TrinityCore
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
coded_stream.h
Go to the documentation of this file.
1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // Author: [email protected] (Kenton Varda)
32 // Based on original Protocol Buffers design by
33 // Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // This file contains the CodedInputStream and CodedOutputStream classes,
36 // which wrap a ZeroCopyInputStream or ZeroCopyOutputStream, respectively,
37 // and allow you to read or write individual pieces of data in various
38 // formats. In particular, these implement the varint encoding for
39 // integers, a simple variable-length encoding in which smaller numbers
40 // take fewer bytes.
41 //
42 // Typically these classes will only be used internally by the protocol
43 // buffer library in order to encode and decode protocol buffers. Clients
44 // of the library only need to know about this class if they wish to write
45 // custom message parsing or serialization procedures.
46 //
47 // CodedOutputStream example:
48 // // Write some data to "myfile". First we write a 4-byte "magic number"
49 // // to identify the file type, then write a length-delimited string. The
50 // // string is composed of a varint giving the length followed by the raw
51 // // bytes.
52 // int fd = open("myfile", O_WRONLY);
53 // ZeroCopyOutputStream* raw_output = new FileOutputStream(fd);
54 // CodedOutputStream* coded_output = new CodedOutputStream(raw_output);
55 //
56 // int magic_number = 1234;
57 // char text[] = "Hello world!";
58 // coded_output->WriteLittleEndian32(magic_number);
59 // coded_output->WriteVarint32(strlen(text));
60 // coded_output->WriteRaw(text, strlen(text));
61 //
62 // delete coded_output;
63 // delete raw_output;
64 // close(fd);
65 //
66 // CodedInputStream example:
67 // // Read a file created by the above code.
68 // int fd = open("myfile", O_RDONLY);
69 // ZeroCopyInputStream* raw_input = new FileInputStream(fd);
70 // CodedInputStream coded_input = new CodedInputStream(raw_input);
71 //
72 // coded_input->ReadLittleEndian32(&magic_number);
73 // if (magic_number != 1234) {
74 // cerr << "File not in expected format." << endl;
75 // return;
76 // }
77 //
78 // uint32 size;
79 // coded_input->ReadVarint32(&size);
80 //
81 // char* text = new char[size + 1];
82 // coded_input->ReadRaw(buffer, size);
83 // text[size] = '\0';
84 //
85 // delete coded_input;
86 // delete raw_input;
87 // close(fd);
88 //
89 // cout << "Text is: " << text << endl;
90 // delete [] text;
91 //
92 // For those who are interested, varint encoding is defined as follows:
93 //
94 // The encoding operates on unsigned integers of up to 64 bits in length.
95 // Each byte of the encoded value has the format:
96 // * bits 0-6: Seven bits of the number being encoded.
97 // * bit 7: Zero if this is the last byte in the encoding (in which
98 // case all remaining bits of the number are zero) or 1 if
99 // more bytes follow.
100 // The first byte contains the least-significant 7 bits of the number, the
101 // second byte (if present) contains the next-least-significant 7 bits,
102 // and so on. So, the binary number 1011000101011 would be encoded in two
103 // bytes as "10101011 00101100".
104 //
105 // In theory, varint could be used to encode integers of any length.
106 // However, for practicality we set a limit at 64 bits. The maximum encoded
107 // length of a number is thus 10 bytes.
108 
109 #ifndef GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
110 #define GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
111 
112 #include <string>
113 #ifdef _MSC_VER
114  #if defined(_M_IX86) && \
115  !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
116  #define PROTOBUF_LITTLE_ENDIAN 1
117  #endif
118  #if _MSC_VER >= 1300
119  // If MSVC has "/RTCc" set, it will complain about truncating casts at
120  // runtime. This file contains some intentional truncating casts.
121  #pragma runtime_checks("c", off)
122  #endif
123 #else
124  #include <sys/param.h> // __BYTE_ORDER
125  #if defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN && \
126  !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
127  #define PROTOBUF_LITTLE_ENDIAN 1
128  #endif
129 #endif
131 
132 
133 namespace google {
134 namespace protobuf {
135 
136 class DescriptorPool;
137 class MessageFactory;
138 
139 namespace io {
140 
141 // Defined in this file.
142 class CodedInputStream;
143 class CodedOutputStream;
144 
145 // Defined in other files.
146 class ZeroCopyInputStream; // zero_copy_stream.h
147 class ZeroCopyOutputStream; // zero_copy_stream.h
148 
149 // Class which reads and decodes binary data which is composed of varint-
150 // encoded integers and fixed-width pieces. Wraps a ZeroCopyInputStream.
151 // Most users will not need to deal with CodedInputStream.
152 //
153 // Most methods of CodedInputStream that return a bool return false if an
154 // underlying I/O error occurs or if the data is malformed. Once such a
155 // failure occurs, the CodedInputStream is broken and is no longer useful.
157  public:
158  // Create a CodedInputStream that reads from the given ZeroCopyInputStream.
160 
161  // Create a CodedInputStream that reads from the given flat array. This is
162  // faster than using an ArrayInputStream. PushLimit(size) is implied by
163  // this constructor.
164  explicit CodedInputStream(const uint8* buffer, int size);
165 
166  // Destroy the CodedInputStream and position the underlying
167  // ZeroCopyInputStream at the first unread byte. If an error occurred while
168  // reading (causing a method to return false), then the exact position of
169  // the input stream may be anywhere between the last value that was read
170  // successfully and the stream's byte limit.
171  ~CodedInputStream();
172 
173  // Return true if this CodedInputStream reads from a flat array instead of
174  // a ZeroCopyInputStream.
175  inline bool IsFlat() const;
176 
177  // Skips a number of bytes. Returns false if an underlying read error
178  // occurs.
179  bool Skip(int count);
180 
181  // Sets *data to point directly at the unread part of the CodedInputStream's
182  // underlying buffer, and *size to the size of that buffer, but does not
183  // advance the stream's current position. This will always either produce
184  // a non-empty buffer or return false. If the caller consumes any of
185  // this data, it should then call Skip() to skip over the consumed bytes.
186  // This may be useful for implementing external fast parsing routines for
187  // types of data not covered by the CodedInputStream interface.
188  bool GetDirectBufferPointer(const void** data, int* size);
189 
190  // Like GetDirectBufferPointer, but this method is inlined, and does not
191  // attempt to Refresh() if the buffer is currently empty.
192  inline void GetDirectBufferPointerInline(const void** data,
194 
195  // Read raw bytes, copying them into the given buffer.
196  bool ReadRaw(void* buffer, int size);
197 
198  // Like ReadRaw, but reads into a string.
