We provide
805 // specializations for <string>, <StringPieceField> and <Message> and handle
806 // everything else with the default template which will match any type having
807 // a method with signature "static const google::protobuf::Descriptor* descriptor()".
808 // Such a type presumably is a descendant of google::protobuf::Message.
809 
810 template<>
811 inline const RepeatedPtrField<string>& Reflection::GetRepeatedPtrField<string>(
812  const Message& message, const FieldDescriptor* field) const {
813  return *static_cast<RepeatedPtrField<string>* >(
814  MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
815 }
816 
817 template<>
818 inline RepeatedPtrField<string>* Reflection::MutableRepeatedPtrField<string>(
819  Message* message, const FieldDescriptor* field) const {
820  return static_cast<RepeatedPtrField<string>* >(
821  MutableRawRepeatedString(message, field, true));
822 }
823 
824 
825 // -----
826 
827 template<>
829  const Message& message, const FieldDescriptor* field) const {
830  return *static_cast<RepeatedPtrField<Message>* >(
831  MutableRawRepeatedField(const_cast<Message*>(&message), field,
833  NULL));
834 }
835 
836 template<>
838  Message* message, const FieldDescriptor* field) const {
839  return static_cast<RepeatedPtrField<Message>* >(
840  MutableRawRepeatedField(message, field,
842  NULL));
843 }
844 
845 template<typename PB>
847  const Message& message, const FieldDescriptor* field) const {
848  return *static_cast<RepeatedPtrField<PB>* >(
849  MutableRawRepeatedField(const_cast<Message*>(&message), field,
851  PB::default_instance().GetDescriptor()));
852 }
853 
854 template<typename PB>
856  Message* message, const FieldDescriptor* field) const {
857  return static_cast<RepeatedPtrField<PB>* >(
858  MutableRawRepeatedField(message, field,
860  PB::default_instance().GetDescriptor()));
861 }
862 
863 } // namespace protobuf
864 
865 } // namespace google
866 #endif // GOOGLE_PROTOBUF_MESSAGE_H__
MessageFactory()
Definition: message.h:722
const Reflection * reflection
Definition: message.h:152
Definition: message.h:144
RepeatedPtrField< T > * MutableRepeatedPtrField(Message *, const FieldDescriptor *) const
Definition: message_lite.h:77
int64_t int64
Definition: Define.h:145
virtual const FieldDescriptor * GetOneofFieldDescriptor(const Message &, const OneofDescriptor *) const
Definition: message.h:402
Definition: unknown_field_set.h:74
#define DECLARE_GET_REPEATED_FIELD(TYPE)
Definition: message.h:783
Definition: descriptor.h:126
arena_t NULL
Definition: jemalloc_internal.h:624
Definition: message.h:720
Definition: message.h:147
#define GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(TypeName)
Definition: common.h:89
Definition: message.h:357
Definition: descriptor.h:780
virtual void * MutableRawRepeatedField(Message *message, const FieldDescriptor *field, FieldDescriptor::CppType, int ctype, const Descriptor *message_type) const =0
Definition: message.h:165
#define output
Definition: wire_format_lite.h:381
const Descriptor * descriptor
Definition: message.h:151
Definition: coded_stream.h:156
int32_t int32
Definition: common.h:172
virtual bool HasOneof(const Message &, const OneofDescriptor *) const
Definition: message.h:392
Definition: coded_stream.h:621
virtual void ClearOneof(Message *, const OneofDescriptor *) const
Definition: message.h:397
Definition: message.h:150
#define input
Definition: wire_format_lite.h:242
virtual const Reflection * GetReflection() const
Definition: message.h:301
int32_t int32
Definition: Define.h:146
uint32_t uint32
Definition: common.h:177
uint32_t uint32
Definition: Define.h:150
uint64_t uint64
Definition: Define.h:149
uint64_t uint64
Definition: common.h:178
const RepeatedPtrField< T > & GetRepeatedPtrField(const Message &, const FieldDescriptor *) const
const Descriptor * GetDescriptor() const
Definition: message.h:292
#define LIBPROTOBUF_EXPORT
Definition: common.h:105
CppType
Definition: descriptor.h:378
int64_t int64
Definition: common.h:173
Definition: descriptor.h:625
Definition: descriptor.h:342
Definition: BnetFileGenerator.h:47
const FieldDescriptor value
Definition: descriptor.h:1522
Message()
Definition: message.h:167
google::protobuf::Reflection Reflection
Definition: message.h:288
Reflection()
Definition: message.h:359