Mathematical operators are provided for many EnterpriseDB types. For types without common mathematical conventions for all possible permutations (e.g., date/time types) we describe the actual behavior in subsequent sections.
Table 8-2 shows the available mathematical operators.
Table 8-2. Mathematical Operators
| Operator | Description | Example | Result |
|---|---|---|---|
| + | addition | 2 + 3 | 5 |
| - | subtraction | 2 - 3 | -1 |
| * | multiplication | 2 * 3 | 6 |
| / | division (integer division truncates results) | 4 / 2 | 2 |
| % | modulo (remainder) | 5 % 4 | 1 |
| ^ | exponentiation | 2.0 ^ 3.0 | 8 |
| |/ | square root | |/ 25.0 | 5 |
| ||/ | cube root | ||/ 27.0 | 3 |
| ! | factorial | 5 ! | 120 |
| !! | factorial (prefix operator) | !! 5 | 120 |
| @ | absolute value | @ -5.0 | 5 |
| & | bitwise AND | 91 & 15 | 11 |
| | | bitwise OR | 32 | 3 | 35 |
| # | bitwise XOR | 17 # 5 | 20 |
| ~ | bitwise NOT | ~1 | -2 |
| << | bitwise shift left | 1 << 4 | 16 |
| >> | bitwise shift right | 8 >> 2 | 2 |
The bitwise operators work only on integral data types, whereas the others are available for all numeric data types.
Table 8-3 shows the available mathematical functions. . Many of these functions are provided in multiple forms with different argument types. Except where noted, any given form of a function returns the same data type as its argument. The functions working with DOUBLE PRECISION data are mostly implemented on top of the host system's C library; accuracy and behavior in boundary cases may therefore vary depending on the host system.
Table 8-3. Mathematical Functions
| Function | Return Type | Description | Example | Result |
|---|---|---|---|---|
abs(x) | (same as x) | absolute value | abs(-17.4) | 17.4 |
cbrt(DOUBLE PRECISION) | DOUBLE PRECISION | cube root | cbrt(27.0) | 3 |
ceil(DOUBLE PRECISION or NUMERIC) | (same as input) | smallest integer not less than argument | ceil(-42.8) | -42 |
ceiling(DOUBLE PRECISION or NUMERIC) | (same as input) | smallest integer not less than argument (alias for ceil) | ceiling(-95.3) | -95 |
degrees(DOUBLE PRECISION) | DOUBLE PRECISION | radians to degrees | degrees(0.5) | 28.6478897565412 |
exp(DOUBLE PRECISION or NUMERIC) | (same as input) | exponential | exp(1.0) | 2.71828182845905 |
floor(DOUBLE PRECISION or NUMERIC) | (same as input) | largest integer not greater than argument | floor(-42.8) | -43 |
ln(DOUBLE PRECISION or NUMERIC) | (same as input) | natural logarithm | ln(2.0) | 0.693147180559945 |
log(DOUBLE PRECISION or NUMERIC) | (same as input) | base 10 logarithm | log(100.0) | 2 |
log(b NUMERIC,
x NUMERIC) | NUMERIC | logarithm to base b | log(2.0, 64.0) | 6.0000000000 |
nvl(x,
y) | (same as argument types; where both arguments are of the same datatype) | if x is null, then nvl returnsy | nvl(9,0) | 9 |
mod(y,
x) | (same as argument types) | remainder of y/x | mod(9,4) | 1 |
pi() | DOUBLE PRECISION | "π" constant | pi() | 3.14159265358979 |
power(a DOUBLE PRECISION,
b DOUBLE PRECISION) | DOUBLE PRECISION | a raised to the power of b | power(9.0, 3.0) | 729 |
power(a NUMERIC,
b NUMERIC) | NUMERIC | a raised to the power of b | power(9.0, 3.0) | 729 |
radians(DOUBLE PRECISION) | DOUBLE PRECISION | degrees to radians | radians(45.0) | 0.785398163397448 |
random() | DOUBLE PRECISION | random value between 0.0 and 1.0 | random() | |
round(DOUBLE PRECISION or NUMERIC) | (same as input) | round to nearest integer | round(42.4) | 42 |
round(v NUMERIC, s INTEGER) | NUMERIC | round to s decimal places | round(42.4382, 2) | 42.44 |
setseed(DOUBLE PRECISION) | INTEGER | set seed for subsequent random() calls | setseed(0.54823) | 1177314959 |
sign(DOUBLE PRECISION or NUMERIC) | (same as input) | sign of the argument (-1, 0, +1) | sign(-8.4) | -1 |
sqrt(DOUBLE PRECISION or NUMERIC) | (same as input) | square root | sqrt(2.0) | 1.4142135623731 |
trunc(DOUBLE PRECISION or NUMERIC) | (same as input) | truncate toward zero | trunc(42.8) | 42 |
trunc(v NUMERIC, s INTEGER) | NUMERIC | truncate to s decimal places | trunc(42.4382, 2) | 42.43 |
width_bucket(op NUMERIC, b1 NUMERIC, b2 NUMERIC, count INTEGER) | INTEGER | return the bucket to which operand would be assigned in an equidepth histogram with count buckets, an upper bound of b1, and a lower bound of b2 | width_bucket(5.35, 0.024, 10.06, 5) | 3 |
Finally, Table 8-4 shows the available trigonometric functions. All trigonometric functions take arguments and return values of type double precision.