Erl_Interface

Reference Manual

Version 3.13.2

Table of Contents

erl_connect

C Library

erl_connect

Library Summary

Communicate with distributed Erlang.

Description

Note

The support for VxWorks is deprecated as of OTP 22, and will be removed in OTP 23.

Note

The old legacy erl_interface library (functions with prefix erl_) is deprecated as of OTP 22, and will be removed in OTP 23. This does not apply to the ei library. Reasonably new gcc compilers will issue deprecation warnings. In order to disable these warnings, define the macro EI_NO_DEPR_WARN.

This module provides support for communication between distributed Erlang nodes and C-nodes, in a manner that is transparent to Erlang processes.

A C-node appears to Erlang as a hidden node. That is, Erlang processes that know the name of the C-node can communicate with it in a normal manner, but the node name does not appear in the listing provided by erlang:nodes/0 in ERTS.

Exports

int erl_accept(
listensock,
conp)

Types

int listensock;
ErlConnect *conp;

This function is used by a server process to accept a connection from a client process.

  • listensock is an open socket descriptor on which listen() has previously been called.
  • conp is a pointer to an ErlConnect struct, described as follows:
typedef struct {
  char ipadr[4];
  char nodename[MAXNODELEN];
} ErlConnect;

On success, conp is filled in with the address and node name of the connecting client and a file descriptor is returned. On failure, ERL_ERROR is returned and erl_errno is set to EIO.

int erl_close_connection(
fd)

Types

int fd;

Closes an open connection to an Erlang node.

Fd is a file descriptor obtained from erl_connect() or erl_xconnect().

Returns 0 on success. If the call fails, a non-zero value is returned, and the reason for the error can be obtained with the appropriate platform-dependent call.

int erl_connect(
node)
int erl_xconnect(
addr,
alive)

Types

char *node, *alive;
struct in_addr *addr;

Sets up a connection to an Erlang node.

erl_xconnect() requires the IP address of the remote host and the alivename of the remote node to be specified. erl_connect() provides an alternative interface, and determines the information from the node name provided.

  • addr is the 32-bit IP address of the remote host.
  • alive is the alivename of the remote node.
  • node is the name of the remote node.

Returns an open file descriptor on success, otherwise a negative value. In the latter case erl_errno is set to one of:

EHOSTUNREACH
The remote host node is unreachable.
ENOMEM
No more memory is available.
EIO
I/O error.

Also, errno values from socket(2) and connect(2) system calls can be propagated into erl_errno.

Example:

#define NODE   "[email protected]"
#define ALIVE  "madonna"
#define IP_ADDR "150.236.14.75"

/*** Variant 1 ***/
erl_connect( NODE );

/*** Variant 2 ***/
struct in_addr addr;
addr = inet_addr(IP_ADDR);
erl_xconnect( &addr , ALIVE );

int erl_connect_init(
number,
cookie,
creation)
int erl_connect_xinit(
host,
alive,
node,
addr,
cookie,
creation)

Types

int number;
char *cookie;
short creation;
char *host,*alive,*node;
struct in_addr *addr;

Initializes the erl_connect module. In particular, these functions are used to identify the name of the C-node from which they are called. One of these functions must be called before any of the other functions in the erl_connect module are used.

erl_connect_xinit() stores for later use information about:

  • Hostname of the node, host
  • Alivename, alive
  • Node name, node
  • IP address, addr
  • Cookie, cookie
  • Creation number, creation

erl_connect_init() provides an alternative interface that does not require as much information from the caller. Instead, erl_connect_init() uses gethostbyname() to obtain default values.

If you use erl_connect_init(), your node will have a short name, that is, it will not be fully qualified. If you need to use fully qualified (long) names, use erl_connect_xinit() instead.

  • host is the name of the host on which the node is running.

  • alive is the alivename of the node.

  • node is the node name. It is to be of the form alivename@hostname.

  • addr is the 32-bit IP address of host.

  • cookie is the authorization string required for access to the remote node. If NULL, the user HOME directory is searched for a cookie file .erlang.cookie. The path to the home directory is retrieved from environment variable HOME on Unix and from the HOMEDRIVE and HOMEPATH variables on Windows. For more details, see the auth module in Kernel.

  • creation helps identifying a particular instance of a C-node. In particular, it can help prevent us from receiving messages sent to an earlier process with the same registered name.

A C-node acting as a server is assigned a creation number when it calls erl_publish().

number is used by erl_connect_init() to construct the actual node name. In Example 2 below, "[email protected]" is the resulting node name.

