Eigen  3.2.7
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
Dot.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008, 2010 Benoit Jacob <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_DOT_H
11 #define EIGEN_DOT_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 // helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot
18 // with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
19 // looking at the static assertions. Thus this is a trick to get better compile errors.
20 template<typename T, typename U,
21 // the NeedToTranspose condition here is taken straight from Assign.h
22  bool NeedToTranspose = T::IsVectorAtCompileTime
23  && U::IsVectorAtCompileTime
24  && ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1)
25  | // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
26  // revert to || as soon as not needed anymore.
27  (int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))
28 >
29 struct dot_nocheck
30 {
31  typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
32  static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
33  {
34  return a.template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
35  }
36 };
37 
38 template<typename T, typename U>
39 struct dot_nocheck<T, U, true>
40 {
41  typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
42  static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
43  {
44  return a.transpose().template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
45  }
46 };
47 
48 } // end namespace internal
49 
60 template<typename Derived>
61 template<typename OtherDerived>
62 typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
64 {
65  EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
66  EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
67  EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
68  typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func;
69  EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar);
70 
71  eigen_assert(size() == other.size());
72 
73  return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other);
74 }
75 
76 #ifdef EIGEN2_SUPPORT
77 
86 template<typename Derived>
87 template<typename OtherDerived>
88 typename internal::traits<Derived>::Scalar
90 {
91  EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
92  EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
93  EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
94  EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
95  YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
96 
97  eigen_assert(size() == other.size());
98 
99  return internal::dot_nocheck<OtherDerived,Derived>::run(other,*this);
100 }
101 #endif
102 
103 
104 //---------- implementation of L2 norm and related functions ----------
105 
112 template<typename Derived>
114 {
115  return numext::real((*this).cwiseAbs2().sum());
116 }
117 
124 template<typename Derived>
126 {
127  using std::sqrt;
128  return sqrt(squaredNorm());
129 }
130 
137 template<typename Derived>
138 inline const typename MatrixBase<Derived>::PlainObject
140 {
141  typedef typename internal::nested<Derived>::type Nested;
142  typedef typename internal::remove_reference<Nested>::type _Nested;
143  _Nested n(derived());
144  return n / n.norm();
145 }
146 
153 template<typename Derived>
155 {
156  *this /= norm();
157 }
158 
159 //---------- implementation of other norms ----------
160 
161 namespace internal {
162 
163 template<typename Derived, int p>
164 struct lpNorm_selector
165 {
166  typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
167  static inline RealScalar run(const MatrixBase<Derived>& m)
168  {
169  using std::pow;
170  return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
171  }
172 };
173 
174 template<typename Derived>
175 struct lpNorm_selector<Derived, 1>
176 {
177  static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
178  {
179  return m.cwiseAbs().sum();
180  }
181 };
182 
183 template<typename Derived>
184 struct lpNorm_selector<Derived, 2>
185 {
186  static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
187  {
188  return m.norm();
189  }
190 };
191 
192 template<typename Derived>
193 struct lpNorm_selector<Derived, Infinity>
194 {
195  static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
196  {
197  return m.cwiseAbs().maxCoeff();
198  }
199 };
200 
201 } // end namespace internal
202 
209 template<typename Derived>
210 template<int p>
211 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
213 {
214  return internal::lpNorm_selector<Derived, p>::run(*this);
215 }
216 
217 //---------- implementation of isOrthogonal / isUnitary ----------
218 
225 template<typename Derived>
226 template<typename OtherDerived>
228 (const MatrixBase<OtherDerived>& other, const RealScalar& prec) const
229 {
230  typename internal::nested<Derived,2>::type nested(derived());
231  typename internal::nested<OtherDerived,2>::type otherNested(other.derived());
232  return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
233 }
234 
246 template<typename Derived>
247 bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const
248 {
249  typename Derived::Nested nested(derived());
250  for(Index i = 0; i < cols(); ++i)
251  {
252  if(!internal::isApprox(nested.col(i).squaredNorm(), static_cast<RealScalar>(1), prec))
253  return false;
254  for(Index j = 0; j < i; ++j)
255  if(!internal::isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec))
256  return false;
257  }
258  return true;
259 }
260 
261 } // end namespace Eigen
262 
263 #endif // EIGEN_DOT_H
RealScalar squaredNorm() const
Definition: Dot.h:113
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:88
const PlainObject normalized() const
Definition: Dot.h:139
bool isOrthogonal(const MatrixBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
Definition: Dot.h:228
RealScalar norm() const
Definition: Dot.h:125
void normalize()
Definition: Dot.h:154
internal::traits< Derived >::Index Index
The type of indices.
Definition: DenseBase.h:60
internal::scalar_product_traits< typename internal::traits< Derived >::Scalar, typename internal::traits< OtherDerived >::Scalar >::ReturnType dot(const MatrixBase< OtherDerived > &other) const
Definition: Dot.h:63
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:127
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
const int Infinity
Definition: Constants.h:31
const CwiseUnaryOp< internal::scalar_abs_op< Scalar >, const Derived > cwiseAbs() const
Definition: MatrixBase.h:22
bool isUnitary(const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
Definition: Dot.h:247