TrinityCore
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
map_util.h
Go to the documentation of this file.
1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2014 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // from google3/util/gtl/map_util.h
32 // Author: Anton Carver
33 
34 #ifndef GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__
35 #define GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__
36 
37 #include <stddef.h>
38 #include <iterator>
39 #include <string>
40 #include <utility>
41 #include <vector>
42 
44 
45 namespace google {
46 namespace protobuf {
47 namespace internal {
48 // Local implementation of RemoveConst to avoid including base/type_traits.h.
49 template <class T> struct RemoveConst { typedef T type; };
50 template <class T> struct RemoveConst<const T> : RemoveConst<T> {};
51 } // namespace internal
52 
53 //
54 // Find*()
55 //
56 
57 // Returns a const reference to the value associated with the given key if it
58 // exists. Crashes otherwise.
59 //
60 // This is intended as a replacement for operator[] as an rvalue (for reading)
61 // when the key is guaranteed to exist.
62 //
63 // operator[] for lookup is discouraged for several reasons:
64 // * It has a side-effect of inserting missing keys
65 // * It is not thread-safe (even when it is not inserting, it can still
66 // choose to resize the underlying storage)
67 // * It invalidates iterators (when it chooses to resize)
68 // * It default constructs a value object even if it doesn't need to
69 //
70 // This version assumes the key is printable, and includes it in the fatal log
71 // message.
72 template <class Collection>
73 const typename Collection::value_type::second_type&
74 FindOrDie(const Collection& collection,
75  const typename Collection::value_type::first_type& key) {
76  typename Collection::const_iterator it = collection.find(key);
77  GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key;
78  return it->second;
79 }
80 
81 // Same as above, but returns a non-const reference.
82 template <class Collection>
83 typename Collection::value_type::second_type&
84 FindOrDie(Collection& collection, // NOLINT
85  const typename Collection::value_type::first_type& key) {
86  typename Collection::iterator it = collection.find(key);
87  GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key;
88  return it->second;
89 }
90 
91 // Same as FindOrDie above, but doesn't log the key on failure.
92 template <class Collection>
93 const typename Collection::value_type::second_type&
94 FindOrDieNoPrint(const Collection& collection,
95  const typename Collection::value_type::first_type& key) {
96  typename Collection::const_iterator it = collection.find(key);
97  GOOGLE_CHECK(it != collection.end()) << "Map key not found";
98  return it->second;
99 }
100 
101 // Same as above, but returns a non-const reference.
102 template <class Collection>
103 typename Collection::value_type::second_type&
104 FindOrDieNoPrint(Collection& collection, // NOLINT
105  const typename Collection::value_type::first_type& key) {
106  typename Collection::iterator it = collection.find(key);
107  GOOGLE_CHECK(it != collection.end()) << "Map key not found";
108  return it->second;
109 }
110 
111 // Returns a const reference to the value associated with the given key if it
112 // exists, otherwise returns a const reference to the provided default value.
113 //
114 // WARNING: If a temporary object is passed as the default "value,"
115 // this function will return a reference to that temporary object,
116 // which will be destroyed at the end of the statement. A common
117 // example: if you have a map with string values, and you pass a char*
118 // as the default "value," either use the returned value immediately
119 // or store it in a string (not string&).
120 // Details: http://go/findwithdefault
121 template <class Collection>
122 const typename Collection::value_type::second_type&
123 FindWithDefault(const Collection& collection,
124  const typename Collection::value_type::first_type& key,
125  const typename Collection::value_type::second_type& value) {
126  typename Collection::const_iterator it = collection.find(key);
127  if (it == collection.end()) {
128  return value;
129  }
130  return it->second;
131 }
132 
133 // Returns a pointer to the const value associated with the given key if it
134 // exists, or NULL otherwise.
135 template <class Collection>
136 const typename Collection::value_type::second_type*
137 FindOrNull(const Collection& collection,
138  const typename Collection::value_type::first_type& key) {
139  typename Collection::const_iterator it = collection.find(key);
140  if (it == collection.end()) {
141  return 0;
142  }
143  return &it->second;
144 }
145 
146 // Same as above but returns a pointer to the non-const value.
