Next: ocsptool Invocation, Previous: Managing encrypted keys, Up: More on certificate authentication [Contents][Index]
Tool to parse and generate X.509 certificates, requests and private keys. It can be used interactively or non interactively by specifying the template command line option.
The tool accepts files or URLs supported by GnuTLS. In case PIN is required for the URL access you can provide it using the environment variables GNUTLS_PIN and GNUTLS_SO_PIN.
This section was generated by AutoGen,
using the agtexi-cmd
template and the option descriptions for the certtool
program.
This software is released under the GNU General Public License, version 3 or later.
This is the automatically generated usage text for certtool.
The text printed is the same whether selected with the help
option
(--help) or the more-help
option (--more-help). more-help
will print
the usage text by passing it through a pager program.
more-help
is disabled on platforms without a working
fork(2)
function. The PAGER
environment variable is
used to select the program, defaulting to more. Both will exit
with a status code of 0.
certtool - GnuTLS certificate tool Usage: certtool [ -<flag> [<val>] | --<name>[{=| }<val>] ]... -d, --debug=num Enable debugging - it must be in the range: 0 to 9999 -V, --verbose More verbose output - may appear multiple times --infile=file Input file - file must pre-exist --outfile=str Output file -s, --generate-self-signed Generate a self-signed certificate -c, --generate-certificate Generate a signed certificate --generate-proxy Generates a proxy certificate --generate-crl Generate a CRL -u, --update-certificate Update a signed certificate -p, --generate-privkey Generate a private key -q, --generate-request Generate a PKCS #10 certificate request - prohibits the option 'infile' -e, --verify-chain Verify a PEM encoded certificate chain --verify Verify a PEM encoded certificate chain using a trusted list --verify-crl Verify a CRL using a trusted list - requires the option 'load-ca-certificate' --generate-dh-params Generate PKCS #3 encoded Diffie-Hellman parameters --get-dh-params Get the included PKCS #3 encoded Diffie-Hellman parameters --dh-info Print information PKCS #3 encoded Diffie-Hellman parameters --load-privkey=str Loads a private key file --load-pubkey=str Loads a public key file --load-request=str Loads a certificate request file --load-certificate=str Loads a certificate file --load-ca-privkey=str Loads the certificate authority's private key file --load-ca-certificate=str Loads the certificate authority's certificate file --password=str Password to use --null-password Enforce a NULL password --empty-password Enforce an empty password --hex-numbers Print big number in an easier format to parse --cprint In certain operations it prints the information in C-friendly format -i, --certificate-info Print information on the given certificate --certificate-pubkey Print certificate's public key --pgp-certificate-info Print information on the given OpenPGP certificate --pgp-ring-info Print information on the given OpenPGP keyring structure -l, --crl-info Print information on the given CRL structure --crq-info Print information on the given certificate request --no-crq-extensions Do not use extensions in certificate requests --p12-info Print information on a PKCS #12 structure --p12-name=str The PKCS #12 friendly name to use --p7-info Print information on a PKCS #7 structure --smime-to-p7 Convert S/MIME to PKCS #7 structure -k, --key-info Print information on a private key --pgp-key-info Print information on an OpenPGP private key --pubkey-info Print information on a public key --v1 Generate an X.509 version 1 certificate (with no extensions) -!, --to-p12 Generate a PKCS #12 structure - requires the option 'load-certificate' -", --to-p8 Generate a PKCS #8 structure -8, --pkcs8 Use PKCS #8 format for private keys -#, --rsa Generate RSA key -$, --dsa Generate DSA key -%, --ecc Generate ECC (ECDSA) key -&, --ecdsa an alias for the 'ecc' option -', --hash=str Hash algorithm to use for signing -(, --inder Use DER format for input certificates, private keys, and DH parameters - disabled as '--no-inder' -), --inraw an alias for the 'inder' option -*, --outder Use DER format for output certificates, private keys, and DH parameters - disabled as '--no-outder' -+, --outraw an alias for the 'outder' option -,, --bits=num Specify the number of bits for key generate --, --curve=str Specify the curve used for EC key generation -., --sec-param=str Specify the security level [low, legacy, medium, high, ultra] -/, --disable-quick-random No effect -0, --template=str Template file to use for non-interactive operation -1, --stdout-info Print information to stdout instead of stderr -2, --ask-pass Enable interaction for entering password when in batch mode. -3, --pkcs-cipher=str Cipher to use for PKCS #8 and #12 operations -4, --provider=str Specify the PKCS #11 provider library -v, --version[=arg] output version information and exit -h, --help display extended usage information and exit -!, --more-help extended usage information passed thru pager Options are specified by doubled hyphens and their name or by a single hyphen and the flag character. Tool to parse and generate X.509 certificates, requests and private keys. It can be used interactively or non interactively by specifying the template command line option. The tool accepts files or URLs supported by GnuTLS. In case PIN is required for the URL access you can provide it using the environment variables GNUTLS_PIN and GNUTLS_SO_PIN.
