Eigen  3.2.7
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
FullPivLU.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2009 Benoit Jacob <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_LU_H
11 #define EIGEN_LU_H
12 
13 namespace Eigen {
14 
46 template<typename _MatrixType> class FullPivLU
47 {
48  public:
49  typedef _MatrixType MatrixType;
50  enum {
51  RowsAtCompileTime = MatrixType::RowsAtCompileTime,
52  ColsAtCompileTime = MatrixType::ColsAtCompileTime,
53  Options = MatrixType::Options,
54  MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
55  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
56  };
57  typedef typename MatrixType::Scalar Scalar;
58  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
59  typedef typename internal::traits<MatrixType>::StorageKind StorageKind;
60  typedef typename MatrixType::Index Index;
61  typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
62  typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
63  typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType;
64  typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType;
65 
72  FullPivLU();
73 
80  FullPivLU(Index rows, Index cols);
81 
87  FullPivLU(const MatrixType& matrix);
88 
96  FullPivLU& compute(const MatrixType& matrix);
97 
104  inline const MatrixType& matrixLU() const
105  {
106  eigen_assert(m_isInitialized && "LU is not initialized.");
107  return m_lu;
108  }
109 
117  inline Index nonzeroPivots() const
118  {
119  eigen_assert(m_isInitialized && "LU is not initialized.");
120  return m_nonzero_pivots;
121  }
122 
126  RealScalar maxPivot() const { return m_maxpivot; }
127 
132  inline const PermutationPType& permutationP() const
133  {
134  eigen_assert(m_isInitialized && "LU is not initialized.");
135  return m_p;
136  }
137 
142  inline const PermutationQType& permutationQ() const
143  {
144  eigen_assert(m_isInitialized && "LU is not initialized.");
145  return m_q;
146  }
147 
162  inline const internal::kernel_retval<FullPivLU> kernel() const
163  {
164  eigen_assert(m_isInitialized && "LU is not initialized.");
165  return internal::kernel_retval<FullPivLU>(*this);
166  }
167 
187  inline const internal::image_retval<FullPivLU>
188  image(const MatrixType& originalMatrix) const
189  {
190  eigen_assert(m_isInitialized && "LU is not initialized.");
191  return internal::image_retval<FullPivLU>(*this, originalMatrix);
192  }
193 
213  template<typename Rhs>
214  inline const internal::solve_retval<FullPivLU, Rhs>
215  solve(const MatrixBase<Rhs>& b) const
216  {
217  eigen_assert(m_isInitialized && "LU is not initialized.");
218  return internal::solve_retval<FullPivLU, Rhs>(*this, b.derived());
219  }
220 
236  typename internal::traits<MatrixType>::Scalar determinant() const;
237 
255  FullPivLU& setThreshold(const RealScalar& threshold)
256  {
257  m_usePrescribedThreshold = true;
258  m_prescribedThreshold = threshold;
259  return *this;
260  }
261 
271  {
272  m_usePrescribedThreshold = false;
273  return *this;
274  }
275 
280  RealScalar threshold() const
281  {
282  eigen_assert(m_isInitialized || m_usePrescribedThreshold);
283  return m_usePrescribedThreshold ? m_prescribedThreshold
284  // this formula comes from experimenting (see "LU precision tuning" thread on the list)
285  // and turns out to be identical to Higham's formula used already in LDLt.