147 template <class Collection>
148 typename Collection::value_type::second_type*
149 FindOrNull(Collection& collection, // NOLINT
150  const typename Collection::value_type::first_type& key) {
151  typename Collection::iterator it = collection.find(key);
152  if (it == collection.end()) {
153  return 0;
154  }
155  return &it->second;
156 }
157 
158 // Returns the pointer value associated with the given key. If none is found,
159 // NULL is returned. The function is designed to be used with a map of keys to
160 // pointers.
161 //
162 // This function does not distinguish between a missing key and a key mapped
163 // to a NULL value.
164 template <class Collection>
165 typename Collection::value_type::second_type
166 FindPtrOrNull(const Collection& collection,
167  const typename Collection::value_type::first_type& key) {
168  typename Collection::const_iterator it = collection.find(key);
169  if (it == collection.end()) {
170  return typename Collection::value_type::second_type();
171  }
172  return it->second;
173 }
174 
175 // Same as above, except takes non-const reference to collection.
176 //
177 // This function is needed for containers that propagate constness to the
178 // pointee, such as boost::ptr_map.
179 template <class Collection>
180 typename Collection::value_type::second_type
181 FindPtrOrNull(Collection& collection, // NOLINT
182  const typename Collection::value_type::first_type& key) {
183  typename Collection::iterator it = collection.find(key);
184  if (it == collection.end()) {
185  return typename Collection::value_type::second_type();
186  }
187  return it->second;
188 }
189 
190 // Finds the pointer value associated with the given key in a map whose values
191 // are linked_ptrs. Returns NULL if key is not found.
192 template <class Collection>
193 typename Collection::value_type::second_type::element_type*
194 FindLinkedPtrOrNull(const Collection& collection,
195  const typename Collection::value_type::first_type& key) {
196  typename Collection::const_iterator it = collection.find(key);
197  if (it == collection.end()) {
198  return 0;
199  }
200  // Since linked_ptr::get() is a const member returning a non const,
201  // we do not need a version of this function taking a non const collection.
202  return it->second.get();
203 }
204 
205 // Same as above, but dies if the key is not found.
206 template <class Collection>
207 typename Collection::value_type::second_type::element_type&
208 FindLinkedPtrOrDie(const Collection& collection,
209  const typename Collection::value_type::first_type& key) {
210  typename Collection::const_iterator it = collection.find(key);
211  CHECK(it != collection.end()) << "key not found: " << key;
212  // Since linked_ptr::operator*() is a const member returning a non const,
213  // we do not need a version of this function taking a non const collection.
214  return *it->second;
215 }
216 
217 // Finds the value associated with the given key and copies it to *value (if not
218 // NULL). Returns false if the key was not found, true otherwise.
219 template <class Collection, class Key, class Value>
220 bool FindCopy(const Collection& collection,
221  const Key& key,
222  Value* const value) {
223  typename Collection::const_iterator it = collection.find(key);
224  if (it == collection.end()) {
225  return false;
226  }
227  if (value) {
228  *value = it->second;
229  }
230  return true;
231 }
232 
233 //
234 // Contains*()
235 //
236 
237 // Returns true if and only if the given collection contains the given key.
238 template <class Collection, class Key>
239 bool ContainsKey(const Collection& collection, const Key& key) {
240  return collection.find(key) != collection.end();
241 }
242 
243 // Returns true if and only if the given collection contains the given key-value
244 // pair.
245 template <class Collection, class Key, class Value>
246 bool ContainsKeyValuePair(const Collection& collection,
247  const Key& key,
248  const Value& value) {
249  typedef typename Collection::const_iterator const_iterator;
250  std::pair<const_iterator, const_iterator> range = collection.equal_range(key);
251  for (const_iterator it = range.first; it != range.second; ++it) {
252  if (it->second == value) {
253  return true;
254  }
255  }
256  return false;
257 }
258 
259 //
260 // Insert*()
261 //
262 
263 // Inserts the given key-value pair into the collection. Returns true if and
264 // only if the key from the given pair didn't previously exist. Otherwise, the
265 // value in the map is replaced with the value from the given pair.
