16 template<
typename MatrixType,
int UpLo>
struct LLT_Traits;
50 template<
typename _MatrixType,
int _UpLo>
class LLT
53 typedef _MatrixType MatrixType;
55 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
56 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
57 Options = MatrixType::Options,
58 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
60 typedef typename MatrixType::Scalar Scalar;
62 typedef typename MatrixType::Index Index;
65 PacketSize = internal::packet_traits<Scalar>::size,
66 AlignmentMask = int(PacketSize)-1,
70 typedef internal::LLT_Traits<MatrixType,UpLo> Traits;
78 LLT() : m_matrix(), m_isInitialized(false) {}
86 LLT(Index size) : m_matrix(size, size),
87 m_isInitialized(false) {}
89 LLT(
const MatrixType& matrix)
90 : m_matrix(matrix.rows(), matrix.cols()),
91 m_isInitialized(false)
97 inline typename Traits::MatrixU
matrixU()
const
99 eigen_assert(m_isInitialized &&
"LLT is not initialized.");
100 return Traits::getU(m_matrix);
104 inline typename Traits::MatrixL
matrixL()
const
106 eigen_assert(m_isInitialized &&
"LLT is not initialized.");
107 return Traits::getL(m_matrix);
120 template<
typename Rhs>
121 inline const internal::solve_retval<LLT, Rhs>
124 eigen_assert(m_isInitialized &&
"LLT is not initialized.");
125 eigen_assert(m_matrix.rows()==b.rows()
126 &&
"LLT::solve(): invalid number of rows of the right hand side matrix b");
127 return internal::solve_retval<LLT, Rhs>(*
this, b.derived());
130 #ifdef EIGEN2_SUPPORT
131 template<
typename OtherDerived,
typename ResultType>
134 *result = this->
solve(b);
138 bool isPositiveDefinite()
const {
return true; }
141 template<
typename Derived>
142 void solveInPlace(MatrixBase<Derived> &bAndX)
const;
152 eigen_assert(m_isInitialized &&
"LLT is not initialized.");
166 eigen_assert(m_isInitialized &&
"LLT is not initialized.");
170 inline Index rows()
const {
return m_matrix.rows(); }
171 inline Index cols()
const {
return m_matrix.cols(); }
173 template<
typename VectorType>
174 LLT rankUpdate(
const VectorType& vec,
const RealScalar& sigma = 1);
178 static void check_template_parameters()
180 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
188 bool m_isInitialized;
194 template<
typename Scalar,
int UpLo>
struct llt_inplace;
196 template<
typename MatrixType,
typename VectorType>
197 static typename MatrixType::Index llt_rank_update_lower(MatrixType& mat,
const VectorType& vec,
const typename MatrixType::RealScalar& sigma)
200 typedef typename MatrixType::Scalar Scalar;
201 typedef typename MatrixType::RealScalar RealScalar;
202 typedef typename MatrixType::Index Index;
203 typedef typename MatrixType::ColXpr ColXpr;
204 typedef typename internal::remove_all<ColXpr>::type ColXprCleaned;
205 typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
206 typedef Matrix<Scalar,Dynamic,1> TempVectorType;
207 typedef typename TempVectorType::SegmentReturnType TempVecSegment;
209 Index n = mat.cols();
210 eigen_assert(mat.rows()==n && vec.size()==n);
219 temp = sqrt(sigma) * vec;
221 for(Index i=0; i<n; ++i)
223 JacobiRotation<Scalar> g;
224 g.makeGivens(mat(i,i), -temp(i), &mat(i,i));
229 ColXprSegment x(mat.col(i).tail(rs));
230 TempVecSegment y(temp.tail(rs));
231 apply_rotation_in_the_plane(x, y, g);
239 for(Index j=0; j<n; ++j)
241 RealScalar Ljj = numext::real(mat.coeff(j,j));
242 RealScalar dj = numext::abs2(Ljj);
243 Scalar wj = temp.coeff(j);
244 RealScalar swj2 = sigma*numext::abs2(wj);
245 RealScalar gamma = dj*beta + swj2;
247 RealScalar x = dj + swj2/beta;
248 if (x<=RealScalar(0))
250 RealScalar nLjj = sqrt(x);
251 mat.coeffRef(j,j) = nLjj;
258 temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
260 mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs);
267 template<
typename Scalar>
struct llt_inplace<Scalar,
Lower>
269 typedef typename NumTraits<Scalar>::Real RealScalar;
270 template<
typename MatrixType>
271 static typename MatrixType::Index unblocked(MatrixType& mat)
274 typedef typename MatrixType::Index Index;
276 eigen_assert(mat.rows()==mat.cols());
277 const Index size = mat.rows();
278 for(Index k = 0; k < size; ++k)
282 Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
283 Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
284 Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
286 RealScalar x = numext::real(mat.coeff(k,k));
287 if (k>0) x -= A10.squaredNorm();
288 if (x<=RealScalar(0))
290 mat.coeffRef(k,k) = x = sqrt(x);
291 if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
297 template<
typename MatrixType>
298 static typename MatrixType::Index blocked(MatrixType& m)
300 typedef typename MatrixType::Index Index;
301 eigen_assert(m.rows()==m.cols());
302 Index size = m.rows();
306 Index blockSize = size/8;
307 blockSize = (blockSize/16)*16;
308 blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128));
310 for (Index k=0; k<size; k+=blockSize)
316 Index bs = (std::min)(blockSize, size-k);
317 Index rs = size - k - bs;
318 Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs);
319 Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs);
320 Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);
323 if((ret=unblocked(A11))>=0)
return k+ret;
324 if(rs>0) A11.adjoint().template triangularView<Upper>().