This is the “enable debugging” option. This option takes a number argument. Specifies the debug level.
This is the “generate a pkcs #10 certificate request” option.
This option has some usage constraints. It:
Will generate a PKCS #10 certificate request. To specify a private key use –load-privkey.
This is the “verify a pem encoded certificate chain” option. The last certificate in the chain must be a self signed one. It can be combined with –verify-purpose or –verify-hostname.
This is the “verify a pem encoded certificate chain using a trusted list” option. The trusted certificate list can be loaded with –load-ca-certificate. If no certificate list is provided, then the system’s certificate list is used. Note that during verification multiple paths may be explored. On a successful verification the successful path will be the last one. It can be combined with –verify-purpose or –verify-hostname.
This is the “verify a crl using a trusted list” option.
This option has some usage constraints. It:
The trusted certificate list must be loaded with –load-ca-certificate.
This is the “specify a hostname to be used for certificate chain verification” option. This option takes a string argument. This is to be combined with one of the verify certificate options.
This is the “specify a email to be used for certificate chain verification” option. This option takes a string argument.
This option has some usage constraints. It:
This is to be combined with one of the verify certificate options.
This is the “specify a purpose oid to be used for certificate chain verification” option. This option takes a string argument. This object identifier restricts the purpose of the certificates to be verified. Example purposes are 1.3.6.1.5.5.7.3.1 (TLS WWW), 1.3.6.1.5.5.7.3.4 (EMAIL) etc. Note that a CA certificate without a purpose set (extended key usage) is valid for any purpose.
This is the “get the included pkcs #3 encoded diffie-hellman parameters” option. Returns stored DH parameters in GnuTLS. Those parameters are used in the SRP protocol. The parameters returned by fresh generation are more efficient since GnuTLS 3.0.9.
This is the “loads a private key file” option. This option takes a string argument. This can be either a file or a PKCS #11 URL
This is the “loads a public key file” option. This option takes a string argument. This can be either a file or a PKCS #11 URL
This is the “loads a certificate file” option. This option takes a string argument. This can be either a file or a PKCS #11 URL
This is the “loads the certificate authority’s private key file” option. This option takes a string argument. This can be either a file or a PKCS #11 URL
This is the “loads the certificate authority’s certificate file” option. This option takes a string argument. This can be either a file or a PKCS #11 URL
This is the “password to use” option. This option takes a string argument. You can use this option to specify the password in the command line instead of reading it from the tty. Note, that the command line arguments are available for view in others in the system. Specifying password as ” is the same as specifying no password.
This is the “enforce a null password” option. This option enforces a NULL password. This is different than the empty or no password in schemas like PKCS #8.
This is the “enforce an empty password” option. This option enforces an empty password. This is different than the NULL or no password in schemas like PKCS #8.
This is the “in certain operations it prints the information in c-friendly format” option. In certain operations it prints the information in C-friendly format, suitable for including into C programs.
This is the “print the fingerprint of the given certificate” option. This is a simple hash of the DER encoding of the certificate. It can be combined with the –hash parameter. However, it is recommended for identification to use the key-id which depends only on the certificate’s key.
This is the “print the key id of the given certificate” option. This is a hash of the public key of the given certificate. It identifies the key uniquely, remains the same on a certificate renewal and depends only on signed fields of the certificate.
This is the “print information on a pkcs #12 structure” option. This option will dump the contents and print the metadata of the provided PKCS #12 structure.
This is the “the pkcs #12 friendly name to use” option. This option takes a string argument. The name to be used for the primary certificate and private key in a PKCS #12 file.
This is the “generate a pkcs #7 structure” option. This option generates a PKCS #7 certificate container structure. To add certificates in the structure use –load-certificate and –load-crl.