199  //
200  // Implementation Note: ReadString() grows the string gradually as it
201  // reads in the data, rather than allocating the entire requested size
202  // upfront. This prevents denial-of-service attacks in which a client
203  // could claim that a string is going to be MAX_INT bytes long in order to
204  // crash the server because it can't allocate this much space at once.
205  bool ReadString(string* buffer, int size);
206  // Like the above, with inlined optimizations. This should only be used
207  // by the protobuf implementation.
208  inline bool InternalReadStringInline(string* buffer,
210 
211 
212  // Read a 32-bit little-endian integer.
213  bool ReadLittleEndian32(uint32* value);
214  // Read a 64-bit little-endian integer.
215  bool ReadLittleEndian64(uint64* value);
216 
217  // These methods read from an externally provided buffer. The caller is
218  // responsible for ensuring that the buffer has sufficient space.
219  // Read a 32-bit little-endian integer.
220  static const uint8* ReadLittleEndian32FromArray(const uint8* buffer,
221  uint32* value);
222  // Read a 64-bit little-endian integer.
223  static const uint8* ReadLittleEndian64FromArray(const uint8* buffer,
224  uint64* value);
225 
226  // Read an unsigned integer with Varint encoding, truncating to 32 bits.
227  // Reading a 32-bit value is equivalent to reading a 64-bit one and casting
228  // it to uint32, but may be more efficient.
229  bool ReadVarint32(uint32* value);
230  // Read an unsigned integer with Varint encoding.
231  bool ReadVarint64(uint64* value);
232 
233  // Read a tag. This calls ReadVarint32() and returns the result, or returns
234  // zero (which is not a valid tag) if ReadVarint32() fails. Also, it updates
235  // the last tag value, which can be checked with LastTagWas().
236  // Always inline because this is only called in one place per parse loop
237  // but it is called for every iteration of said loop, so it should be fast.
238  // GCC doesn't want to inline this by default.
240 
241  // This usually a faster alternative to ReadTag() when cutoff is a manifest
242  // constant. It does particularly well for cutoff >= 127. The first part
243  // of the return value is the tag that was read, though it can also be 0 in
244  // the cases where ReadTag() would return 0. If the second part is true
245  // then the tag is known to be in [0, cutoff]. If not, the tag either is
246  // above cutoff or is 0. (There's intentional wiggle room when tag is 0,
247  // because that can arise in several ways, and for best performance we want
248  // to avoid an extra "is tag == 0?" check here.)
249  inline std::pair<uint32, bool> ReadTagWithCutoff(uint32 cutoff)
251 
252  // Usually returns true if calling ReadVarint32() now would produce the given
253  // value. Will always return false if ReadVarint32() would not return the
254  // given value. If ExpectTag() returns true, it also advances past
255  // the varint. For best performance, use a compile-time constant as the
256  // parameter.
257  // Always inline because this collapses to a small number of instructions
258  // when given a constant parameter, but GCC doesn't want to inline by default.
259  bool ExpectTag(uint32 expected) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
260 
261  // Like above, except this reads from the specified buffer. The caller is
262  // responsible for ensuring that the buffer is large enough to read a varint
263  // of the expected size. For best performance, use a compile-time constant as
264  // the expected tag parameter.
265  //
266  // Returns a pointer beyond the expected tag if it was found, or NULL if it
267  // was not.
268  static const uint8* ExpectTagFromArray(
269  const uint8* buffer,
271 
272  // Usually returns true if no more bytes can be read. Always returns false
273  // if more bytes can be read. If ExpectAtEnd() returns true, a subsequent
274  // call to LastTagWas() will act as if ReadTag() had been called and returned
275  // zero, and ConsumedEntireMessage() will return true.
276  bool ExpectAtEnd();
277 
278  // If the last call to ReadTag() or ReadTagWithCutoff() returned the
279  // given value, returns true. Otherwise, returns false;
280  //
281  // This is needed because parsers for some types of embedded messages
282  // (with field type TYPE_GROUP) don't actually know that they've reached the
283  // end of a message until they see an ENDGROUP tag, which was actually part
284  // of the enclosing message. The enclosing message would like to check that
285  // tag to make sure it had the right number, so it calls LastTagWas() on
286  // return from the embedded parser to check.
287  bool LastTagWas(uint32 expected);
288 
289  // When parsing message (but NOT a group), this method must be called
290  // immediately after MergeFromCodedStream() returns (if it returns true)
291  // to further verify that the message ended in a legitimate way. For
292  // example, this verifies that parsing did not end on an end-group tag.
293  // It also checks for some cases where, due to optimizations,
294  // MergeFromCodedStream() can incorrectly return true.
295  bool ConsumedEntireMessage();
296 
297  // Limits ----------------------------------------------------------
298  // Limits are used when parsing length-delimited embedded messages.
299  // After the message's length is read, PushLimit() is used to prevent
300  // the CodedInputStream from reading beyond that length. Once the
301  // embedded message has been parsed, PopLimit() is called to undo the
302  // limit.
303 
304  // Opaque type used with PushLimit() and PopLimit(). Do not modify
305  // values of this type yourself. The only reason that this isn't a
306  // struct with private internals is for efficiency.
307  typedef int Limit;
308 
309  // Places a limit on the number of bytes that the stream may read,
310  // starting from the current position. Once the stream hits this limit,
311  // it will act like the end of the input has been reached until PopLimit()
312  // is called.
313  //
314  // As the names imply, the stream conceptually has a stack of limits. The
315  // shortest limit on the stack is always enforced, even if it is not the
316  // top limit.
317  //
318  // The value returned by PushLimit() is opaque to the caller, and must
319  // be passed unchanged to the corresponding call to PopLimit().
320  Limit PushLimit(int byte_limit);
321 
322  // Pops the last limit pushed by PushLimit(). The input must be the value
323  // returned by that call to PushLimit().
324  void PopLimit(Limit limit);
325 
326  // Returns the number of bytes left until the nearest limit on the
327  // stack is hit, or -1 if no limits are in place.
328  int BytesUntilLimit() const;
329 
330  // Returns current position relative to the beginning of the input stream.
331  int CurrentPosition() const;
332 
333  // Total Bytes Limit -----------------------------------------------
334  // To prevent malicious users from sending excessively large messages
335  // and causing integer overflows or memory exhaustion, CodedInputStream
336  // imposes a hard limit on the total number of bytes it will read.
337 
338  // Sets the maximum number of bytes that this CodedInputStream will read
339  // before refusing to continue. To prevent integer overflows in the
340  // protocol buffers implementation, as well as to prevent servers from
341  // allocating enormous amounts of memory to hold parsed messages, the
342  // maximum message length should be limited to the shortest length that
343  // will not harm usability. The theoretical shortest message that could
344  // cause integer overflows is 512MB. The default limit is 64MB. Apps
345  // should set shorter limits if possible. If warning_threshold is not -1,
346  // a warning will be printed to stderr after warning_threshold bytes are
347  // read. For backwards compatibility all negative values get squashed to -1,
348  // as other negative values might have special internal meanings.
