Eigen  3.2.7
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
ComplexEigenSolver.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Claire Maurice
5 // Copyright (C) 2009 Gael Guennebaud <[email protected]>
6 // Copyright (C) 2010,2012 Jitse Niesen <[email protected]>
7 //
8 // This Source Code Form is subject to the terms of the Mozilla
9 // Public License v. 2.0. If a copy of the MPL was not distributed
10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11 
12 #ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
13 #define EIGEN_COMPLEX_EIGEN_SOLVER_H
14 
15 #include "./ComplexSchur.h"
16 
17 namespace Eigen {
18 
45 template<typename _MatrixType> class ComplexEigenSolver
46 {
47  public:
48 
50  typedef _MatrixType MatrixType;
51 
52  enum {
53  RowsAtCompileTime = MatrixType::RowsAtCompileTime,
54  ColsAtCompileTime = MatrixType::ColsAtCompileTime,
55  Options = MatrixType::Options,
56  MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
57  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
58  };
59 
61  typedef typename MatrixType::Scalar Scalar;
62  typedef typename NumTraits<Scalar>::Real RealScalar;
63  typedef typename MatrixType::Index Index;
64 
71  typedef std::complex<RealScalar> ComplexScalar;
72 
79 
86 
93  : m_eivec(),
94  m_eivalues(),
95  m_schur(),
96  m_isInitialized(false),
97  m_eigenvectorsOk(false),
98  m_matX()
99  {}
100 
107  ComplexEigenSolver(Index size)
108  : m_eivec(size, size),
109  m_eivalues(size),
110  m_schur(size),
111  m_isInitialized(false),
112  m_eigenvectorsOk(false),
113  m_matX(size, size)
114  {}
115 
125  ComplexEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
126  : m_eivec(matrix.rows(),matrix.cols()),
127  m_eivalues(matrix.cols()),
128  m_schur(matrix.rows()),
129  m_isInitialized(false),
130  m_eigenvectorsOk(false),
131  m_matX(matrix.rows(),matrix.cols())
132  {
133  compute(matrix, computeEigenvectors);
134  }
135 
157  {
158  eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
159  eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
160  return m_eivec;
161  }
162 
182  {
183  eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
184  return m_eivalues;
185  }
186 
211  ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
212 
218  {
219  eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
220  return m_schur.info();
221  }
222 
225  {
226  m_schur.setMaxIterations(maxIters);
227  return *this;
228  }
229 
232  {
233  return m_schur.getMaxIterations();
234  }
235 
236  protected:
237 
238  static void check_template_parameters()
239  {
240  EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
241  }
242 
243  EigenvectorType m_eivec;
244  EigenvalueType m_eivalues;
245  ComplexSchur<MatrixType> m_schur;
246  bool m_isInitialized;
247  bool m_eigenvectorsOk;
248  EigenvectorType m_matX;
249 
250  private:
251  void doComputeEigenvectors(const RealScalar& matrixnorm);
252  void sortEigenvalues(bool computeEigenvectors);
253 };
254 
255 
256 template<typename MatrixType>
257 ComplexEigenSolver<MatrixType>&
258 ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
259 {
260  check_template_parameters();
261 
262  // this code is inspired from Jampack
263  eigen_assert(matrix.cols() == matrix.rows());
264 
265  // Do a complex Schur decomposition, A = U T U^*
266  // The eigenvalues are on the diagonal of T.
267  m_schur.compute(matrix, computeEigenvectors);
268 
269  if(m_schur.info() == Success)
270  {
271  m_eivalues = m_schur.matrixT().diagonal();
272  if(computeEigenvectors)
273  doComputeEigenvectors(matrix.norm());
274  sortEigenvalues(computeEigenvectors);
275  }
276 
277  m_isInitialized = true;
278  m_eigenvectorsOk = computeEigenvectors;
279  return *this;
280 }
281 
282 
283 template<typename MatrixType>
284 void ComplexEigenSolver<MatrixType>::doComputeEigenvectors(const RealScalar& matrixnorm)
285 {
286  const Index n = m_eivalues.size();
287 
288  // Compute X such that T = X D X^(-1), where D is the diagonal of T.