This is the “signs using a pkcs #7 structure” option. This option generates a PKCS #7 structure containing a signature for the provided data. The data are stored within the structure. The signer certificate has to be specified using –load-certificate and –load-privkey.
This is the “signs using a detached pkcs #7 structure” option. This option generates a PKCS #7 structure containing a signature for the provided data. The signer certificate has to be specified using –load-certificate and –load-privkey.
This is the “will include a timestamp in the pkcs #7 structure” option. This option will include a timestamp in the generated signature
This is the “verify the provided pkcs #7 structure” option. This option verifies the signed PKCS #7 structure. The certificate list to use for verification can be specified with –load-ca-certificate. When no certificate list is provided, then the system’s certificate list is used. Alternatively a direct signer can be provided using –load-certificate. A key purpose can be enforced with the –verify-purpose option, and the –load-data option will utilize detached data.
This is the “print information on a pkcs #8 structure” option. This option will print information about encrypted PKCS #8 structures. That option does not require the decryption of the structure.
This is the “print information on a public key” option. The option combined with –load-request, –load-pubkey, –load-privkey and –load-certificate will extract the public key of the object in question.
This is the “generate a pkcs #12 structure” option.
This option has some usage constraints. It:
It requires a certificate, a private key and possibly a CA certificate to be specified.
This is the “generate rsa key” option. When combined with –generate-privkey generates an RSA private key.
This is the “generate dsa key” option. When combined with –generate-privkey generates a DSA private key.
This is the “generate ecc (ecdsa) key” option. When combined with –generate-privkey generates an elliptic curve private key to be used with ECDSA.
This is an alias for the ecc
option,
see the ecc option documentation.
This is the “hash algorithm to use for signing” option. This option takes a string argument. Available hash functions are SHA1, RMD160, SHA256, SHA384, SHA512.
This is the “use der format for input certificates, private keys, and dh parameters ” option.
This option has some usage constraints. It:
The input files will be assumed to be in DER or RAW format. Unlike options that in PEM input would allow multiple input data (e.g. multiple certificates), when reading in DER format a single data structure is read.
This is an alias for the inder
option,
see the inder option documentation.
This is the “use der format for output certificates, private keys, and dh parameters” option.
This option has some usage constraints. It:
The output will be in DER or RAW format.
This is an alias for the outder
option,
see the outder option documentation.
This is the “specify the curve used for ec key generation” option. This option takes a string argument. Supported values are secp192r1, secp224r1, secp256r1, secp384r1 and secp521r1.
This is the “specify the security level [low, legacy, medium, high, ultra]” option. This option takes a string argument Security parameter. This is alternative to the bits option.
This is the “enable interaction for entering password when in batch mode.” option. This option will enable interaction to enter password when in batch mode. That is useful when the template option has been specified.
This is the “cipher to use for pkcs #8 and #12 operations” option. This option takes a string argument Cipher. Cipher may be one of 3des, 3des-pkcs12, aes-128, aes-192, aes-256, rc2-40, arcfour.
This is the “specify the pkcs #11 provider library” option. This option takes a string argument. This will override the default options in /etc/gnutls/pkcs11.conf
One of the following exit values will be returned:
Successful program execution.
The operation failed or the command syntax was not valid.
To create an RSA private key, run:
$ certtool --generate-privkey --outfile key.pem --rsa
To create a DSA or elliptic curves (ECDSA) private key use the above command combined with ’dsa’ or ’ecc’ options.
To create a certificate request (needed when the certificate is issued by another party), run:
certtool --generate-request --load-privkey key.pem \ --outfile request.pem
If the private key is stored in a smart card you can generate a request by specifying the private key object URL.
$ ./certtool --generate-request --load-privkey "pkcs11:..." \ --load-pubkey "pkcs11:..." --outfile request.pem
To create a self signed certificate, use the command:
$ certtool --generate-privkey --outfile ca-key.pem $ certtool --generate-self-signed --load-privkey ca-key.pem \ --outfile ca-cert.pem
Note that a self-signed certificate usually belongs to a certificate authority, that signs other certificates.
