Eigen  3.2.7
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
LLT.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_LLT_H
11 #define EIGEN_LLT_H
12 
13 namespace Eigen {
14 
15 namespace internal{
16 template<typename MatrixType, int UpLo> struct LLT_Traits;
17 }
18 
46  /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
47  * Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
48  * the strict lower part does not have to store correct values.
49  */
50 template<typename _MatrixType, int _UpLo> class LLT
51 {
52  public:
53  typedef _MatrixType MatrixType;
54  enum {
55  RowsAtCompileTime = MatrixType::RowsAtCompileTime,
56  ColsAtCompileTime = MatrixType::ColsAtCompileTime,
57  Options = MatrixType::Options,
58  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
59  };
60  typedef typename MatrixType::Scalar Scalar;
61  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
62  typedef typename MatrixType::Index Index;
63 
64  enum {
65  PacketSize = internal::packet_traits<Scalar>::size,
66  AlignmentMask = int(PacketSize)-1,
67  UpLo = _UpLo
68  };
69 
70  typedef internal::LLT_Traits<MatrixType,UpLo> Traits;
71 
78  LLT() : m_matrix(), m_isInitialized(false) {}
79 
86  LLT(Index size) : m_matrix(size, size),
87  m_isInitialized(false) {}
88 
89  LLT(const MatrixType& matrix)
90  : m_matrix(matrix.rows(), matrix.cols()),
91  m_isInitialized(false)
92  {
93  compute(matrix);
94  }
95 
97  inline typename Traits::MatrixU matrixU() const
98  {
99  eigen_assert(m_isInitialized && "LLT is not initialized.");
100  return Traits::getU(m_matrix);
101  }
102 
104  inline typename Traits::MatrixL matrixL() const
105  {
106  eigen_assert(m_isInitialized && "LLT is not initialized.");
107  return Traits::getL(m_matrix);
108  }
109 
120  template<typename Rhs>
121  inline const internal::solve_retval<LLT, Rhs>
122  solve(const MatrixBase<Rhs>& b) const
123  {
124  eigen_assert(m_isInitialized && "LLT is not initialized.");
125  eigen_assert(m_matrix.rows()==b.rows()
126  && "LLT::solve(): invalid number of rows of the right hand side matrix b");
127  return internal::solve_retval<LLT, Rhs>(*this, b.derived());
128  }
129 
130  #ifdef EIGEN2_SUPPORT
131  template<typename OtherDerived, typename ResultType>
132  bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
133  {
134  *result = this->solve(b);
135  return true;
136  }
137 
138  bool isPositiveDefinite() const { return true; }
139  #endif
140 
141  template<typename Derived>
142  void solveInPlace(MatrixBase<Derived> &bAndX) const;
143 
144  LLT& compute(const MatrixType& matrix);
145 
150  inline const MatrixType& matrixLLT() const
151  {
152  eigen_assert(m_isInitialized && "LLT is not initialized.");
153  return m_matrix;
154  }
155 
156  MatrixType reconstructedMatrix() const;
157 
158 
165  {
166  eigen_assert(m_isInitialized && "LLT is not initialized.");
167  return m_info;
168  }
169 
170  inline Index rows() const { return m_matrix.rows(); }
171  inline Index cols() const { return m_matrix.cols(); }
172 
173  template<typename VectorType>
174  LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);
175 
176  protected:
177 
178  static void check_template_parameters()
179  {
180  EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
181  }
182 
187  MatrixType m_matrix;
188  bool m_isInitialized;
189  ComputationInfo m_info;
190 };
191 
192 namespace internal {
193 
194 template<typename Scalar, int UpLo> struct llt_inplace;
195 
196 template<typename MatrixType, typename VectorType>
197 static typename MatrixType::Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma)
198 {
199  using std::sqrt;
200  typedef typename MatrixType::Scalar Scalar;
201  typedef typename MatrixType::RealScalar RealScalar;
202  typedef typename MatrixType::Index Index;
203  typedef typename MatrixType::ColXpr ColXpr;
204  typedef typename internal::remove_all<ColXpr>::type ColXprCleaned;
205  typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
206  typedef Matrix<Scalar,Dynamic,1> TempVectorType;
207  typedef typename TempVectorType::SegmentReturnType TempVecSegment;
208 
209  Index n = mat.cols();
210  eigen_assert(mat.rows()==n && vec.size()==n);
211 
212  TempVectorType temp;
213 
214  if(sigma>0)
215  {
216  // This version is based on Givens rotations.