286  : NumTraits<Scalar>::epsilon() * m_lu.diagonalSize();
287  }
288 
295  inline Index rank() const
296  {
297  using std::abs;
298  eigen_assert(m_isInitialized && "LU is not initialized.");
299  RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
300  Index result = 0;
301  for(Index i = 0; i < m_nonzero_pivots; ++i)
302  result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold);
303  return result;
304  }
305 
312  inline Index dimensionOfKernel() const
313  {
314  eigen_assert(m_isInitialized && "LU is not initialized.");
315  return cols() - rank();
316  }
317 
325  inline bool isInjective() const
326  {
327  eigen_assert(m_isInitialized && "LU is not initialized.");
328  return rank() == cols();
329  }
330 
338  inline bool isSurjective() const
339  {
340  eigen_assert(m_isInitialized && "LU is not initialized.");
341  return rank() == rows();
342  }
343 
350  inline bool isInvertible() const
351  {
352  eigen_assert(m_isInitialized && "LU is not initialized.");
353  return isInjective() && (m_lu.rows() == m_lu.cols());
354  }
355 
363  inline const internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType> inverse() const
364  {
365  eigen_assert(m_isInitialized && "LU is not initialized.");
366  eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
367  return internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType>
368  (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
369  }
370 
371  MatrixType reconstructedMatrix() const;
372 
373  inline Index rows() const { return m_lu.rows(); }
374  inline Index cols() const { return m_lu.cols(); }
375 
376  protected:
377 
378  static void check_template_parameters()
379  {
380  EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
381  }
382 
383  MatrixType m_lu;
384  PermutationPType m_p;
385  PermutationQType m_q;
386  IntColVectorType m_rowsTranspositions;
387  IntRowVectorType m_colsTranspositions;
388  Index m_det_pq, m_nonzero_pivots;
389  RealScalar m_maxpivot, m_prescribedThreshold;
390  bool m_isInitialized, m_usePrescribedThreshold;
391 };
392 
393 template<typename MatrixType>
395  : m_isInitialized(false), m_usePrescribedThreshold(false)
396 {
397 }
398 
399 template<typename MatrixType>
400 FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols)
401  : m_lu(rows, cols),
402  m_p(rows),
403  m_q(cols),
404  m_rowsTranspositions(rows),
405  m_colsTranspositions(cols),
406  m_isInitialized(false),
407  m_usePrescribedThreshold(false)
408 {
409 }
410 
411 template<typename MatrixType>
412 FullPivLU<MatrixType>::FullPivLU(const MatrixType& matrix)
413  : m_lu(matrix.rows(), matrix.cols()),
414  m_p(matrix.rows()),
415  m_q(matrix.cols()),
416  m_rowsTranspositions(matrix.rows()),
417  m_colsTranspositions(matrix.cols()),
418  m_isInitialized(false),
419  m_usePrescribedThreshold(false)
420 {
421  compute(matrix);
422 }
423 
424 template<typename MatrixType>
426 {
427  check_template_parameters();
428 
429  // the permutations are stored as int indices, so just to be sure:
430  eigen_assert(matrix.rows()<=NumTraits<int>::highest() && matrix.cols()<=NumTraits<int>::highest());
431 
432  m_isInitialized = true;
433  m_lu = matrix;
434 
435  const Index size = matrix.diagonalSize();
436  const Index rows = matrix.rows();
437  const Index cols = matrix.cols();
438 
439  // will store the transpositions, before we accumulate them at the end.
440  // can't accumulate on-the-fly because that will be done in reverse order for the rows.
441  m_rowsTranspositions.resize(matrix.rows());
442  m_colsTranspositions.resize(matrix.cols());
443  Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i
444 
445  m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
446  m_maxpivot = RealScalar(0);
447 
448  for(Index k = 0; k < size; ++k)
449  {
450  // First, we need to find the pivot.
451 
452  // biggest coefficient in the remaining bottom-right corner (starting at row k, col k)
453  Index row_of_biggest_in_corner, col_of_biggest_in_corner;
454  RealScalar biggest_in_corner;
455  biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k)
456  .cwiseAbs()
457  .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
458  row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
459  col_of_biggest_in_corner += k; // need to add k to them.
460 
461  if(biggest_in_corner==RealScalar(0))
462  {
463  // before exiting, make sure to initialize the still uninitialized transpositions
464  // in a sane state without destroying what we already have.
465  m_nonzero_pivots = k;
466  for(Index i = k; i < size; ++i)
467  {
468  m_rowsTranspositions.coeffRef(i) = i;
469  m_colsTranspositions.coeffRef(i) = i;
470  }
471  break;
472  }
473 
474  if(biggest_in_corner > m_maxpivot) m_maxpivot = biggest_in_corner;
475 
476  // Now that we've found the pivot, we need to apply the row/col swaps to
477  // bring it to the location (k,k).
478 
479  m_rowsTranspositions.coeffRef(k) = row_of_biggest_in_corner;
480  m_colsTranspositions.coeffRef(k) = col_of_biggest_in_corner;
481  if(k != row_of_biggest_in_corner) {
482  m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
483  ++number_of_transpositions;
484  }
485  if(k != col_of_biggest_in_corner) {
486  m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
487  ++number_of_transpositions;
488  }
489 
490  // Now that the pivot is at the right location, we update the remaining
491  // bottom-right corner by Gaussian elimination.
492 
493  if(k<rows-1)
494  m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k);
495  if(k<size-1)
496  m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1);
497  }
498 
499  // the main loop is over, we still have to accumulate the transpositions to find the
500  // permutations P and Q
501 
502  m_p.setIdentity(rows);
503  for(Index k = size-1; k >= 0; --k)
504  m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k));
505 
506  m_q.setIdentity(cols);
507  for(Index k = 0; k < size; ++k)
508  m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));
509 
510  m_det_pq = (number_of_transpositions%2) ? -1 : 1;
511  return *this;
512 }
513 
514 template<typename MatrixType>
515 typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const
516 {
517  eigen_assert(m_isInitialized && "LU is not initialized.");
518  eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!");
519  return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod());
520 }
521 
525 template<typename MatrixType>
527 {
528  eigen_assert(m_isInitialized && "LU is not initialized.");
529  const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols());
530  // LU
531  MatrixType res(m_lu.rows(),m_lu.cols());
532  // FIXME the .toDenseMatrix() should not be needed...