349  // An error will always be printed to stderr if the limit is reached.
350  //
351  // This is unrelated to PushLimit()/PopLimit().
352  //
353  // Hint: If you are reading this because your program is printing a
354  // warning about dangerously large protocol messages, you may be
355  // confused about what to do next. The best option is to change your
356  // design such that excessively large messages are not necessary.
357  // For example, try to design file formats to consist of many small
358  // messages rather than a single large one. If this is infeasible,
359  // you will need to increase the limit. Chances are, though, that
360  // your code never constructs a CodedInputStream on which the limit
361  // can be set. You probably parse messages by calling things like
362  // Message::ParseFromString(). In this case, you will need to change
363  // your code to instead construct some sort of ZeroCopyInputStream
364  // (e.g. an ArrayInputStream), construct a CodedInputStream around
365  // that, then call Message::ParseFromCodedStream() instead. Then
366  // you can adjust the limit. Yes, it's more work, but you're doing
367  // something unusual.
368  void SetTotalBytesLimit(int total_bytes_limit, int warning_threshold);
369 
370  // The Total Bytes Limit minus the Current Position, or -1 if there
371  // is no Total Bytes Limit.
372  int BytesUntilTotalBytesLimit() const;
373 
374  // Recursion Limit -------------------------------------------------
375  // To prevent corrupt or malicious messages from causing stack overflows,
376  // we must keep track of the depth of recursion when parsing embedded
377  // messages and groups. CodedInputStream keeps track of this because it
378  // is the only object that is passed down the stack during parsing.
379 
380  // Sets the maximum recursion depth. The default is 100.
381  void SetRecursionLimit(int limit);
382 
383 
384  // Increments the current recursion depth. Returns true if the depth is
385  // under the limit, false if it has gone over.
386  bool IncrementRecursionDepth();
387 
388  // Decrements the recursion depth.
389  void DecrementRecursionDepth();
390 
391  // Extension Registry ----------------------------------------------
392  // ADVANCED USAGE: 99.9% of people can ignore this section.
393  //
394  // By default, when parsing extensions, the parser looks for extension
395  // definitions in the pool which owns the outer message's Descriptor.
396  // However, you may call SetExtensionRegistry() to provide an alternative
397  // pool instead. This makes it possible, for example, to parse a message
398  // using a generated class, but represent some extensions using
399  // DynamicMessage.
400 
401  // Set the pool used to look up extensions. Most users do not need to call
402  // this as the correct pool will be chosen automatically.
403  //
404  // WARNING: It is very easy to misuse this. Carefully read the requirements
405  // below. Do not use this unless you are sure you need it. Almost no one
406  // does.
407  //
408  // Let's say you are parsing a message into message object m, and you want
409  // to take advantage of SetExtensionRegistry(). You must follow these
410  // requirements:
411  //
412  // The given DescriptorPool must contain m->GetDescriptor(). It is not
413  // sufficient for it to simply contain a descriptor that has the same name
414  // and content -- it must be the *exact object*. In other words:
415  // assert(pool->FindMessageTypeByName(m->GetDescriptor()->full_name()) ==
416  // m->GetDescriptor());
417  // There are two ways to satisfy this requirement:
418  // 1) Use m->GetDescriptor()->pool() as the pool. This is generally useless
419  // because this is the pool that would be used anyway if you didn't call
420  // SetExtensionRegistry() at all.
421  // 2) Use a DescriptorPool which has m->GetDescriptor()->pool() as an
422  // "underlay". Read the documentation for DescriptorPool for more
423  // information about underlays.
424  //
425  // You must also provide a MessageFactory. This factory will be used to
426  // construct Message objects representing extensions. The factory's
427  // GetPrototype() MUST return non-NULL for any Descriptor which can be found
428  // through the provided pool.
429  //
430  // If the provided factory might return instances of protocol-compiler-
431  // generated (i.e. compiled-in) types, or if the outer message object m is
432  // a generated type, then the given factory MUST have this property: If
433  // GetPrototype() is given a Descriptor which resides in
434  // DescriptorPool::generated_pool(), the factory MUST return the same
435  // prototype which MessageFactory::generated_factory() would return. That
436  // is, given a descriptor for a generated type, the factory must return an
437  // instance of the generated class (NOT DynamicMessage). However, when
438  // given a descriptor for a type that is NOT in generated_pool, the factory
439  // is free to return any implementation.
440  //
441  // The reason for this requirement is that generated sub-objects may be
442  // accessed via the standard (non-reflection) extension accessor methods,
443  // and these methods will down-cast the object to the generated class type.
444  // If the object is not actually of that type, the results would be undefined.
445  // On the other hand, if an extension is not compiled in, then there is no
446  // way the code could end up accessing it via the standard accessors -- the
447  // only way to access the extension is via reflection. When using reflection,
448  // DynamicMessage and generated messages are indistinguishable, so it's fine
449  // if these objects are represented using DynamicMessage.
450  //
451  // Using DynamicMessageFactory on which you have called
452  // SetDelegateToGeneratedFactory(true) should be sufficient to satisfy the
453  // above requirement.
454  //
455  // If either pool or factory is NULL, both must be NULL.
456  //
457  // Note that this feature is ignored when parsing "lite" messages as they do
458  // not have descriptors.
459  void SetExtensionRegistry(const DescriptorPool* pool,
460  MessageFactory* factory);
461 
462  // Get the DescriptorPool set via SetExtensionRegistry(), or NULL if no pool
463  // has been provided.
464  const DescriptorPool* GetExtensionPool();
465 
466  // Get the MessageFactory set via SetExtensionRegistry(), or NULL if no
467  // factory has been provided.
468  MessageFactory* GetExtensionFactory();
469 
470  private:
472 
474  const uint8* buffer_;
475  const uint8* buffer_end_; // pointer to the end of the buffer.
476  int total_bytes_read_; // total bytes read from input_, including
477  // the current buffer
478 
479  // If total_bytes_read_ surpasses INT_MAX, we record the extra bytes here
480  // so that we can BackUp() on destruction.
482 
483  // LastTagWas() stuff.
484  uint32 last_tag_; // result of last ReadTag() or ReadTagWithCutoff().
485 
486  // This is set true by ReadTag{Fallback/Slow}() if it is called when exactly
487  // at EOF, or by ExpectAtEnd() when it returns true. This happens when we
488  // reach the end of a message and attempt to read another tag.
490 
491  // See EnableAliasing().