To generate a certificate using the previous request, use the command:
$ certtool --generate-certificate --load-request request.pem \ --outfile cert.pem --load-ca-certificate ca-cert.pem \ --load-ca-privkey ca-key.pem
To generate a certificate using the private key only, use the command:
$ certtool --generate-certificate --load-privkey key.pem \ --outfile cert.pem --load-ca-certificate ca-cert.pem \ --load-ca-privkey ca-key.pem
To view the certificate information, use:
$ certtool --certificate-info --infile cert.pem
To generate a PKCS #12 structure using the previous key and certificate, use the command:
$ certtool --load-certificate cert.pem --load-privkey key.pem \ --to-p12 --outder --outfile key.p12
Some tools (reportedly web browsers) have problems with that file because it does not contain the CA certificate for the certificate. To work around that problem in the tool, you can use the –load-ca-certificate parameter as follows:
$ certtool --load-ca-certificate ca.pem \ --load-certificate cert.pem --load-privkey key.pem \ --to-p12 --outder --outfile key.p12
To generate parameters for Diffie-Hellman key exchange, use the command:
$ certtool --generate-dh-params --outfile dh.pem --sec-param medium
Proxy certificate can be used to delegate your credential to a temporary, typically short-lived, certificate. To create one from the previously created certificate, first create a temporary key and then generate a proxy certificate for it, using the commands:
$ certtool --generate-privkey > proxy-key.pem $ certtool --generate-proxy --load-ca-privkey key.pem \ --load-privkey proxy-key.pem --load-certificate cert.pem \ --outfile proxy-cert.pem
To create an empty Certificate Revocation List (CRL) do:
$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem \ --load-ca-certificate x509-ca.pem
To create a CRL that contains some revoked certificates, place the
certificates in a file and use --load-certificate
as follows:
$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem \ --load-ca-certificate x509-ca.pem --load-certificate revoked-certs.pem
To verify a Certificate Revocation List (CRL) do:
$ certtool --verify-crl --load-ca-certificate x509-ca.pem < crl.pem
A template file can be used to avoid the interactive questions of certtool. Initially create a file named ’cert.cfg’ that contains the information about the certificate. The template can be used as below:
$ certtool --generate-certificate --load-privkey key.pem \ --template cert.cfg --outfile cert.pem \ --load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem
An example certtool template file that can be used to generate a certificate request or a self signed certificate follows.
# X.509 Certificate options # # DN options # The organization of the subject. organization = "Koko inc." # The organizational unit of the subject. unit = "sleeping dept." # The locality of the subject. # locality = # The state of the certificate owner. state = "Attiki" # The country of the subject. Two letter code. country = GR # The common name of the certificate owner. cn = "Cindy Lauper" # A user id of the certificate owner. #uid = "clauper" # Set domain components #dc = "name" #dc = "domain" # If the supported DN OIDs are not adequate you can set # any OID here. # For example set the X.520 Title and the X.520 Pseudonym # by using OID and string pairs. #dn_oid = 2.5.4.12 Dr. #dn_oid = 2.5.4.65 jackal # This is deprecated and should not be used in new # certificates. # pkcs9_email = "[email protected]" # An alternative way to set the certificate's distinguished name directly # is with the "dn" option. The attribute names allowed are: # C (country), street, O (organization), OU (unit), title, CN (common name), # L (locality), ST (state), placeOfBirth, gender, countryOfCitizenship, # countryOfResidence, serialNumber, telephoneNumber, surName, initials, # generationQualifier, givenName, pseudonym, dnQualifier, postalCode, name, # businessCategory, DC, UID, jurisdictionOfIncorporationLocalityName, # jurisdictionOfIncorporationStateOrProvinceName, # jurisdictionOfIncorporationCountryName, XmppAddr, and numeric OIDs. #dn = "cn = Nikos,st = New\, Something,C=GR,surName=Mavrogiannopoulos,2.5.4.9=Arkadias" # The serial number of the certificate # Comment the field for a time-based serial number. serial = 007 # In how many days, counting from today, this certificate will expire. # Use -1 if there is no expiration date. expiration_days = 700 # Alternatively you may set concrete dates and time. The GNU date string # formats are accepted. See: # http://www.gnu.org/software/tar/manual/html_node/Date-input-formats.html #activation_date = "2004-02-29 16:21:42" #expiration_date = "2025-02-29 16:24:41" # X.509 v3 extensions # A dnsname in case