533  res = m_lu.leftCols(smalldim)
534  .template triangularView<UnitLower>().toDenseMatrix()
535  * m_lu.topRows(smalldim)
536  .template triangularView<Upper>().toDenseMatrix();
537 
538  // P^{-1}(LU)
539  res = m_p.inverse() * res;
540 
541  // (P^{-1}LU)Q^{-1}
542  res = res * m_q.inverse();
543 
544  return res;
545 }
546 
547 /********* Implementation of kernel() **************************************************/
548 
549 namespace internal {
550 template<typename _MatrixType>
551 struct kernel_retval<FullPivLU<_MatrixType> >
552  : kernel_retval_base<FullPivLU<_MatrixType> >
553 {
554  EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>)
555 
556  enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
557  MatrixType::MaxColsAtCompileTime,
558  MatrixType::MaxRowsAtCompileTime)
559  };
560 
561  template<typename Dest> void evalTo(Dest& dst) const
562  {
563  using std::abs;
564  const Index cols = dec().matrixLU().cols(), dimker = cols - rank();
565  if(dimker == 0)
566  {
567  // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's
568  // avoid crashing/asserting as that depends on floating point calculations. Let's
569  // just return a single column vector filled with zeros.
570  dst.setZero();
571  return;
572  }
573 
574  /* Let us use the following lemma:
575  *
576  * Lemma: If the matrix A has the LU decomposition PAQ = LU,
577  * then Ker A = Q(Ker U).
578  *
579  * Proof: trivial: just keep in mind that P, Q, L are invertible.
580  */
581 
582  /* Thus, all we need to do is to compute Ker U, and then apply Q.
583  *
584  * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
585  * Thus, the diagonal of U ends with exactly
586  * dimKer zero's. Let us use that to construct dimKer linearly
587  * independent vectors in Ker U.
588  */
589 
590  Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
591  RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
592  Index p = 0;
593  for(Index i = 0; i < dec().nonzeroPivots(); ++i)
594  if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
595  pivots.coeffRef(p++) = i;
596  eigen_internal_assert(p == rank());
597 
598  // we construct a temporaty trapezoid matrix m, by taking the U matrix and
599  // permuting the rows and cols to bring the nonnegligible pivots to the top of
600  // the main diagonal. We need that to be able to apply our triangular solvers.
601  // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified
602  Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options,
603  MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime>
604  m(dec().matrixLU().block(0, 0, rank(), cols));
605  for(Index i = 0; i < rank(); ++i)
606  {
607  if(i) m.row(i).head(i).setZero();
608  m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i);
609  }
610  m.block(0, 0, rank(), rank());
611  m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero();
612  for(Index i = 0; i < rank(); ++i)
613  m.col(i).swap(m.col(pivots.coeff(i)));
614 
615  // ok, we have our trapezoid matrix, we can apply the triangular solver.
616  // notice that the math behind this suggests that we should apply this to the
617  // negative of the RHS, but for performance we just put the negative sign elsewhere, see below.
618  m.topLeftCorner(rank(), rank())
619  .template triangularView<Upper>().solveInPlace(
620  m.topRightCorner(rank(), dimker)
621  );
622 
623  // now we must undo the column permutation that we had applied!
624  for(Index i = rank()-1; i >= 0; --i)
625  m.col(i).swap(m.col(pivots.coeff(i)));
626 
627  // see the negative sign in the next line, that's what we were talking about above.
628  for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker);
629  for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero();
630  for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1);
631  }
632 };
633 
634 /***** Implementation of image() *****************************************************/
635 
636 template<typename _MatrixType>
637 struct image_retval<FullPivLU<_MatrixType> >
638  : image_retval_base<FullPivLU<_MatrixType> >
639 {
640  EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>)
641 
642  enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
643  MatrixType::MaxColsAtCompileTime,
644  MatrixType::MaxRowsAtCompileTime)
645  };
646 
647  template<typename Dest> void evalTo(Dest& dst) const
648  {
649  using std::abs;
650  if(rank() == 0)
651  {
652  // The Image is just {0}, so it doesn't have a basis properly speaking, but let's
653  // avoid crashing/asserting as that depends on floating point calculations. Let's
654  // just return a single column vector filled with zeros.