493 
494  // Limits
495  Limit current_limit_; // if position = -1, no limit is applied
496 
497  // For simplicity, if the current buffer crosses a limit (either a normal
498  // limit created by PushLimit() or the total bytes limit), buffer_size_
499  // only tracks the number of bytes before that limit. This field
500  // contains the number of bytes after it. Note that this implies that if
501  // buffer_size_ == 0 and buffer_size_after_limit_ > 0, we know we've
502  // hit a limit. However, if both are zero, it doesn't necessarily mean
503  // we aren't at a limit -- the buffer may have ended exactly at the limit.
505 
506  // Maximum number of bytes to read, period. This is unrelated to
507  // current_limit_. Set using SetTotalBytesLimit().
509 
510  // If positive/0: Limit for bytes read after which a warning due to size
511  // should be logged.
512  // If -1: Printing of warning disabled. Can be set by client.
513  // If -2: Internal: Limit has been reached, print full size when destructing.
515 
516  // Current recursion depth, controlled by IncrementRecursionDepth() and
517  // DecrementRecursionDepth().
519  // Recursion depth limit, set by SetRecursionLimit().
521 
522  // See SetExtensionRegistry().
525 
526  // Private member functions.
527 
528  // Advance the buffer by a given number of bytes.
529  void Advance(int amount);
530 
531  // Back up input_ to the current buffer position.
532  void BackUpInputToCurrentPosition();
533 
534  // Recomputes the value of buffer_size_after_limit_. Must be called after
535  // current_limit_ or total_bytes_limit_ changes.
536  void RecomputeBufferLimits();
537 
538  // Writes an error message saying that we hit total_bytes_limit_.
539  void PrintTotalBytesLimitError();
540 
541  // Called when the buffer runs out to request more data. Implies an
542  // Advance(BufferSize()).
543  bool Refresh();
544 
545  // When parsing varints, we optimize for the common case of small values, and
546  // then optimize for the case when the varint fits within the current buffer
547  // piece. The Fallback method is used when we can't use the one-byte
548  // optimization. The Slow method is yet another fallback when the buffer is
549  // not large enough. Making the slow path out-of-line speeds up the common
550  // case by 10-15%. The slow path is fairly uncommon: it only triggers when a
551  // message crosses multiple buffers.
552  bool ReadVarint32Fallback(uint32* value);
553  bool ReadVarint64Fallback(uint64* value);
554  bool ReadVarint32Slow(uint32* value);
555  bool ReadVarint64Slow(uint64* value);
556  bool ReadLittleEndian32Fallback(uint32* value);
557  bool ReadLittleEndian64Fallback(uint64* value);
558  // Fallback/slow methods for reading tags. These do not update last_tag_,
559  // but will set legitimate_message_end_ if we are at the end of the input
560  // stream.
561  uint32 ReadTagFallback();
562  uint32 ReadTagSlow();
563  bool ReadStringFallback(string* buffer, int size);
564 
565  // Return the size of the buffer.
566  int BufferSize() const;
567 
568  static const int kDefaultTotalBytesLimit = 64 << 20; // 64MB
569 
570  static const int kDefaultTotalBytesWarningThreshold = 32 << 20; // 32MB
571 
572  static int default_recursion_limit_; // 100 by default.
573 };
574 
575 // Class which encodes and writes binary data which is composed of varint-
576 // encoded integers and fixed-width pieces. Wraps a ZeroCopyOutputStream.
577 // Most users will not need to deal with CodedOutputStream.
578 //
579 // Most methods of CodedOutputStream which return a bool return false if an
580 // underlying I/O error occurs. Once such a failure occurs, the
581 // CodedOutputStream is broken and is no longer useful. The Write* methods do
582 // not return the stream status, but will invalidate the stream if an error
583 // occurs. The client can probe HadError() to determine the status.
584 //
585 // Note that every method of CodedOutputStream which writes some data has
586 // a corresponding static "ToArray" version. These versions write directly
587 // to the provided buffer, returning a pointer past the last written byte.
588 // They require that the buffer has sufficient capacity for the encoded data.
589 // This allows an optimization where we check if an output stream has enough
590 // space for an entire message before we start writing and, if there is, we
591 // call only the ToArray methods to avoid doing bound checks for each
592 // individual value.
593 // i.e., in the example above:
594 //
595 // CodedOutputStream coded_output = new CodedOutputStream(raw_output);
596 // int magic_number = 1234;
597 // char text[] = "Hello world!";
598 //
599 // int coded_size = sizeof(magic_number) +
600 // CodedOutputStream::VarintSize32(strlen(text)) +
601 // strlen(text);
602 //
603 // uint8* buffer =
604 // coded_output->GetDirectBufferForNBytesAndAdvance(coded_size);
605 // if (buffer != NULL) {
606 // // The output stream has enough space in the buffer: write directly to
607 // // the array.
608 // buffer = CodedOutputStream::WriteLittleEndian32ToArray(magic_number,
609 // buffer);
610 // buffer = CodedOutputStream::WriteVarint32ToArray(strlen(text), buffer);
611 // buffer = CodedOutputStream::WriteRawToArray(text, strlen(text), buffer);
612 // } else {
613 // // Make bound-checked writes, which will ask the underlying stream for
614 // // more space as needed.
615 // coded_output->WriteLittleEndian32(magic_number);
616 // coded_output->WriteVarint32(strlen(text));
617 // coded_output->WriteRaw(text, strlen(text));
618 // }
619 //
620 // delete coded_output;
622  public:
623  // Create an CodedOutputStream that writes to the given ZeroCopyOutputStream.
625 
626  // Destroy the CodedOutputStream and position the underlying
627  // ZeroCopyOutputStream immediately after the last byte written.
629 
630  // Skips a number of bytes, leaving the bytes unmodified in the underlying
631  // buffer. Returns false if an underlying write error occurs. This is
632  // mainly useful with GetDirectBufferPointer().
633  bool Skip(int count);
634 
635  // Sets *data to point directly at the unwritten part of the
636  // CodedOutputStream's underlying buffer, and *size to the size of that
637  // buffer, but does not advance the stream's current position. This will
638  // always either produce a non-empty buffer or return false. If the caller
639  // writes any data to this buffer, it should then call Skip() to skip over
640  // the consumed bytes. This may be useful for implementing external fast
641  // serialization routines for types of data not covered by the
642  // CodedOutputStream interface.
643  bool GetDirectBufferPointer(void** data, int* size);
644 
645  // If there are at least "size" bytes available in the current buffer,
646  // returns a pointer directly into the buffer and advances over these bytes.