266 template <class Collection>
267 bool InsertOrUpdate(Collection* const collection,
268  const typename Collection::value_type& vt) {
269  std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
270  if (!ret.second) {
271  // update
272  ret.first->second = vt.second;
273  return false;
274  }
275  return true;
276 }
277 
278 // Same as above, except that the key and value are passed separately.
279 template <class Collection>
280 bool InsertOrUpdate(Collection* const collection,
281  const typename Collection::value_type::first_type& key,
282  const typename Collection::value_type::second_type& value) {
283  return InsertOrUpdate(
284  collection, typename Collection::value_type(key, value));
285 }
286 
287 // Inserts/updates all the key-value pairs from the range defined by the
288 // iterators "first" and "last" into the given collection.
289 template <class Collection, class InputIterator>
290 void InsertOrUpdateMany(Collection* const collection,
291  InputIterator first, InputIterator last) {
292  for (; first != last; ++first) {
293  InsertOrUpdate(collection, *first);
294  }
295 }
296 
297 // Change the value associated with a particular key in a map or hash_map
298 // of the form map<Key, Value*> which owns the objects pointed to by the
299 // value pointers. If there was an existing value for the key, it is deleted.
300 // True indicates an insert took place, false indicates an update + delete.
301 template <class Collection>
303  Collection* const collection,
304  const typename Collection::value_type::first_type& key,
305  const typename Collection::value_type::second_type& value) {
306  std::pair<typename Collection::iterator, bool> ret =
307  collection->insert(typename Collection::value_type(key, value));
308  if (!ret.second) {
309  delete ret.first->second;
310  ret.first->second = value;
311  return false;
312  }
313  return true;
314 }
315 
316 // Inserts the given key and value into the given collection if and only if the
317 // given key did NOT already exist in the collection. If the key previously
318 // existed in the collection, the value is not changed. Returns true if the
319 // key-value pair was inserted; returns false if the key was already present.
320 template <class Collection>
321 bool InsertIfNotPresent(Collection* const collection,
322  const typename Collection::value_type& vt) {
323  return collection->insert(vt).second;
324 }
325 
326 // Same as above except the key and value are passed separately.
327 template <class Collection>
329  Collection* const collection,
330  const typename Collection::value_type::first_type& key,
331  const typename Collection::value_type::second_type& value) {
332  return InsertIfNotPresent(
333  collection, typename Collection::value_type(key, value));
334 }
335 
336 // Same as above except dies if the key already exists in the collection.
337 template <class Collection>
338 void InsertOrDie(Collection* const collection,
339  const typename Collection::value_type& value) {
340  CHECK(InsertIfNotPresent(collection, value)) << "duplicate value: " << value;
341 }
342 
343 // Same as above except doesn't log the value on error.
344 template <class Collection>
345 void InsertOrDieNoPrint(Collection* const collection,
346  const typename Collection::value_type& value) {
347  CHECK(InsertIfNotPresent(collection, value)) << "duplicate value.";
348 }
349 
350 // Inserts the key-value pair into the collection. Dies if key was already
351 // present.
352 template <class Collection>
353 void InsertOrDie(Collection* const collection,
354  const typename Collection::value_type::first_type& key,
355  const typename Collection::value_type::second_type& data) {
356  typedef typename Collection::value_type value_type;
357  GOOGLE_CHECK(InsertIfNotPresent(collection, key, data))
358  << "duplicate key: " << key;
359 }
360 
361 // Same as above except doesn't log the key on error.