289  // The matrix X is unit triangular.
290  m_matX = EigenvectorType::Zero(n, n);
291  for(Index k=n-1 ; k>=0 ; k--)
292  {
293  m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0);
294  // Compute X(i,k) using the (i,k) entry of the equation X T = D X
295  for(Index i=k-1 ; i>=0 ; i--)
296  {
297  m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k);
298  if(k-i-1>0)
299  m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value();
300  ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k);
301  if(z==ComplexScalar(0))
302  {
303  // If the i-th and k-th eigenvalue are equal, then z equals 0.
304  // Use a small value instead, to prevent division by zero.
305  numext::real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm;
306  }
307  m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z;
308  }
309  }
310 
311  // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1)
312  m_eivec.noalias() = m_schur.matrixU() * m_matX;
313  // .. and normalize the eigenvectors
314  for(Index k=0 ; k<n ; k++)
315  {
316  m_eivec.col(k).normalize();
317  }
318 }
319 
320 
321 template<typename MatrixType>
322 void ComplexEigenSolver<MatrixType>::sortEigenvalues(bool computeEigenvectors)
323 {
324  const Index n = m_eivalues.size();
325  for (Index i=0; i<n; i++)
326  {
327  Index k;
328  m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k);
329  if (k != 0)
330  {
331  k += i;
332  std::swap(m_eivalues[k],m_eivalues[i]);
333  if(computeEigenvectors)
334  m_eivec.col(i).swap(m_eivec.col(k));
335  }
336  }
337 }
338 
339 } // end namespace Eigen
340 
341 #endif // EIGEN_COMPLEX_EIGEN_SOLVER_H
_MatrixType MatrixType
Synonym for the template parameter _MatrixType.
Definition: ComplexEigenSolver.h:50
const EigenvalueType & eigenvalues() const
Returns the eigenvalues of given matrix.
Definition: ComplexEigenSolver.h:181
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:88
ComputationInfo info() const
Reports whether previous computation was successful.
Definition: ComplexEigenSolver.h:217
Index getMaxIterations()
Returns the maximum number of iterations.
Definition: ComplexEigenSolver.h:231
const EigenvectorType & eigenvectors() const
Returns the eigenvectors of given matrix.
Definition: ComplexEigenSolver.h:156
ComplexSchur & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed.
Definition: ComplexSchur.h:226
Matrix< ComplexScalar, ColsAtCompileTime, 1, Options &(~RowMajor), MaxColsAtCompileTime, 1 > EigenvalueType
Type for vector of eigenvalues as returned by eigenvalues().
Definition: ComplexEigenSolver.h:78
MatrixType::Scalar Scalar
Scalar type for matrices of type MatrixType.
Definition: ComplexEigenSolver.h:61
Matrix< ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime > EigenvectorType
Type for matrix of eigenvectors as returned by eigenvectors().
Definition: ComplexEigenSolver.h:85
ComplexEigenSolver & compute(const MatrixType &matrix, bool computeEigenvectors=true)
Computes eigendecomposition of given matrix.
Definition: ComplexEigenSolver.h:258
Index getMaxIterations()
Returns the maximum number of iterations.
Definition: ComplexSchur.h:233
ComplexEigenSolver()
Default constructor.
Definition: ComplexEigenSolver.h:92
ComplexEigenSolver(const MatrixType &matrix, bool computeEigenvectors=true)
Constructor; computes eigendecomposition of given matrix.
Definition: ComplexEigenSolver.h:125
ComplexEigenSolver(Index size)
Default Constructor with memory preallocation.
Definition: ComplexEigenSolver.h:107
Definition: Constants.h:376
ComputationInfo info() const
Reports whether previous computation was successful.
Definition: ComplexSchur.h:215
std::complex< RealScalar > ComplexScalar
Complex scalar type for MatrixType.
Definition: ComplexEigenSolver.h:71
ComputationInfo
Definition: Constants.h:374
Computes eigenvalues and eigenvectors of general complex matrices.
Definition: ComplexEigenSolver.h:45
ComplexEigenSolver & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed.
Definition: ComplexEigenSolver.h:224