of a WWW server. #dns_name = "www.none.org" #dns_name = "www.morethanone.org" # A subject alternative name URI #uri = "http://www.example.com" # An IP address in case of a server. #ip_address = "192.168.1.1" # An email in case of a person email = "[email protected]" # Challenge password used in certificate requests challenge_password = 123456 # Password when encrypting a private key #password = secret # An URL that has CRLs (certificate revocation lists) # available. Needed in CA certificates. #crl_dist_points = "http://www.getcrl.crl/getcrl/" # Whether this is a CA certificate or not #ca #### Key usage # The following key usage flags are used by CAs and end certificates # Whether this certificate will be used to sign data (needed # in TLS DHE ciphersuites). This is the digitalSignature flag # in RFC5280 terminology. signing_key # Whether this certificate will be used to encrypt data (needed # in TLS RSA ciphersuites). Note that it is preferred to use different # keys for encryption and signing. This is the keyEncipherment flag # in RFC5280 terminology. encryption_key # Whether this key will be used to sign other certificates. The # keyCertSign flag in RFC5280 terminology. #cert_signing_key # Whether this key will be used to sign CRLs. The # cRLSign flag in RFC5280 terminology. #crl_signing_key # The keyAgreement flag of RFC5280. It's purpose is loosely # defined. Not use it unless required by a protocol. #key_agreement # The dataEncipherment flag of RFC5280. It's purpose is loosely # defined. Not use it unless required by a protocol. #data_encipherment # The nonRepudiation flag of RFC5280. It's purpose is loosely # defined. Not use it unless required by a protocol. #non_repudiation #### Extended key usage (key purposes) # The following extensions are used in an end certificate # to clarify its purpose. Some CAs also use it to indicate # the types of certificates they are purposed to sign. # Whether this certificate will be used for a TLS client; # this sets the id-kp-serverAuth (1.3.6.1.5.5.7.3.1) of # extended key usage. #tls_www_client # Whether this certificate will be used for a TLS server; # This sets the id-kp-clientAuth (1.3.6.1.5.5.7.3.2) of # extended key usage. #tls_www_server # Whether this key will be used to sign code. This sets the # id-kp-codeSigning (1.3.6.1.5.5.7.3.3) of extended key usage # extension. #code_signing_key # Whether this key will be used to sign OCSP data. This sets the # id-kp-OCSPSigning (1.3.6.1.5.5.7.3.9) of extended key usage extension. #ocsp_signing_key # Whether this key will be used for time stamping. This sets the # id-kp-timeStamping (1.3.6.1.5.5.7.3.8) of extended key usage extension. #time_stamping_key # Whether this key will be used for email protection. This sets the # id-kp-emailProtection (1.3.6.1.5.5.7.3.4) of extended key usage extension. #email_protection_key # Whether this key will be used for IPsec IKE operations (1.3.6.1.5.5.7.3.17). #ipsec_ike_key ## adding custom key purpose OIDs # for microsoft smart card logon # key_purpose_oid = 1.3.6.1.4.1.311.20.2.2 # for email protection # key_purpose_oid = 1.3.6.1.5.5.7.3.4 # for any purpose (must not be used in intermediate CA certificates) # key_purpose_oid = 2.5.29.37.0 ### end of key purpose OIDs # When generating a certificate from a certificate # request, then honor the extensions stored in the request # and store them in the real certificate. #honor_crq_extensions # Path length contraint. Sets the maximum number of # certificates that can be used to certify this certificate. # (i.e. the certificate chain length) #path_len = -1 #path_len = 2 # OCSP URI # ocsp_uri = http://my.ocsp.server/ocsp # CA issuers URI # ca_issuers_uri = http://my.ca.issuer # Certificate policies #policy1 = 1.3.6.1.4.1.5484.1.10.99.1.0 #policy1_txt = "This is a long policy to summarize" #policy1_url = http://www.example.com/a-policy-to-read #policy2 = 1.3.6.1.4.1.5484.1.10.99.1.1 #policy2_txt = "This is a short policy" #policy2_url = http://www.example.com/another-policy-to-read # Name constraints # DNS #nc_permit_dns = example.com #nc_exclude_dns = test.example.com # EMAIL #nc_permit_email = "[email protected]" # Exclude subdomains of example.com #nc_exclude_email = .example.com # Exclude all e-mail addresses of example.com #nc_exclude_email = example.com # Options for proxy certificates #proxy_policy_language = 1.3.6.1.5.5.7.21.1 # Options for generating a CRL # The number of days the next CRL update will be due. # next CRL update will be in 43 days #crl_next_update = 43 # this is the 5th CRL by this CA # Comment the field for a time-based number. #crl_number = 5
Next: ocsptool Invocation, Previous: Managing encrypted keys, Up: More on certificate authentication [Contents][Index]