362 template <class Collection>
364  Collection* const collection,
365  const typename Collection::value_type::first_type& key,
366  const typename Collection::value_type::second_type& data) {
367  typedef typename Collection::value_type value_type;
368  GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) << "duplicate key.";
369 }
370 
371 // Inserts a new key and default-initialized value. Dies if the key was already
372 // present. Returns a reference to the value. Example usage:
373 //
374 // map<int, SomeProto> m;
375 // SomeProto& proto = InsertKeyOrDie(&m, 3);
376 // proto.set_field("foo");
377 template <class Collection>
378 typename Collection::value_type::second_type& InsertKeyOrDie(
379  Collection* const collection,
380  const typename Collection::value_type::first_type& key) {
381  typedef typename Collection::value_type value_type;
382  std::pair<typename Collection::iterator, bool> res =
383  collection->insert(value_type(key, typename value_type::second_type()));
384  GOOGLE_CHECK(res.second) << "duplicate key: " << key;
385  return res.first->second;
386 }
387 
388 //
389 // Lookup*()
390 //
391 
392 // Looks up a given key and value pair in a collection and inserts the key-value
393 // pair if it's not already present. Returns a reference to the value associated
394 // with the key.
395 template <class Collection>
396 typename Collection::value_type::second_type&
397 LookupOrInsert(Collection* const collection,
398  const typename Collection::value_type& vt) {
399  return collection->insert(vt).first->second;
400 }
401 
402 // Same as above except the key-value are passed separately.
403 template <class Collection>
404 typename Collection::value_type::second_type&
405 LookupOrInsert(Collection* const collection,
406  const typename Collection::value_type::first_type& key,
407  const typename Collection::value_type::second_type& value) {
408  return LookupOrInsert(
409  collection, typename Collection::value_type(key, value));
410 }
411 
412 // Counts the number of equivalent elements in the given "sequence", and stores
413 // the results in "count_map" with element as the key and count as the value.
414 //
415 // Example:
416 // vector<string> v = {"a", "b", "c", "a", "b"};
417 // map<string, int> m;
418 // AddTokenCounts(v, 1, &m);
419 // assert(m["a"] == 2);
420 // assert(m["b"] == 2);
421 // assert(m["c"] == 1);
422 template <typename Sequence, typename Collection>
424  const Sequence& sequence,
425  const typename Collection::value_type::second_type& increment,
426  Collection* const count_map) {
427  for (typename Sequence::const_iterator it = sequence.begin();
428  it != sequence.end(); ++it) {
429  typename Collection::value_type::second_type& value =
430  LookupOrInsert(count_map, *it,
431  typename Collection::value_type::second_type());
432  value += increment;
433  }
434 }
435 
436 // Returns a reference to the value associated with key. If not found, a value
437 // is default constructed on the heap and added to the map.
438 //
439 // This function is useful for containers of the form map<Key, Value*>, where
440 // inserting a new key, value pair involves constructing a new heap-allocated
441 // Value, and storing a pointer to that in the collection.
442 template <class Collection>
443 typename Collection::value_type::second_type&
444 LookupOrInsertNew(Collection* const collection,
445  const typename Collection::value_type::first_type& key) {
446  typedef typename std::iterator_traits<
447  typename Collection::value_type::second_type>::value_type Element;
448  std::pair<typename Collection::iterator, bool> ret =
449  collection->insert(typename Collection::value_type(
450  key,
451  static_cast<typename Collection::value_type::second_type>(NULL)));
452  if (ret.second) {
453  ret.first->second = new Element();
454  }
455  return ret.first->second;
456 }
457 
458 // Same as above but constructs the value using the single-argument constructor
459 // and the given "arg".
460 template <class Collection, class Arg>
461 typename Collection::value_type::second_type&
462 LookupOrInsertNew(Collection* const collection,
463  const typename Collection::value_type::first_type& key,
464  const Arg& arg) {
465  typedef typename std::iterator_traits<
466  typename Collection::value_type::second_type>::value_type Element;
467  std::pair<typename Collection::iterator, bool> ret =
468  collection->insert(typename Collection::value_type(
469  key,
470  static_cast<typename Collection::value_type::second_type>(NULL)));
471  if (ret.second) {
472  ret.first->second = new Element(arg);
473  }
474  return ret.first->second;
475 }
476 
477 // Lookup of linked/shared pointers is used in two scenarios:
478 //
479 // Use LookupOrInsertNewLinkedPtr if the container owns the elements.
480 // In this case it is fine working with the raw pointer as long as it is
481 // guaranteed that no other thread can delete/update an accessed element.