217  // It is faster than the other one below, but only works for updates,
218  // i.e., for sigma > 0
219  temp = sqrt(sigma) * vec;
220 
221  for(Index i=0; i<n; ++i)
222  {
223  JacobiRotation<Scalar> g;
224  g.makeGivens(mat(i,i), -temp(i), &mat(i,i));
225 
226  Index rs = n-i-1;
227  if(rs>0)
228  {
229  ColXprSegment x(mat.col(i).tail(rs));
230  TempVecSegment y(temp.tail(rs));
231  apply_rotation_in_the_plane(x, y, g);
232  }
233  }
234  }
235  else
236  {
237  temp = vec;
238  RealScalar beta = 1;
239  for(Index j=0; j<n; ++j)
240  {
241  RealScalar Ljj = numext::real(mat.coeff(j,j));
242  RealScalar dj = numext::abs2(Ljj);
243  Scalar wj = temp.coeff(j);
244  RealScalar swj2 = sigma*numext::abs2(wj);
245  RealScalar gamma = dj*beta + swj2;
246 
247  RealScalar x = dj + swj2/beta;
248  if (x<=RealScalar(0))
249  return j;
250  RealScalar nLjj = sqrt(x);
251  mat.coeffRef(j,j) = nLjj;
252  beta += swj2/dj;
253 
254  // Update the terms of L
255  Index rs = n-j-1;
256  if(rs)
257  {
258  temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
259  if(gamma != 0)
260  mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs);
261  }
262  }
263  }
264  return -1;
265 }
266 
267 template<typename Scalar> struct llt_inplace<Scalar, Lower>
268 {
269  typedef typename NumTraits<Scalar>::Real RealScalar;
270  template<typename MatrixType>
271  static typename MatrixType::Index unblocked(MatrixType& mat)
272  {
273  using std::sqrt;
274  typedef typename MatrixType::Index Index;
275 
276  eigen_assert(mat.rows()==mat.cols());
277  const Index size = mat.rows();
278  for(Index k = 0; k < size; ++k)
279  {
280  Index rs = size-k-1; // remaining size
281 
282  Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
283  Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
284  Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
285 
286  RealScalar x = numext::real(mat.coeff(k,k));
287  if (k>0) x -= A10.squaredNorm();
288  if (x<=RealScalar(0))
289  return k;
290  mat.coeffRef(k,k) = x = sqrt(x);
291  if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
292  if (rs>0) A21 /= x;
293  }
294  return -1;
295  }
296 
297  template<typename MatrixType>
298  static typename MatrixType::Index blocked(MatrixType& m)
299  {
300  typedef typename MatrixType::Index Index;
301  eigen_assert(m.rows()==m.cols());
302  Index size = m.rows();
303  if(size<32)
304  return unblocked(m);
305 
306  Index blockSize = size/8;
307  blockSize = (blockSize/16)*16;
308  blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128));
309 
310  for (Index k=0; k<size; k+=blockSize)
311  {
312  // partition the matrix:
313  // A00 | - | -
314  // lu = A10 | A11 | -
315  // A20 | A21 | A22
316  Index bs = (std::min)(blockSize, size-k);
317  Index rs = size - k - bs;
318  Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs);
319  Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs);
320  Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);
321 
322  Index ret;
323  if((ret=unblocked(A11))>=0) return k+ret;
324  if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
325  if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1); // bottleneck
326  }
327  return -1;
328  }
329 
330  template<typename MatrixType, typename VectorType>
331  static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
332  {
333  return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
334  }
335 };
336 
337 template<typename Scalar> struct llt_inplace<Scalar, Upper>
338 {
339  typedef typename NumTraits<Scalar>::Real RealScalar;
340 
341  template<typename MatrixType>
342  static EIGEN_STRONG_INLINE typename MatrixType::Index unblocked(MatrixType& mat)
343  {
344  Transpose<MatrixType> matt(mat);
345  return llt_inplace<Scalar, Lower>::unblocked(matt);
346  }
347  template<typename MatrixType>
348  static EIGEN_STRONG_INLINE typename MatrixType::Index blocked(MatrixType& mat)
349  {
350  Transpose<MatrixType> matt(mat);
351  return llt_inplace<Scalar, Lower>::blocked(matt);
352  }
353  template<typename MatrixType, typename VectorType>
354  static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
355  {
356  Transpose<MatrixType> matt(mat);
357  return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma);