647  // The caller may then write directly into this buffer (e.g. using the
648  // *ToArray static methods) rather than go through CodedOutputStream. If
649  // there are not enough bytes available, returns NULL. The return pointer is
650  // invalidated as soon as any other non-const method of CodedOutputStream
651  // is called.
652  inline uint8* GetDirectBufferForNBytesAndAdvance(int size);
653 
654  // Write raw bytes, copying them from the given buffer.
655  void WriteRaw(const void* buffer, int size);
656  // Like WriteRaw() but will try to write aliased data if aliasing is
657  // turned on.
658  void WriteRawMaybeAliased(const void* data, int size);
659  // Like WriteRaw() but writing directly to the target array.
660  // This is _not_ inlined, as the compiler often optimizes memcpy into inline
661  // copy loops. Since this gets called by every field with string or bytes
662  // type, inlining may lead to a significant amount of code bloat, with only a
663  // minor performance gain.
664  static uint8* WriteRawToArray(const void* buffer, int size, uint8* target);
665 
666  // Equivalent to WriteRaw(str.data(), str.size()).
667  void WriteString(const string& str);
668  // Like WriteString() but writing directly to the target array.
669  static uint8* WriteStringToArray(const string& str, uint8* target);
670  // Write the varint-encoded size of str followed by str.
671  static uint8* WriteStringWithSizeToArray(const string& str, uint8* target);
672 
673 
674  // Instructs the CodedOutputStream to allow the underlying
675  // ZeroCopyOutputStream to hold pointers to the original structure instead of
676  // copying, if it supports it (i.e. output->AllowsAliasing() is true). If the
677  // underlying stream does not support aliasing, then enabling it has no
678  // affect. For now, this only affects the behavior of
679  // WriteRawMaybeAliased().
680  //
681  // NOTE: It is caller's responsibility to ensure that the chunk of memory
682  // remains live until all of the data has been consumed from the stream.
683  void EnableAliasing(bool enabled);
684 
685  // Write a 32-bit little-endian integer.
686  void WriteLittleEndian32(uint32 value);
687  // Like WriteLittleEndian32() but writing directly to the target array.
688  static uint8* WriteLittleEndian32ToArray(uint32 value, uint8* target);
689  // Write a 64-bit little-endian integer.
690  void WriteLittleEndian64(uint64 value);
691  // Like WriteLittleEndian64() but writing directly to the target array.
692  static uint8* WriteLittleEndian64ToArray(uint64 value, uint8* target);
693 
694  // Write an unsigned integer with Varint encoding. Writing a 32-bit value
695  // is equivalent to casting it to uint64 and writing it as a 64-bit value,
696  // but may be more efficient.
697  void WriteVarint32(uint32 value);
698  // Like WriteVarint32() but writing directly to the target array.
699  static uint8* WriteVarint32ToArray(uint32 value, uint8* target);
700  // Write an unsigned integer with Varint encoding.
701  void WriteVarint64(uint64 value);
702  // Like WriteVarint64() but writing directly to the target array.
703  static uint8* WriteVarint64ToArray(uint64 value, uint8* target);
704 
705  // Equivalent to WriteVarint32() except when the value is negative,
706  // in which case it must be sign-extended to a full 10 bytes.
707  void WriteVarint32SignExtended(int32 value);
708  // Like WriteVarint32SignExtended() but writing directly to the target array.
709  static uint8* WriteVarint32SignExtendedToArray(int32 value, uint8* target);
710 
711  // This is identical to WriteVarint32(), but optimized for writing tags.
712  // In particular, if the input is a compile-time constant, this method
713  // compiles down to a couple instructions.
714  // Always inline because otherwise the aformentioned optimization can't work,
715  // but GCC by default doesn't want to inline this.
716  void WriteTag(uint32 value);
717  // Like WriteTag() but writing directly to the target array.
718  static uint8* WriteTagToArray(
720 
721  // Returns the number of bytes needed to encode the given value as a varint.
722  static int VarintSize32(uint32 value);
723  // Returns the number of bytes needed to encode the given value as a varint.
724  static int VarintSize64(uint64 value);
725 
726  // If negative, 10 bytes. Otheriwse, same as VarintSize32().
727  static int VarintSize32SignExtended(int32 value);
728 
729  // Compile-time equivalent of VarintSize32().
730  template <uint32 Value>
732  static const int value =
733  (Value < (1 << 7))
734  ? 1
735  : (Value < (1 << 14))
736  ? 2
737  : (Value < (1 << 21))
738  ? 3
739  : (Value < (1 << 28))
740  ? 4
741  : 5;
742  };
743 
744  // Returns the total number of bytes written since this object was created.
745  inline int ByteCount() const;
746 
747  // Returns true if there was an underlying I/O error since this object was
748  // created.
749  bool HadError() const { return had_error_; }
750 
751  private:
753 
757  int total_bytes_; // Sum of sizes of all buffers seen so far.
758  bool had_error_; // Whether an error occurred during output.
759  bool aliasing_enabled_; // See EnableAliasing().
760 
761  // Advance the buffer by a given number of bytes.
762  void Advance(int amount);
763 
764  // Called when the buffer runs out to request more data. Implies an
765  // Advance(buffer_size_).
766  bool Refresh();
767 
768  // Like WriteRaw() but may avoid copying if the underlying
769  // ZeroCopyOutputStream supports it.
770  void WriteAliasedRaw(const void* buffer, int size);
771 
772  static uint8* WriteVarint32FallbackToArray(uint32 value, uint8* target);
773 
774  // Always-inlined versions of WriteVarint* functions so that code can be
775  // reused, while still controlling size. For instance, WriteVarint32ToArray()
776  // should not directly call this: since it is inlined itself, doing so
777  // would greatly increase the size of generated code. Instead, it should call
778  // WriteVarint32FallbackToArray. Meanwhile, WriteVarint32() is already
779  // out-of-line, so it should just invoke this directly to avoid any extra
780  // function call overhead.
781  static uint8* WriteVarint32FallbackToArrayInline(
783  static uint8* WriteVarint64ToArrayInline(
785 
786  static int VarintSize32Fallback(uint32 value);
787 };
788 
789 // inline methods ====================================================
790 // The vast majority of varints are only one byte. These inline
791 // methods optimize for that case.