482 // A mutex will need to lock the container operation as well as the use
483 // of the returned elements. Finding an element may be performed using
484 // FindLinkedPtr*().
485 //
486 // Use LookupOrInsertNewSharedPtr if the container does not own the elements
487 // for their whole lifetime. This is typically the case when a reader allows
488 // parallel updates to the container. In this case a Mutex only needs to lock
489 // container operations, but all element operations must be performed on the
490 // shared pointer. Finding an element must be performed using FindPtr*() and
491 // cannot be done with FindLinkedPtr*() even though it compiles.
492 
493 // Lookup a key in a map or hash_map whose values are linked_ptrs. If it is
494 // missing, set collection[key].reset(new Value::element_type) and return that.
495 // Value::element_type must be default constructable.
496 template <class Collection>
497 typename Collection::value_type::second_type::element_type*
499  Collection* const collection,
500  const typename Collection::value_type::first_type& key) {
501  typedef typename Collection::value_type::second_type Value;
502  std::pair<typename Collection::iterator, bool> ret =
503  collection->insert(typename Collection::value_type(key, Value()));
504  if (ret.second) {
505  ret.first->second.reset(new typename Value::element_type);
506  }
507  return ret.first->second.get();
508 }
509 
510 // A variant of LookupOrInsertNewLinkedPtr where the value is constructed using
511 // a single-parameter constructor. Note: the constructor argument is computed
512 // even if it will not be used, so only values cheap to compute should be passed
513 // here. On the other hand it does not matter how expensive the construction of
514 // the actual stored value is, as that only occurs if necessary.
515 template <class Collection, class Arg>
516 typename Collection::value_type::second_type::element_type*
518  Collection* const collection,
519  const typename Collection::value_type::first_type& key,
520  const Arg& arg) {
521  typedef typename Collection::value_type::second_type Value;
522  std::pair<typename Collection::iterator, bool> ret =
523  collection->insert(typename Collection::value_type(key, Value()));
524  if (ret.second) {
525  ret.first->second.reset(new typename Value::element_type(arg));
526  }
527  return ret.first->second.get();
528 }
529 
530 // Lookup a key in a map or hash_map whose values are shared_ptrs. If it is
531 // missing, set collection[key].reset(new Value::element_type). Unlike
532 // LookupOrInsertNewLinkedPtr, this function returns the shared_ptr instead of
533 // the raw pointer. Value::element_type must be default constructable.
534 template <class Collection>
535 typename Collection::value_type::second_type&
537  Collection* const collection,
538  const typename Collection::value_type::first_type& key) {
539  typedef typename Collection::value_type::second_type SharedPtr;
540  typedef typename Collection::value_type::second_type::element_type Element;
541  std::pair<typename Collection::iterator, bool> ret =
542  collection->insert(typename Collection::value_type(key, SharedPtr()));
543  if (ret.second) {
544  ret.first->second.reset(new Element());
545  }
546  return ret.first->second;
547 }
548 
549 // A variant of LookupOrInsertNewSharedPtr where the value is constructed using
550 // a single-parameter constructor. Note: the constructor argument is computed
551 // even if it will not be used, so only values cheap to compute should be passed
552 // here. On the other hand it does not matter how expensive the construction of
553 // the actual stored value is, as that only occurs if necessary.
554 template <class Collection, class Arg>
555 typename Collection::value_type::second_type&
557  Collection* const collection,
558  const typename Collection::value_type::first_type& key,
559  const Arg& arg) {
560  typedef typename Collection::value_type::second_type SharedPtr;
561  typedef typename Collection::value_type::second_type::element_type Element;
562  std::pair<typename Collection::iterator, bool> ret =
563  collection->insert(typename Collection::value_type(key, SharedPtr()));
564  if (ret.second) {
565  ret.first->second.reset(new Element(arg));
566  }
567  return ret.first->second;
568 }
569 
570 //
571 // Misc Utility Functions
572 //
573 
574 // Updates the value associated with the given key. If the key was not already
575 // present, then the key-value pair are inserted and "previous" is unchanged. If
576 // the key was already present, the value is updated and "*previous" will
577 // contain a copy of the old value.