template solveInPlace<OnTheRight>(A21);
325 if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1);
330 template<
typename MatrixType,
typename VectorType>
331 static typename MatrixType::Index rankUpdate(MatrixType& mat,
const VectorType& vec,
const RealScalar& sigma)
333 return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
337 template<
typename Scalar>
struct llt_inplace<Scalar,
Upper>
339 typedef typename NumTraits<Scalar>::Real RealScalar;
341 template<
typename MatrixType>
342 static EIGEN_STRONG_INLINE
typename MatrixType::Index unblocked(MatrixType& mat)
344 Transpose<MatrixType> matt(mat);
345 return llt_inplace<Scalar, Lower>::unblocked(matt);
347 template<
typename MatrixType>
348 static EIGEN_STRONG_INLINE
typename MatrixType::Index blocked(MatrixType& mat)
350 Transpose<MatrixType> matt(mat);
351 return llt_inplace<Scalar, Lower>::blocked(matt);
353 template<
typename MatrixType,
typename VectorType>
354 static typename MatrixType::Index rankUpdate(MatrixType& mat,
const VectorType& vec,
const RealScalar& sigma)
356 Transpose<MatrixType> matt(mat);
357 return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma);
361 template<
typename MatrixType>
struct LLT_Traits<MatrixType,
Lower>
363 typedef const TriangularView<const MatrixType, Lower> MatrixL;
364 typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU;
365 static inline MatrixL getL(
const MatrixType& m) {
return m; }
366 static inline MatrixU getU(
const MatrixType& m) {
return m.adjoint(); }
367 static bool inplace_decomposition(MatrixType& m)
368 {
return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; }
371 template<
typename MatrixType>
struct LLT_Traits<MatrixType,
Upper>
373 typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL;
374 typedef const TriangularView<const MatrixType, Upper> MatrixU;
375 static inline MatrixL getL(
const MatrixType& m) {
return m.adjoint(); }
376 static inline MatrixU getU(
const MatrixType& m) {
return m; }
377 static bool inplace_decomposition(MatrixType& m)
378 {
return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; }
390 template<
typename MatrixType,
int _UpLo>
393 check_template_parameters();
395 eigen_assert(a.rows()==a.cols());
396 const Index size = a.rows();
397 m_matrix.resize(size, size);
400 m_isInitialized =
true;
401 bool ok = Traits::inplace_decomposition(m_matrix);
412 template<
typename _MatrixType,
int _UpLo>
413 template<
typename VectorType>
416 EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType);
417 eigen_assert(v.size()==m_matrix.cols());
418 eigen_assert(m_isInitialized);
419 if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0)
428 template<
typename _MatrixType,
int UpLo,
typename Rhs>
429 struct solve_retval<
LLT<_MatrixType, UpLo>, Rhs>
430 : solve_retval_base<LLT<_MatrixType, UpLo>, Rhs>
433 EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs)
435 template<typename Dest>
void evalTo(Dest& dst)
const
438 dec().solveInPlace(dst);
456 template<
typename MatrixType,
int _UpLo>
457 template<
typename Derived>
458 void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX)
const
460 eigen_assert(m_isInitialized &&
"LLT is not initialized.");
461 eigen_assert(m_matrix.rows()==bAndX.rows());
462 matrixL().solveInPlace(bAndX);
463 matrixU().solveInPlace(bAndX);
469 template<
typename MatrixType,
int _UpLo>
472 eigen_assert(m_isInitialized &&
"LLT is not initialized.");
473 return matrixL() * matrixL().adjoint().toDenseMatrix();
479 template<
typename Derived>
489 template<
typename MatrixType,
unsigned int UpLo>
498 #endif // EIGEN_LLT_H
Definition: Constants.h:167
MatrixType reconstructedMatrix() const
Definition: LLT.h:470
LLT()
Default Constructor.
Definition: LLT.h:78
Definition: Constants.h:378
Traits::MatrixL matrixL() const
Definition: LLT.h:104
LLT(Index size)
Default Constructor with memory preallocation.
Definition: LLT.h:86
Traits::MatrixU matrixU() const
Definition: LLT.h:97
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:88
Definition: Constants.h:169
LLT & compute(const MatrixType &matrix)
Definition: LLT.h:391
Standard Cholesky decomposition (LL^T) of a matrix and associated features.
Definition: LLT.h:50
const LLT< PlainObject, UpLo > llt() const
Definition: LLT.h:491
Definition: Constants.h:376
const internal::solve_retval< LLT, Rhs > solve(const MatrixBase< Rhs > &b) const
Definition: LLT.h:122
ComputationInfo
Definition: Constants.h:374
const LLT< PlainObject > llt() const
Definition: LLT.h:481
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
ComputationInfo info() const
Reports whether previous computation was successful.
Definition: LLT.h:164
const MatrixType & matrixLLT() const
Definition: LLT.h:150