792 
794  if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
795  *value = *buffer_;
796  Advance(1);
797  return true;
798  } else {
799  return ReadVarint32Fallback(value);
800  }
801 }
802 
804  if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
805  *value = *buffer_;
806  Advance(1);
807  return true;
808  } else {
809  return ReadVarint64Fallback(value);
810  }
811 }
812 
813 // static
815  const uint8* buffer,
816  uint32* value) {
817 #if defined(PROTOBUF_LITTLE_ENDIAN)
818  memcpy(value, buffer, sizeof(*value));
819  return buffer + sizeof(*value);
820 #else
821  *value = (static_cast<uint32>(buffer[0]) ) |
822  (static_cast<uint32>(buffer[1]) << 8) |
823  (static_cast<uint32>(buffer[2]) << 16) |
824  (static_cast<uint32>(buffer[3]) << 24);
825  return buffer + sizeof(*value);
826 #endif
827 }
828 // static
830  const uint8* buffer,
831  uint64* value) {
832 #if defined(PROTOBUF_LITTLE_ENDIAN)
833  memcpy(value, buffer, sizeof(*value));
834  return buffer + sizeof(*value);
835 #else
836  uint32 part0 = (static_cast<uint32>(buffer[0]) ) |
837  (static_cast<uint32>(buffer[1]) << 8) |
838  (static_cast<uint32>(buffer[2]) << 16) |
839  (static_cast<uint32>(buffer[3]) << 24);
840  uint32 part1 = (static_cast<uint32>(buffer[4]) ) |
841  (static_cast<uint32>(buffer[5]) << 8) |
842  (static_cast<uint32>(buffer[6]) << 16) |
843  (static_cast<uint32>(buffer[7]) << 24);
844  *value = static_cast<uint64>(part0) |
845  (static_cast<uint64>(part1) << 32);
846  return buffer + sizeof(*value);
847 #endif
848 }
849 
851 #if defined(PROTOBUF_LITTLE_ENDIAN)
852  if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
853  memcpy(value, buffer_, sizeof(*value));
854  Advance(sizeof(*value));
855  return true;
856  } else {
857  return ReadLittleEndian32Fallback(value);
858  }
859 #else
860  return ReadLittleEndian32Fallback(value);
861 #endif
862 }
863 
865 #if defined(PROTOBUF_LITTLE_ENDIAN)
866  if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
867  memcpy(value, buffer_, sizeof(*value));
868  Advance(sizeof(*value));
869  return true;
870  } else {
871  return ReadLittleEndian64Fallback(value);
872  }
873 #else
874  return ReadLittleEndian64Fallback(value);
875 #endif
876 }
877 
879  if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] < 0x80) {
880  last_tag_ = buffer_[0];
881  Advance(1);
882  return last_tag_;
883  } else {
885  return last_tag_;
886  }
887 }
888 
889 inline std::pair<uint32, bool> CodedInputStream::ReadTagWithCutoff(
890  uint32 cutoff) {
891  // In performance-sensitive code we can expect cutoff to be a compile-time
892  // constant, and things like "cutoff >= kMax1ByteVarint" to be evaluated at
893  // compile time.
895  // Hot case: buffer_ non_empty, buffer_[0] in [1, 128).
896  // TODO(gpike): Is it worth rearranging this? E.g., if the number of fields
897  // is large enough then is it better to check for the two-byte case first?
898  if (static_cast<int8>(buffer_[0]) > 0) {
899  const uint32 kMax1ByteVarint = 0x7f;
900  uint32 tag = last_tag_ = buffer_[0];
901  Advance(1);
902  return make_pair(tag, cutoff >= kMax1ByteVarint || tag <= cutoff);
903  }
904  // Other hot case: cutoff >= 0x80, buffer_ has at least two bytes available,
905  // and tag is two bytes. The latter is tested by bitwise-and-not of the
906  // first byte and the second byte.
907  if (cutoff >= 0x80 &&
909  GOOGLE_PREDICT_TRUE((buffer_[0] & ~buffer_[1]) >= 0x80)) {
910  const uint32 kMax2ByteVarint = (0x7f << 7) + 0x7f;
911  uint32 tag = last_tag_ = (1u << 7) * buffer_[1] + (buffer_[0] - 0x80);
912  Advance(2);
913  // It might make sense to test for tag == 0 now, but it is so rare that
914  // that we don't bother. A varint-encoded 0 should be one byte unless
915  // the encoder lost its mind. The second part of the return value of
916  // this function is allowed to be either true or false if the tag is 0,
917  // so we don't have to check for tag == 0. We may need to check whether
918  // it exceeds cutoff.
919  bool at_or_below_cutoff = cutoff >= kMax2ByteVarint || tag <= cutoff;
920  return make_pair(tag, at_or_below_cutoff);
921  }
922  }
923  // Slow path
925  return make_pair(last_tag_, static_cast<uint32>(last_tag_ - 1) < cutoff);
926 }
927 
928 inline bool CodedInputStream::LastTagWas(uint32 expected) {
929  return last_tag_ == expected;
930 }
931 
934 }
935 
936 inline bool CodedInputStream::ExpectTag(uint32 expected) {
937  if (expected < (1 << 7)) {
938  if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] == expected) {
939  Advance(1);
940  return true;
941  } else {
942  return false;
943  }
944  } else if (expected < (1 << 14)) {
945  if (GOOGLE_PREDICT_TRUE(BufferSize() >= 2) &&
946  buffer_[0] == static_cast<uint8>(expected | 0x80) &&
947  buffer_[1] == static_cast<uint8>(expected >> 7)) {
948  Advance(2);
949  return true;
950  } else {
951  return false;
952  }
953  } else {
954  // Don't bother optimizing for larger values.
955  return false;
956  }
957 }
958 
960  const uint8* buffer, uint32 expected) {
961  if (expected < (1 << 7)) {
962  if (buffer[0] == expected) {
963  return buffer + 1;
964  }
965  } else if (expected < (1 << 14)) {
966  if (buffer[0] == static_cast<uint8>(expected | 0x80) &&
967  buffer[1] == static_cast<uint8>(expected >> 7)) {
968  return buffer + 2;
969  }
970  }
971  return NULL;
972 }
973 
975  int* size) {
976  *data = buffer_;
977  *size = buffer_end_ - buffer_;
978 }
979 
981  // If we are at a limit we know no more bytes can be read. Otherwise, it's
982  // hard to say without calling Refresh(), and we'd rather not do that.
983 
984  if (buffer_ == buffer_end_ &&
985  ((buffer_size_after_limit_ != 0) ||
987  last_tag_ = 0; // Pretend we called ReadTag()...
988  legitimate_message_end_ = true; // ... and it hit EOF.