578 //
579 // InsertOrReturnExisting has complementary behavior that returns the
580 // address of an already existing value, rather than updating it.
581 template <class Collection>
582 bool UpdateReturnCopy(Collection* const collection,
583  const typename Collection::value_type::first_type& key,
584  const typename Collection::value_type::second_type& value,
585  typename Collection::value_type::second_type* previous) {
586  std::pair<typename Collection::iterator, bool> ret =
587  collection->insert(typename Collection::value_type(key, value));
588  if (!ret.second) {
589  // update
590  if (previous) {
591  *previous = ret.first->second;
592  }
593  ret.first->second = value;
594  return true;
595  }
596  return false;
597 }
598 
599 // Same as above except that the key and value are passed as a pair.
600 template <class Collection>
601 bool UpdateReturnCopy(Collection* const collection,
602  const typename Collection::value_type& vt,
603  typename Collection::value_type::second_type* previous) {
604  std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
605  if (!ret.second) {
606  // update
607  if (previous) {
608  *previous = ret.first->second;
609  }
610  ret.first->second = vt.second;
611  return true;
612  }
613  return false;
614 }
615 
616 // Tries to insert the given key-value pair into the collection. Returns NULL if
617 // the insert succeeds. Otherwise, returns a pointer to the existing value.
618 //
619 // This complements UpdateReturnCopy in that it allows to update only after
620 // verifying the old value and still insert quickly without having to look up
621 // twice. Unlike UpdateReturnCopy this also does not come with the issue of an
622 // undefined previous* in case new data was inserted.
623 template <class Collection>
624 typename Collection::value_type::second_type* const
625 InsertOrReturnExisting(Collection* const collection,
626  const typename Collection::value_type& vt) {
627  std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
628  if (ret.second) {
629  return NULL; // Inserted, no existing previous value.
630  } else {
631  return &ret.first->second; // Return address of already existing value.
632  }
633 }
634 
635 // Same as above, except for explicit key and data.
636 template <class Collection>
637 typename Collection::value_type::second_type* const
639  Collection* const collection,
640  const typename Collection::value_type::first_type& key,
641  const typename Collection::value_type::second_type& data) {
642  return InsertOrReturnExisting(collection,
643  typename Collection::value_type(key, data));
644 }
645 
646 // Erases the collection item identified by the given key, and returns the value
647 // associated with that key. It is assumed that the value (i.e., the
648 // mapped_type) is a pointer. Returns NULL if the key was not found in the
649 // collection.
650 //
651 // Examples:
652 // map<string, MyType*> my_map;
653 //
654 // One line cleanup:
655 // delete EraseKeyReturnValuePtr(&my_map, "abc");
656 //
657 // Use returned value:
658 // scoped_ptr<MyType> value_ptr(EraseKeyReturnValuePtr(&my_map, "abc"));
659 // if (value_ptr.get())
660 // value_ptr->DoSomething();
661 //
662 template <class Collection>
663 typename Collection::value_type::second_type EraseKeyReturnValuePtr(
664  Collection* const collection,
665  const typename Collection::value_type::first_type& key) {
666  typename Collection::iterator it = collection->find(key);
667  if (it == collection->end()) {
668  return NULL;
669  }
670  typename Collection::value_type::second_type v = it->second;
671  collection->erase(it);
672  return v;
673 }
674 
675 // Inserts all the keys from map_container into key_container, which must
676 // support insert(MapContainer::key_type).
677 //
678 // Note: any initial contents of the key_container are not cleared.
679 template <class MapContainer, class KeyContainer>
680 void InsertKeysFromMap(const MapContainer& map_container,
681  KeyContainer* key_container) {
682  GOOGLE_CHECK(key_container != NULL);
683  for (typename MapContainer::const_iterator it = map_container.begin();
684  it != map_container.end(); ++it) {
685  key_container->insert(it->first);
686  }
687 }
688 
689 // Appends all the keys from map_container into key_container, which must
690 // support push_back(MapContainer::key_type).
691 //
692 // Note: any initial contents of the key_container are not cleared.