358  }
359 };
360 
361 template<typename MatrixType> struct LLT_Traits<MatrixType,Lower>
362 {
363  typedef const TriangularView<const MatrixType, Lower> MatrixL;
364  typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU;
365  static inline MatrixL getL(const MatrixType& m) { return m; }
366  static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
367  static bool inplace_decomposition(MatrixType& m)
368  { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; }
369 };
370 
371 template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
372 {
373  typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL;
374  typedef const TriangularView<const MatrixType, Upper> MatrixU;
375  static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
376  static inline MatrixU getU(const MatrixType& m) { return m; }
377  static bool inplace_decomposition(MatrixType& m)
378  { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; }
379 };
380 
381 } // end namespace internal
382 
390 template<typename MatrixType, int _UpLo>
392 {
393  check_template_parameters();
394 
395  eigen_assert(a.rows()==a.cols());
396  const Index size = a.rows();
397  m_matrix.resize(size, size);
398  m_matrix = a;
399 
400  m_isInitialized = true;
401  bool ok = Traits::inplace_decomposition(m_matrix);
402  m_info = ok ? Success : NumericalIssue;
403 
404  return *this;
405 }
406 
412 template<typename _MatrixType, int _UpLo>
413 template<typename VectorType>
414 LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma)
415 {
416  EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType);
417  eigen_assert(v.size()==m_matrix.cols());
418  eigen_assert(m_isInitialized);
419  if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0)
420  m_info = NumericalIssue;
421  else
422  m_info = Success;
423 
424  return *this;
425 }
426 
427 namespace internal {
428 template<typename _MatrixType, int UpLo, typename Rhs>
429 struct solve_retval<LLT<_MatrixType, UpLo>, Rhs>
430  : solve_retval_base<LLT<_MatrixType, UpLo>, Rhs>
431 {
432  typedef LLT<_MatrixType,UpLo> LLTType;
433  EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs)
434 
435  template<typename Dest> void evalTo(Dest& dst) const
436  {
437  dst = rhs();
438  dec().solveInPlace(dst);
439  }
440 };
441 }
442 
456 template<typename MatrixType, int _UpLo>
457 template<typename Derived>
458 void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
459 {
460  eigen_assert(m_isInitialized && "LLT is not initialized.");
461  eigen_assert(m_matrix.rows()==bAndX.rows());
462  matrixL().solveInPlace(bAndX);
463  matrixU().solveInPlace(bAndX);
464 }
465 
469 template<typename MatrixType, int _UpLo>
471 {
472  eigen_assert(m_isInitialized && "LLT is not initialized.");
473  return matrixL() * matrixL().adjoint().toDenseMatrix();
474 }
475 
479 template<typename Derived>
482 {
483  return LLT<PlainObject>(derived());
484 }
485 
489 template<typename MatrixType, unsigned int UpLo>
492 {
493  return LLT<PlainObject,UpLo>(m_matrix);
494 }
495 
496 } // end namespace Eigen
497 
498 #endif // EIGEN_LLT_H
Definition: Constants.h:167
MatrixType reconstructedMatrix() const
Definition: LLT.h:470
LLT()
Default Constructor.
Definition: LLT.h:78
Definition: Constants.h:378
Traits::MatrixL matrixL() const
Definition: LLT.h:104
LLT(Index size)
Default Constructor with memory preallocation.
Definition: LLT.h:86
Traits::MatrixU matrixU() const
Definition: LLT.h:97
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:88
Definition: Constants.h:169
LLT & compute(const MatrixType &matrix)
Definition: LLT.h:391
Standard Cholesky decomposition (LL^T) of a matrix and associated features.
Definition: LLT.h:50
const LLT< PlainObject, UpLo > llt() const
Definition: LLT.h:491
Definition: Constants.h:376
const internal::solve_retval< LLT, Rhs > solve(const MatrixBase< Rhs > &b) const
Definition: LLT.h:122
ComputationInfo
Definition: Constants.h:374
const LLT< PlainObject > llt() const
Definition: LLT.h:481
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
ComputationInfo info() const
Reports whether previous computation was successful.
Definition: LLT.h:164
const MatrixType & matrixLLT() const
Definition: LLT.h:150