989  return true;
990  } else {
991  return false;
992  }
993 }
994 
997 }
998 
1000  if (buffer_size_ < size) {
1001  return NULL;
1002  } else {
1003  uint8* result = buffer_;
1004  Advance(size);
1005  return result;
1006  }
1007 }
1008 
1010  uint8* target) {
1011  if (value < 0x80) {
1012  *target = value;
1013  return target + 1;
1014  } else {
1015  return WriteVarint32FallbackToArray(value, target);
1016  }
1017 }
1018 
1020  if (value < 0) {
1021  WriteVarint64(static_cast<uint64>(value));
1022  } else {
1023  WriteVarint32(static_cast<uint32>(value));
1024  }
1025 }
1026 
1028  int32 value, uint8* target) {
1029  if (value < 0) {
1030  return WriteVarint64ToArray(static_cast<uint64>(value), target);
1031  } else {
1032  return WriteVarint32ToArray(static_cast<uint32>(value), target);
1033  }
1034 }
1035 
1037  uint8* target) {
1038 #if defined(PROTOBUF_LITTLE_ENDIAN)
1039  memcpy(target, &value, sizeof(value));
1040 #else
1041  target[0] = static_cast<uint8>(value);
1042  target[1] = static_cast<uint8>(value >> 8);
1043  target[2] = static_cast<uint8>(value >> 16);
1044  target[3] = static_cast<uint8>(value >> 24);
1045 #endif
1046  return target + sizeof(value);
1047 }
1048 
1050  uint8* target) {
1051 #if defined(PROTOBUF_LITTLE_ENDIAN)
1052  memcpy(target, &value, sizeof(value));
1053 #else
1054  uint32 part0 = static_cast<uint32>(value);
1055  uint32 part1 = static_cast<uint32>(value >> 32);
1056 
1057  target[0] = static_cast<uint8>(part0);
1058  target[1] = static_cast<uint8>(part0 >> 8);
1059  target[2] = static_cast<uint8>(part0 >> 16);
1060  target[3] = static_cast<uint8>(part0 >> 24);
1061  target[4] = static_cast<uint8>(part1);
1062  target[5] = static_cast<uint8>(part1 >> 8);
1063  target[6] = static_cast<uint8>(part1 >> 16);
1064  target[7] = static_cast<uint8>(part1 >> 24);
1065 #endif
1066  return target + sizeof(value);
1067 }
1068 
1070  WriteVarint32(value);
1071 }
1072 
1074  uint32 value, uint8* target) {
1075  if (value < (1 << 7)) {
1076  target[0] = value;
1077  return target + 1;
1078  } else if (value < (1 << 14)) {
1079  target[0] = static_cast<uint8>(value | 0x80);
1080  target[1] = static_cast<uint8>(value >> 7);
1081  return target + 2;
1082  } else {
1083  return WriteVarint32FallbackToArray(value, target);
1084  }
1085 }
1086 
1088  if (value < (1 << 7)) {
1089  return 1;
1090  } else {
1091  return VarintSize32Fallback(value);
1092  }
1093 }
1094 
1096  if (value < 0) {
1097  return 10; // TODO(kenton): Make this a symbolic constant.
1098  } else {
1099  return VarintSize32(static_cast<uint32>(value));
1100  }
1101 }
1102 
1103 inline void CodedOutputStream::WriteString(const string& str) {
1104  WriteRaw(str.data(), static_cast<int>(str.size()));
1105 }
1106 
1108  const void* data, int size) {
1109  if (aliasing_enabled_) {
1110  WriteAliasedRaw(data, size);
1111  } else {
1112  WriteRaw(data, size);
1113  }
1114 }
1115 
1117  const string& str, uint8* target) {
1118  return WriteRawToArray(str.data(), static_cast<int>(str.size()), target);
1119 }
1120 
1121 inline int CodedOutputStream::ByteCount() const {
1122  return total_bytes_ - buffer_size_;
1123 }
1124 
1125 inline void CodedInputStream::Advance(int amount) {
1126  buffer_ += amount;
1127 }
1128 
1129 inline void CodedOutputStream::Advance(int amount) {
1130  buffer_ += amount;
1131  buffer_size_ -= amount;
1132 }
1133 
1134 inline void CodedInputStream::SetRecursionLimit(int limit) {
1135  recursion_limit_ = limit;
1136 }
1137 
1139  ++recursion_depth_;
1141 }
1142 
1145 }
1146 
1148  MessageFactory* factory) {
1149  extension_pool_ = pool;
1150  extension_factory_ = factory;
1151 }
1152 
1154  return extension_pool_;
1155 }
1156 
1158  return extension_factory_;
1159 }
1160 
1161 inline int CodedInputStream::BufferSize() const {
1162  return buffer_end_ - buffer_;
1163 }
1164 
1166  : input_(input),
1167  buffer_(NULL),
1168  buffer_end_(NULL),
1169  total_bytes_read_(0),
1170  overflow_bytes_(0),
1171  last_tag_(0),
1172  legitimate_message_end_(false),
1173  aliasing_enabled_(false),
1174  current_limit_(kint32max),
1175  buffer_size_after_limit_(0),
1176  total_bytes_limit_(kDefaultTotalBytesLimit),
1177  total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
1178  recursion_depth_(0),
1179  recursion_limit_(default_recursion_limit_),
1180  extension_pool_(NULL),
1181  extension_factory_(NULL) {
1182  // Eagerly Refresh() so buffer space is immediately available.
1183  Refresh();
1184 }
1185 
1186 inline CodedInputStream::CodedInputStream(const uint8* buffer, int size)
1187  : input_(NULL),
1188  buffer_(buffer),
1189  buffer_end_(buffer + size),
1190  total_bytes_read_(size),
1191  overflow_bytes_(0),
1192  last_tag_(0),
1193  legitimate_message_end_(false),
1194  aliasing_enabled_(false),
1195  current_limit_(size),
1196  buffer_size_after_limit_(0),
1197  total_bytes_limit_(kDefaultTotalBytesLimit),
1198  total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
1199  recursion_depth_(0),
1200  recursion_limit_(default_recursion_limit_),
1201  extension_pool_(NULL),
1202  extension_factory_(NULL) {
1203  // Note that setting current_limit_ == size is important to prevent some
1204  // code paths from trying to access input_ and segfaulting.