693 template <class MapContainer, class KeyContainer>
694 void AppendKeysFromMap(const MapContainer& map_container,
695  KeyContainer* key_container) {
696  GOOGLE_CHECK(key_container != NULL);
697  for (typename MapContainer::const_iterator it = map_container.begin();
698  it != map_container.end(); ++it) {
699  key_container->push_back(it->first);
700  }
701 }
702 
703 // A more specialized overload of AppendKeysFromMap to optimize reallocations
704 // for the common case in which we're appending keys to a vector and hence can
705 // (and sometimes should) call reserve() first.
706 //
707 // (It would be possible to play SFINAE games to call reserve() for any
708 // container that supports it, but this seems to get us 99% of what we need
709 // without the complexity of a SFINAE-based solution.)
710 template <class MapContainer, class KeyType>
711 void AppendKeysFromMap(const MapContainer& map_container,
712  vector<KeyType>* key_container) {
713  GOOGLE_CHECK(key_container != NULL);
714  // We now have the opportunity to call reserve(). Calling reserve() every
715  // time is a bad idea for some use cases: libstdc++'s implementation of
716  // vector<>::reserve() resizes the vector's backing store to exactly the
717  // given size (unless it's already at least that big). Because of this,
718  // the use case that involves appending a lot of small maps (total size
719  // N) one by one to a vector would be O(N^2). But never calling reserve()
720  // loses the opportunity to improve the use case of adding from a large
721  // map to an empty vector (this improves performance by up to 33%). A
722  // number of heuristics are possible; see the discussion in
723  // cl/34081696. Here we use the simplest one.
724  if (key_container->empty()) {
725  key_container->reserve(map_container.size());
726  }
727  for (typename MapContainer::const_iterator it = map_container.begin();
728  it != map_container.end(); ++it) {
729  key_container->push_back(it->first);
730  }
731 }
732 
733 // Inserts all the values from map_container into value_container, which must
734 // support push_back(MapContainer::mapped_type).
735 //
736 // Note: any initial contents of the value_container are not cleared.
737 template <class MapContainer, class ValueContainer>
738 void AppendValuesFromMap(const MapContainer& map_container,
739  ValueContainer* value_container) {
740  GOOGLE_CHECK(value_container != NULL);
741  for (typename MapContainer::const_iterator it = map_container.begin();
742  it != map_container.end(); ++it) {
743  value_container->push_back(it->second);
744  }
745 }
746 
747 // A more specialized overload of AppendValuesFromMap to optimize reallocations
748 // for the common case in which we're appending values to a vector and hence
749 // can (and sometimes should) call reserve() first.
750 //
751 // (It would be possible to play SFINAE games to call reserve() for any
752 // container that supports it, but this seems to get us 99% of what we need
753 // without the complexity of a SFINAE-based solution.)
754 template <class MapContainer, class ValueType>
755 void AppendValuesFromMap(const MapContainer& map_container,
756  vector<ValueType>* value_container) {
757  GOOGLE_CHECK(value_container != NULL);
758  // See AppendKeysFromMap for why this is done.