655  dst.setZero();
656  return;
657  }
658 
659  Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
660  RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
661  Index p = 0;
662  for(Index i = 0; i < dec().nonzeroPivots(); ++i)
663  if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
664  pivots.coeffRef(p++) = i;
665  eigen_internal_assert(p == rank());
666 
667  for(Index i = 0; i < rank(); ++i)
668  dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i)));
669  }
670 };
671 
672 /***** Implementation of solve() *****************************************************/
673 
674 template<typename _MatrixType, typename Rhs>
675 struct solve_retval<FullPivLU<_MatrixType>, Rhs>
676  : solve_retval_base<FullPivLU<_MatrixType>, Rhs>
677 {
678  EIGEN_MAKE_SOLVE_HELPERS(FullPivLU<_MatrixType>,Rhs)
679 
680  template<typename Dest> void evalTo(Dest& dst) const
681  {
682  /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
683  * So we proceed as follows:
684  * Step 1: compute c = P * rhs.
685  * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
686  * Step 3: replace c by the solution x to Ux = c. May or may not exist.
687  * Step 4: result = Q * c;
688  */
689 
690  const Index rows = dec().rows(), cols = dec().cols(),
691  nonzero_pivots = dec().rank();
692  eigen_assert(rhs().rows() == rows);
693  const Index smalldim = (std::min)(rows, cols);
694 
695  if(nonzero_pivots == 0)
696  {
697  dst.setZero();
698  return;
699  }
700 
701  typename Rhs::PlainObject c(rhs().rows(), rhs().cols());
702 
703  // Step 1
704  c = dec().permutationP() * rhs();
705 
706  // Step 2
707  dec().matrixLU()
708  .topLeftCorner(smalldim,smalldim)
709  .template triangularView<UnitLower>()
710  .solveInPlace(c.topRows(smalldim));
711  if(rows>cols)
712  {
713  c.bottomRows(rows-cols)
714  -= dec().matrixLU().bottomRows(rows-cols)
715  * c.topRows(cols);
716  }
717 
718  // Step 3
719  dec().matrixLU()
720  .topLeftCorner(nonzero_pivots, nonzero_pivots)
721  .template triangularView<Upper>()
722  .solveInPlace(c.topRows(nonzero_pivots));
723 
724  // Step 4
725  for(Index i = 0; i < nonzero_pivots; ++i)
726  dst.row(dec().permutationQ().indices().coeff(i)) = c.row(i);
727  for(Index i = nonzero_pivots; i < dec().matrixLU().cols(); ++i)
728  dst.row(dec().permutationQ().indices().coeff(i)).setZero();
729  }
730 };
731 
732 } // end namespace internal
733 
734 /******* MatrixBase methods *****************************************************************/
735 
742 template<typename Derived>
743 inline const FullPivLU<typename MatrixBase<Derived>::PlainObject>
745 {
746  return FullPivLU<PlainObject>(eval());
747 }
748 
749 } // end namespace Eigen
750 
751 #endif // EIGEN_LU_H
bool isInvertible() const
Definition: FullPivLU.h:350
RealScalar threshold() const
Definition: FullPivLU.h:280
const MatrixType & matrixLU() const
Definition: FullPivLU.h:104
const FullPivLU< PlainObject > fullPivLu() const
Definition: FullPivLU.h:744
internal::traits< MatrixType >::Scalar determinant() const
Definition: FullPivLU.h:515
MatrixType reconstructedMatrix() const
Definition: FullPivLU.h:526
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:88
const int Dynamic
Definition: Constants.h:21
bool isInjective() const
Definition: FullPivLU.h:325
FullPivLU()
Default Constructor.
Definition: FullPivLU.h:394
FullPivLU & compute(const MatrixType &matrix)
Definition: FullPivLU.h:425
const PermutationPType & permutationP() const
Definition: FullPivLU.h:132
Index rank() const
Definition: FullPivLU.h:295
const internal::image_retval< FullPivLU > image(const MatrixType &originalMatrix) const
Definition: FullPivLU.h:188
FullPivLU & setThreshold(Default_t)
Definition: FullPivLU.h:270
Index nonzeroPivots() const
Definition: FullPivLU.h:117
Index dimensionOfKernel() const
Definition: FullPivLU.h:312
LU decomposition of a matrix with complete pivoting, and related features.
Definition: ForwardDeclarations.h:216
FullPivLU & setThreshold(const RealScalar &threshold)
Definition: FullPivLU.h:255
const internal::kernel_retval< FullPivLU > kernel() const
Definition: FullPivLU.h:162
RealScalar maxPivot() const
Definition: FullPivLU.h:126
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
const internal::solve_retval< FullPivLU, Rhs > solve(const MatrixBase< Rhs > &b) const
Definition: FullPivLU.h:215
bool isSurjective() const
Definition: FullPivLU.h:338
const internal::solve_retval< FullPivLU, typename MatrixType::IdentityReturnType > inverse() const
Definition: FullPivLU.h:363
const PermutationQType & permutationQ() const
Definition: FullPivLU.h:142