Example 1:

struct in_addr addr;
addr = inet_addr("150.236.14.75");
if (!erl_connect_xinit("chivas",
                       "madonna",
                       "[email protected]",
                       &addr;
                       "samplecookiestring..."),
                       0)
  erl_err_quit("<ERROR> when initializing !");

Example 2:

if (!erl_connect_init(17, "samplecookiestring...", 0))
  erl_err_quit("<ERROR> when initializing !");

int erl_publish(
port)

Types

int port;

This function is used by a server process to register with the local name server EPMD, thereby allowing other processes to send messages by using the registered name. Before calling this function, the process should have called bind() and listen() on an open socket.

port is the local name to register, and is to be the same as the port number that was previously bound to the socket.

To unregister with EPMD, simply close the returned descriptor.

On success, a descriptor connecting the calling process to EPMD is returned. On failure, -1 is returned and erl_errno is set to:

EIO
I/O error.

Also, errno values from socket(2) and connect(2) system calls can be propagated into erl_errno.

int erl_receive(
fd,
bufp,
bufsize)

Types

int fd;
char *bufp;
int bufsize;

Receives a message consisting of a sequence of bytes in the Erlang external format.

  • fd is an open descriptor to an Erlang connection.
  • bufp is a buffer large enough to hold the expected message.
  • bufsize indicates the size of bufp.

If a tick occurs, that is, the Erlang node on the other end of the connection has polled this node to see if it is still alive, the function returns ERL_TICK and no message is placed in the buffer. Also, erl_errno is set to EAGAIN.

On success, the message is placed in the specified buffer and the function returns the number of bytes actually read. On failure, the function returns a negative value and sets erl_errno to one of:

EAGAIN
Temporary error: Try again.
EMSGSIZE
Buffer is too small.
EIO
I/O error.

int erl_receive_msg(
fd,
bufp,
bufsize,
emsg)

Types

int fd;
unsigned char *bufp;
int bufsize;
ErlMessage *emsg;

Receives the message into the specified buffer and decodes into (ErlMessage *) emsg.

  • fd is an open descriptor to an Erlang connection.
  • bufp is a buffer large enough to hold the expected message.
  • bufsize indicates the size of bufp.
  • >emsg is a pointer to an ErlMessage structure into which the message will be decoded. ErlMessage is defined as follows:
typedef struct {
  int type;
  ETERM *msg;
  ETERM *to;
  ETERM *from;
  char to_name[MAXREGLEN];
} ErlMessage;
Note

The definition of ErlMessage has changed since earlier versions of Erl_Interface.

type identifies the type of message, one of the following:

ERL_SEND

An ordinary send operation has occurred and emsg->to contains the pid of the recipient. The message is in emsg->msg.

ERL_REG_SEND

A registered send operation has occurred and emsg->from contains the pid of the sender. The message is in emsg->msg.

ERL_LINK or ERL_UNLINK

emsg->to and emsg->from contain the pids of the sender and recipient of the link or unlink. emsg->msg is not used.

ERL_EXIT

A link is broken. emsg->to and emsg->from contain the pids of the linked processes, and emsg->msg contains the reason for the exit.

Note

It is the caller's responsibility to release the memory pointed to by emsg->msg, emsg->to, and emsg->from.

If a tick occurs, that is, the Erlang node on the other end of the connection has polled this node to see if it is still alive, the function returns ERL_TICK indicating that the tick has been received and responded to, but no message is placed in the buffer. In this case you are to call erl_receive_msg() again.

On success, the function returns ERL_MSG and the Emsg struct is initialized as described above, or ERL_TICK, in which case no message is returned. On failure, the function returns ERL_ERROR and sets erl_errno to one of:

EMSGSIZE
Buffer is too small.
ENOMEM
No more memory is available.
EIO
I/O error.

int erl_reg_send(
fd,
to,
msg)

Types

int fd;
char *to;
ETERM *msg;

Sends an Erlang term to a registered process.

  • fd is an open descriptor to an Erlang connection.
  • to is a string containing the registered name of the intended recipient of the message.
  • msg is the Erlang term to be sent.

Returns 1 on success, otherwise 0. In the latter case erl_errno is set to one of:

ENOMEM
No more memory is available.
EIO
I/O error.

ETERM *erl_rpc(
fd,
mod,
fun,
args)
int erl_rpc_from(
fd,
timeout,
emsg)
int erl_rpc_to(
fd,
mod,
fun,
args)

Types

int fd, timeout;
char *mod, *fun;
ETERM *args;
ErlMessage *emsg;

Supports calling Erlang functions on remote nodes. erl_rpc_to() sends an RPC request to a remote node and erl_rpc_from() receives the results of such a call. erl_rpc() combines the functionality of these two functions by sending an RPC request and waiting for the results. See also rpc:call/4 in Kernel.