759  if (value_container->empty()) {
760  value_container->reserve(map_container.size());
761  }
762  for (typename MapContainer::const_iterator it = map_container.begin();
763  it != map_container.end(); ++it) {
764  value_container->push_back(it->second);
765  }
766 }
767 
768 } // namespace protobuf
769 } // namespace google
770 
771 #endif // GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__
Collection::value_type::second_type *const InsertOrReturnExisting(Collection *const collection, const typename Collection::value_type &vt)
Definition: map_util.h:625
const Collection::value_type::second_type & FindWithDefault(const Collection &collection, const typename Collection::value_type::first_type &key, const typename Collection::value_type::second_type &value)
Definition: map_util.h:123
const Collection::value_type::second_type * FindOrNull(const Collection &collection, const typename Collection::value_type::first_type &key)
Definition: map_util.h:137
bool ContainsKey(const Collection &collection, const Key &key)
Definition: map_util.h:239
bool UpdateReturnCopy(Collection *const collection, const typename Collection::value_type::first_type &key, const typename Collection::value_type::second_type &value, typename Collection::value_type::second_type *previous)
Definition: map_util.h:582
void AddTokenCounts(const Sequence &sequence, const typename Collection::value_type::second_type &increment, Collection *const count_map)
Definition: map_util.h:423
Collection::value_type::second_type & LookupOrInsertNewSharedPtr(Collection *const collection, const typename Collection::value_type::first_type &key)
Definition: map_util.h:536
void AppendKeysFromMap(const MapContainer &map_container, KeyContainer *key_container)
Definition: map_util.h:694
bool ContainsKeyValuePair(const Collection &collection, const Key &key, const Value &value)
Definition: map_util.h:246
void InsertOrUpdateMany(Collection *const collection, InputIterator first, InputIterator last)
Definition: map_util.h:290
Collection::value_type::second_type::element_type * FindLinkedPtrOrNull(const Collection &collection, const typename Collection::value_type::first_type &key)
Definition: map_util.h:194
Collection::value_type::second_type & LookupOrInsertNew(Collection *const collection, const typename Collection::value_type::first_type &key)
Definition: map_util.h:444
arena_t NULL
Definition: jemalloc_internal.h:624
bool InsertAndDeleteExisting(Collection *const collection, const typename Collection::value_type::first_type &key, const typename Collection::value_type::second_type &value)
Definition: map_util.h:302
Collection::value_type::second_type::element_type * LookupOrInsertNewLinkedPtr(Collection *const collection, const typename Collection::value_type::first_type &key)
Definition: map_util.h:498
Collection::value_type::second_type EraseKeyReturnValuePtr(Collection *const collection, const typename Collection::value_type::first_type &key)
Definition: map_util.h:663
Collection::value_type::second_type::element_type & FindLinkedPtrOrDie(const Collection &collection, const typename Collection::value_type::first_type &key)
Definition: map_util.h:208
GenericValue< UTF8<> > Value
GenericValue with UTF8 encoding.
Definition: document.h:1706
Definition: inflate.h:47
#define GOOGLE_CHECK(EXPRESSION)
Definition: common.h:713
uint32_t previous(octet_iterator &it, octet_iterator pass_start)
Deprecated in versions that include "prior".
Definition: checked.h:179
Collection::value_type::second_type & LookupOrInsert(Collection *const collection, const typename Collection::value_type &vt)
Definition: map_util.h:397
void AppendValuesFromMap(const MapContainer &map_container, ValueContainer *value_container)
Definition: map_util.h:738
bool InsertIfNotPresent(Collection *const collection, const typename Collection::value_type &vt)
Definition: map_util.h:321
bool FindCopy(const Collection &collection, const Key &key, Value *const value)
Definition: map_util.h:220
Definition: document.h:390
internal::NamedArg< char > arg(StringRef name, const T &arg)
Definition: format.h:3248
bool InsertOrUpdate(Collection *const collection, const typename Collection::value_type &vt)
Definition: map_util.h:267
Collection::value_type::second_type & InsertKeyOrDie(Collection *const collection, const typename Collection::value_type::first_type &key)
Definition: map_util.h:378
const Collection::value_type::second_type & FindOrDie(const Collection &collection, const typename Collection::value_type::first_type &key)
Definition: map_util.h:74
Definition: BnetFileGenerator.h:47
const Collection::value_type::second_type & FindOrDieNoPrint(const Collection &collection, const typename Collection::value_type::first_type &key)
Definition: map_util.h:94
const FieldDescriptor value
Definition: descriptor.h:1522
#define const
Definition: zconf.h:217
void InsertKeysFromMap(const MapContainer &map_container, KeyContainer *key_container)
Definition: map_util.h:680
T type
Definition: map_util.h:49
void InsertOrDieNoPrint(Collection *const collection, const typename Collection::value_type &value)
Definition: map_util.h:345
void InsertOrDie(Collection *const collection, const typename Collection::value_type &value)
Definition: map_util.h:338
Collection::value_type::second_type FindPtrOrNull(const Collection &collection, const typename Collection::value_type::first_type &key)
Definition: map_util.h:166