1205 }
1206 
1207 inline bool CodedInputStream::IsFlat() const {
1208  return input_ == NULL;
1209 }
1210 
1211 } // namespace io
1212 } // namespace protobuf
1213 
1214 
1215 #if defined(_MSC_VER) && _MSC_VER >= 1300
1216  #pragma runtime_checks("c", restore)
1217 #endif // _MSC_VER
1218 
1219 } // namespace google
1220 #endif // GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
uint8 * buffer_
Definition: coded_stream.h:755
bool had_error_
Definition: coded_stream.h:758
uint32 ReadTag() GOOGLE_ATTRIBUTE_ALWAYS_INLINE
Definition: coded_stream.h:878
int total_bytes_
Definition: coded_stream.h:757
bool legitimate_message_end_
Definition: coded_stream.h:489
void WriteRaw(const void *buffer, int size)
static int VarintSize32Fallback(uint32 value)
static const uint8 * ReadLittleEndian64FromArray(const uint8 *buffer, uint64 *value)
Definition: coded_stream.h:829
void Advance(int amount)
Definition: coded_stream.h:1125
static const uint8 * ReadLittleEndian32FromArray(const uint8 *buffer, uint32 *value)
Definition: coded_stream.h:814
static uint8 * WriteRawToArray(const void *buffer, int size, uint8 *target)
std::pair< uint32, bool > ReadTagWithCutoff(uint32 cutoff) GOOGLE_ATTRIBUTE_ALWAYS_INLINE
Definition: coded_stream.h:889
void DecrementRecursionDepth()
Definition: coded_stream.h:1143
int Limit
Definition: coded_stream.h:307
bool ReadLittleEndian32(uint32 *value)
Definition: coded_stream.h:850
Definition: zero_copy_stream.h:124
int ByteCount() const
Definition: coded_stream.h:1121
static uint8 * WriteStringToArray(const string &str, uint8 *target)
Definition: coded_stream.h:1116
ZeroCopyInputStream * input_
Definition: coded_stream.h:473
static uint8 * WriteVarint32ToArray(uint32 value, uint8 *target)
Definition: coded_stream.h:1009
bool ConsumedEntireMessage()
Definition: coded_stream.h:932
int recursion_limit_
Definition: coded_stream.h:520
const uint8 * buffer_end_
Definition: coded_stream.h:475
static int default_recursion_limit_
Definition: coded_stream.h:572
uint8 * GetDirectBufferForNBytesAndAdvance(int size)
Definition: coded_stream.h:999
bool ReadVarint64Fallback(uint64 *value)
uint8_t uint8
Definition: common.h:175
arena_t NULL
Definition: jemalloc_internal.h:624
bool ReadVarint32(uint32 *value)
Definition: coded_stream.h:793
Definition: message.h:720
#define false
Definition: CascPort.h:18
bool ReadLittleEndian64(uint64 *value)
Definition: coded_stream.h:864
#define GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(TypeName)
Definition: common.h:89
void WriteRawMaybeAliased(const void *data, int size)
Definition: coded_stream.h:1107
bool IsFlat() const
Definition: coded_stream.h:1207
void SetExtensionRegistry(const DescriptorPool *pool, MessageFactory *factory)
Definition: coded_stream.h:1147
void WriteAliasedRaw(const void *buffer, int size)
int overflow_bytes_
Definition: coded_stream.h:481
int CurrentPosition() const
Definition: coded_stream.h:995
int buffer_size_after_limit_
Definition: coded_stream.h:504
void WriteTag(uint32 value)
Definition: coded_stream.h:1069
#define output
Definition: wire_format_lite.h:381
const DescriptorPool * extension_pool_
Definition: coded_stream.h:523
ZeroCopyOutputStream * output_
Definition: coded_stream.h:754
Definition: coded_stream.h:156
int32_t int32
Definition: common.h:172
MessageFactory * GetExtensionFactory()
Definition: coded_stream.h:1157
bool ReadVarint64(uint64 *value)
Definition: coded_stream.h:803
Definition: descriptor.h:1167
static const uint8 * ExpectTagFromArray(const uint8 *buffer, uint32 expected) GOOGLE_ATTRIBUTE_ALWAYS_INLINE
Definition: coded_stream.h:959
#define GOOGLE_PREDICT_TRUE
Definition: common.h:235
Definition: coded_stream.h:621
static uint8 * WriteVarint64ToArray(uint64 value, uint8 *target)
int recursion_depth_
Definition: coded_stream.h:518
int total_bytes_read_
Definition: coded_stream.h:476
static uint8 * WriteVarint32FallbackToArray(uint32 value, uint8 *target)
bool ReadLittleEndian32Fallback(uint32 *value)
CodedInputStream(ZeroCopyInputStream *input)
Definition: coded_stream.h:1165
#define input
Definition: wire_format_lite.h:242
bool aliasing_enabled_
Definition: coded_stream.h:492
bool ReadVarint32Fallback(uint32 *value)
uint32_t uint32
Definition: common.h:177
static int VarintSize32SignExtended(int32 value)
Definition: coded_stream.h:1095
MessageFactory * extension_factory_
Definition: coded_stream.h:524
bool LastTagWas(uint32 expected)
Definition: coded_stream.h:928
uint64_t uint64
Definition: common.h:178
Definition: zero_copy_stream.h:181
bool ExpectAtEnd()
Definition: coded_stream.h:980
const uint8 * buffer_
Definition: coded_stream.h:474
bool aliasing_enabled_
Definition: coded_stream.h:759
#define LIBPROTOBUF_EXPORT
Definition: common.h:105
int total_bytes_limit_
Definition: coded_stream.h:508
void WriteString(const string &str)
Definition: coded_stream.h:1103
static const int32 kint32max
Definition: common.h:197
bool IncrementRecursionDepth()
Definition: coded_stream.h:1138
void Advance(int amount)
Definition: coded_stream.h:1129
Limit current_limit_
Definition: coded_stream.h:495
uint32 last_tag_
Definition: coded_stream.h:484
Definition: BnetFileGenerator.h:47
static uint8 * WriteLittleEndian32ToArray(uint32 value, uint8 *target)
Definition: coded_stream.h:1036
const FieldDescriptor value
Definition: descriptor.h:1522
const DescriptorPool * GetExtensionPool()
Definition: coded_stream.h:1153
static uint8 * WriteLittleEndian64ToArray(uint64 value, uint8 *target)
Definition: coded_stream.h:1049
void WriteVarint32SignExtended(int32 value)
Definition: coded_stream.h:1019
static uint8 * WriteVarint32SignExtendedToArray(int32 value, uint8 *target)
Definition: coded_stream.h:1027
bool ReadLittleEndian64Fallback(uint64 *value)
static uint8 * WriteTagToArray(uint32 value, uint8 *target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE
Definition: coded_stream.h:1073
bool ExpectTag(uint32 expected) GOOGLE_ATTRIBUTE_ALWAYS_INLINE
Definition: coded_stream.h:936
bool HadError() const
Definition: coded_stream.h:749
void GetDirectBufferPointerInline(const void **data, int *size) GOOGLE_ATTRIBUTE_ALWAYS_INLINE
Definition: coded_stream.h:974
int total_bytes_warning_threshold_
Definition: coded_stream.h:514
static int VarintSize32(uint32 value)
Definition: coded_stream.h:1087
int buffer_size_
Definition: coded_stream.h:756
int BufferSize() const
Definition: coded_stream.h:1161
void SetRecursionLimit(int limit)
Definition: coded_stream.h:1134
#define GOOGLE_ATTRIBUTE_ALWAYS_INLINE
Definition: common.h:217