  • fd is an open descriptor to an Erlang connection.
  • timeout is the maximum time (in milliseconds) to wait for results. To wait forever, specify ERL_NO_TIMEOUT. When erl_rpc() calls erl_rpc_from(), the call will never timeout.
  • mod is the name of the module containing the function to be run on the remote node.
  • fun is the name of the function to run.
  • args is an Erlang list, containing the arguments to be passed to the function.
  • emsg is a message containing the result of the function call.

The actual message returned by the RPC server is a 2-tuple {rex,Reply}. If you use erl_rpc_from() in your code, this is the message you will need to parse. If you use erl_rpc(), the tuple itself is parsed for you, and the message returned to your program is the Erlang term containing Reply only. Replies to RPC requests are always ERL_SEND messages.

Note

It is the caller's responsibility to free the returned ETERM structure and the memory pointed to by emsg->msg and emsg->to.

erl_rpc() returns the remote function's return value on success, otherwise NULL.

erl_rpc_to() returns 0 on success, otherwise a negative number.

erl_rcp_from() returns ERL_MSG on success (with Emsg now containing the reply tuple), otherwise one of ERL_TICK, ERL_TIMEOUT, or ERL_ERROR.

When failing, all three functions set erl_errno to one of:

ENOMEM
No more memory is available.
EIO
I/O error.
ETIMEDOUT
Timeout has expired.
EAGAIN
Temporary error: Try again.

int erl_send(
fd,
to,
msg)

Types

int fd;
ETERM *to, *msg;

Sends an Erlang term to a process.

  • fd is an open descriptor to an Erlang connection.
  • to is an Erlang term containing the pid of the intended recipient of the message.
  • >msg is the Erlang term to be sent.

Returns 1 on success, otherwise 0. In the latter case erl_errno is set to one of:

EINVAL
Invalid argument: to is not a valid Erlang pid.
ENOMEM
No more memory is available.
EIO
I/O error.

const char *erl_thisalivename()
const char *erl_thiscookie()
short erl_thiscreation()
const char *erl_thishostname()
const char *erl_thisnodename()

Retrieves information about the C-node. These values are initially set with erl_connect_init() or erl_connect_xinit().

int erl_unpublish(
alive)

Types

char *alive;

This function can be called by a process to unregister a specified node from EPMD on the local host. This is, however, usually not allowed, unless EPMD was started with flag -relaxed_command_check, which it normally is not.

To unregister a node you have published, you should instead close the descriptor that was returned by ei_publish().

Warning

This function is deprecated and will be removed in a future release.

alive is the name of the node to unregister, that is, the first component of the node name, without @hostname.

If the node was successfully unregistered from EPMD, 0 is returned, otherwise -1 is returned and erl_errno is set to EIO.

int erl_xreceive_msg(
fd,
bufpp,
bufsizep,
emsg)

Types

int fd;
unsigned char **bufpp;
int *bufsizep;
ErlMessage *emsg;

Similar to erl_receive_msg. The difference is that erl_xreceive_msg expects the buffer to have been allocated by malloc, and reallocates it if the received message does not fit into the original buffer. Therefore both buffer and buffer length are given as pointers; their values can change by the call.

On success, the function returns ERL_MSG and the Emsg struct is initialized as described above, or ERL_TICK, in which case no message is returned. On failure, the function returns ERL_ERROR and sets erl_errno to one of:

EMSGSIZE
Buffer is too small.
ENOMEM
No more memory is available.
EIO
I/O error.

struct hostent *erl_gethostbyaddr(
addr,
length,
type)
struct hostent *erl_gethostbyaddr_r(
addr,
length,
type,
hostp,
buffer,
buflen,
h_errnop)
struct hostent *erl_gethostbyname(
name)
struct hostent *erl_gethostbyname_r(
name,
hostp,
buffer,
buflen,
h_errnop)

Types

const char *name;
const char *addr;
int length;
int type;
struct hostent *hostp;
char *buffer;
int buflen;
int *h_errnop;

Convenience functions for some common name lookup functions.

Debug Information

If a connection attempt fails, the following can be checked:

  • erl_errno
  • That the correct cookie was used
  • That EPMD is running
  • That the remote Erlang node on the other side is running the same version of Erlang as the erl_interface library