Eigen  3.2.7
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
BiCGSTAB.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011 Gael Guennebaud <[email protected]>
5 // Copyright (C) 2012 Désiré Nuentsa-Wakam <[email protected]>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_BICGSTAB_H
12 #define EIGEN_BICGSTAB_H
13 
14 namespace Eigen {
15 
16 namespace internal {
17 
28 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
29 bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
30  const Preconditioner& precond, int& iters,
31  typename Dest::RealScalar& tol_error)
32 {
33  using std::sqrt;
34  using std::abs;
35  typedef typename Dest::RealScalar RealScalar;
36  typedef typename Dest::Scalar Scalar;
37  typedef Matrix<Scalar,Dynamic,1> VectorType;
38  RealScalar tol = tol_error;
39  int maxIters = iters;
40 
41  int n = mat.cols();
42  VectorType r = rhs - mat * x;
43  VectorType r0 = r;
44 
45  RealScalar r0_sqnorm = r0.squaredNorm();
46  RealScalar rhs_sqnorm = rhs.squaredNorm();
47  if(rhs_sqnorm == 0)
48  {
49  x.setZero();
50  return true;
51  }
52  Scalar rho = 1;
53  Scalar alpha = 1;
54  Scalar w = 1;
55 
56  VectorType v = VectorType::Zero(n), p = VectorType::Zero(n);
57  VectorType y(n), z(n);
58  VectorType kt(n), ks(n);
59 
60  VectorType s(n), t(n);
61 
62  RealScalar tol2 = tol*tol;
63  RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon();
64  int i = 0;
65  int restarts = 0;
66 
67  while ( r.squaredNorm()/rhs_sqnorm > tol2 && i<maxIters )
68  {
69  Scalar rho_old = rho;
70 
71  rho = r0.dot(r);
72  if (abs(rho) < eps2*r0_sqnorm)
73  {
74  // The new residual vector became too orthogonal to the arbitrarily choosen direction r0
75  // Let's restart with a new r0:
76  r0 = r;
77  rho = r0_sqnorm = r.squaredNorm();
78  if(restarts++ == 0)
79  i = 0;
80  }
81  Scalar beta = (rho/rho_old) * (alpha / w);
82  p = r + beta * (p - w * v);
83 
84  y = precond.solve(p);
85 
86  v.noalias() = mat * y;
87 
88  alpha = rho / r0.dot(v);
89  s = r - alpha * v;
90 
91  z = precond.solve(s);
92  t.noalias() = mat * z;
93 
94  RealScalar tmp = t.squaredNorm();
95  if(tmp>RealScalar(0))
96  w = t.dot(s) / tmp;
97  else
98  w = Scalar(0);
99  x += alpha * y + w * z;
100  r = s - w * t;
101  ++i;
102  }
103  tol_error = sqrt(r.squaredNorm()/rhs_sqnorm);
104  iters = i;
105  return true;
106 }
107 
108 }
109 
110 template< typename _MatrixType,
111  typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
112 class BiCGSTAB;
113 
114 namespace internal {
115 
116 template< typename _MatrixType, typename _Preconditioner>
117 struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
118 {
119  typedef _MatrixType MatrixType;
120  typedef _Preconditioner Preconditioner;
121 };
122 
123 }
124 
158 template< typename _MatrixType, typename _Preconditioner>
159 class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
160 {
161  typedef IterativeSolverBase<BiCGSTAB> Base;
162  using Base::mp_matrix;
163  using Base::m_error;
164  using Base::m_iterations;
165  using Base::m_info;
166  using Base::m_isInitialized;
167 public:
168  typedef _MatrixType MatrixType;
169  typedef typename MatrixType::Scalar Scalar;
170  typedef typename MatrixType::Index Index;
171  typedef typename MatrixType::RealScalar RealScalar;
172  typedef _Preconditioner Preconditioner;
173 
174 public:
175 
177  BiCGSTAB() : Base() {}
178 
189  template<typename MatrixDerived>
190  explicit BiCGSTAB(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
191 
192  ~BiCGSTAB() {}
193 
199  template<typename Rhs,typename Guess>
200  inline const internal::solve_retval_with_guess<BiCGSTAB, Rhs, Guess>
201  solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
202  {
203  eigen_assert(m_isInitialized && "BiCGSTAB is not initialized.");
204  eigen_assert(Base::rows()==b.rows()
205  && "BiCGSTAB::solve(): invalid number of rows of the right hand side matrix b");
206  return internal::solve_retval_with_guess
207  <BiCGSTAB, Rhs, Guess>(*this, b.derived(), x0);
208  }
209 
211  template<typename Rhs,typename Dest>
212  void _solveWithGuess(const Rhs& b, Dest& x) const
213  {
214  bool failed = false;
215  for(int j=0; j<b.cols(); ++j)
216  {
217  m_iterations = Base::maxIterations();
218  m_error = Base::m_tolerance;
219 
220  typename Dest::ColXpr xj(x,j);
221  if(!internal::bicgstab(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
222  failed = true;
223  }
224  m_info = failed ? NumericalIssue
225  : m_error <= Base::m_tolerance ? Success
226  : NoConvergence;
227  m_isInitialized = true;
228  }
229 
231  template<typename Rhs,typename Dest>
232  void _solve(const Rhs& b, Dest& x) const
233  {
234 // x.setZero();
235  x = b;
236  _solveWithGuess(b,x);
237  }
238 
239 protected:
240 
241 };
242 
243 
244 namespace internal {
245 
246  template<typename _MatrixType, typename _Preconditioner, typename Rhs>
247 struct solve_retval<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
248  : solve_retval_base<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
249 {
250  typedef BiCGSTAB<_MatrixType, _Preconditioner> Dec;
251  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
252 
253  template<typename Dest> void evalTo(Dest& dst) const
254  {
255  dec()._solve(rhs(),dst);
256  }
257 };
258 
259 } // end namespace internal
260 
261 } // end namespace Eigen
262 
263 #endif // EIGEN_BICGSTAB_H
const internal::solve_retval_with_guess< BiCGSTAB, Rhs, Guess > solveWithGuess(const MatrixBase< Rhs > &b, const Guess &x0) const
Definition: BiCGSTAB.h:201
Definition: Constants.h:378
BiCGSTAB()
Definition: BiCGSTAB.h:177
Definition: EigenBase.h:26
BiCGSTAB(const EigenBase< MatrixDerived > &A)
Definition: BiCGSTAB.h:190
Definition: Constants.h:380
Definition: Constants.h:376
A bi conjugate gradient stabilized solver for sparse square problems.
Definition: BiCGSTAB.h:112
Base class for linear iterative solvers.
Definition: IterativeSolverBase.h:21
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
int maxIterations() const
Definition: IterativeSolverBase.h:141