9.1. Internal Variables

Builtin variables

variables affecting bash script behavior

$BASH

the path to the Bash binary itself
bash$ echo $BASH
/bin/bash

$BASH_ENV

an environmental variable pointing to a Bash startup file to be read when a script is invoked

$BASH_VERSINFO[n]

a 6-element array containing version information about the installed release of Bash. This is similar to $BASH_VERSION, below, but a bit more detailed.

# Bash version info:

for n in 0 1 2 3 4 5
do
  echo "BASH_VERSINFO[$n] = ${BASH_VERSINFO[$n]}"
done  

# BASH_VERSINFO[0] = 2                      # Major version no.
# BASH_VERSINFO[1] = 05                     # Minor version no.
# BASH_VERSINFO[2] = 8                      # Patch level.
# BASH_VERSINFO[3] = 1                      # Build version.
# BASH_VERSINFO[4] = release                # Release status.
# BASH_VERSINFO[5] = i386-redhat-linux-gnu  # Architecture
                                            # (same as $MACHTYPE).

$BASH_VERSION

the version of Bash installed on the system

bash$ echo $BASH_VERSION
2.04.12(1)-release
	      

tcsh% echo $BASH_VERSION
BASH_VERSION: Undefined variable.
	      

Checking $BASH_VERSION is a good method of determining which shell is running. $SHELL does not necessarily give the correct answer.

$DIRSTACK

the top value in the directory stack (affected by pushd and popd)

This builtin variable corresponds to the dirs command, however dirs shows the entire contents of the directory stack.

$EDITOR

the default editor invoked by a script, usually vi or emacs.

$EUID

"effective" user id number

Identification number of whatever identity the current user has assumed, perhaps by means of su.

Caution

The $EUID is not necessarily the same as the $UID.

$FUNCNAME

name of the current function

xyz23 ()
{
  echo "$FUNCNAME now executing."  # xyz23 now executing.
}

xyz23

echo "FUNCNAME = $FUNCNAME"        # FUNCNAME =
                                   # Null value outside a function.

$GLOBIGNORE

A list of filename patterns to be excluded from matching in globbing.

$GROUPS

groups current user belongs to

This is a listing (array) of the group id numbers for current user, as recorded in /etc/passwd.

root# echo $GROUPS
0


root# echo ${GROUPS[1]}
1


root# echo ${GROUPS[5]}
6
	      

$HOME

home directory of the user, usually /home/username (see Example 9-13)

$HOSTNAME

The hostname command assigns the system name at bootup in an init script. However, the gethostname() function sets the Bash internal variable $HOSTNAME. See also Example 9-13.

$HOSTTYPE

host type

Like $MACHTYPE, identifies the system hardware.

bash$ echo $HOSTTYPE
i686
$IFS

input field separator

This defaults to whitespace (space, tab, and newline), but may be changed, for example, to parse a comma-separated data file. Note that $* uses the first character held in $IFS. See Example 5-1.

bash$ echo $IFS | cat -vte
$


bash$ bash -c 'set w x y z; IFS=":-;"; echo "$*"'
w:x:y:z
	      

Caution

$IFS does not handle whitespace the same as it does other characters.

Example 9-1. $IFS and whitespace

#!/bin/bash
# $IFS treats whitespace differently than other characters.

output_args_one_per_line()
{
  for arg
  do echo "[$arg]"
  done
}

echo; echo "IFS=\" \""
echo "-------"

IFS=" "
var=" a  b c   "
output_args_one_per_line $var  # output_args_one_per_line `echo " a  b c   "`
#
# [a]
# [b]
# [c]


echo; echo "IFS=:"
echo "-----"

IFS=:
var=":a::b:c:::"               # Same as above, but substitute ":" for " ".
output_args_one_per_line $var
#
# []
# [a]
# []
# [b]
# [c]
# []
# []
# []

# The same thing happens with the "FS" field separator in awk.

# Thank you, Stephane Chazelas.

echo

exit 0

(Thanks, S. C., for clarification and examples.)

$IGNOREEOF

ignore EOF: how many end-of-files (control-D) the shell will ignore before logging out.

$LC_COLLATE

Often set in the .bashrc or /etc/profile files, this variable controls collation order in filename expansion and pattern matching. If mishandled, LC_COLLATE can cause unexpected results in filename globbing.

Note

As of version 2.05 of Bash, filename globbing no longer distinguishes between lowercase and uppercase letters in a character range between brackets. For example, ls [A-M]* would match both File1.txt and file1.txt. To revert to the customary behavior of bracket matching, set LC_COLLATE to C by an export LC_COLLATE=C in /etc/profile and/or ~/.bashrc.

$LC_CTYPE

This internal variable controls character interpretation in globbing and pattern matching.

$LINENO

This variable is the line number of the shell script in which this variable appears. It has significance only within the script in which it appears, and is chiefly useful for debugging purposes.

# *** BEGIN DEBUG BLOCK ***
last_cmd_arg=$_  # Save it.

echo "At line number $LINENO, variable \"v1\" = $v1"
echo "Last command argument processed = $last_cmd_arg"
# *** END DEBUG BLOCK ***

$MACHTYPE

machine type

Identifies the system hardware.

bash$ echo $MACHTYPE
i686
$OLDPWD

old working directory ("OLD-print-working-directory", previous directory you were in)

$OSTYPE

operating system type

bash$ echo $OSTYPE
linux
$PATH

path to binaries, usually /usr/bin/, /usr/X11R6/bin/, /usr/local/bin, etc.

When given a command, the shell automatically does a hash table search on the directories listed in the path for the executable. The path is stored in the environmental variable, $PATH, a list of directories, separated by colons. Normally, the system stores the $PATH definition in /etc/profile and/or ~/.bashrc (see Chapter 27).

bash$ echo $PATH
/bin:/usr/bin:/usr/local/bin:/usr/X11R6/bin:/sbin:/usr/sbin

PATH=${PATH}:/opt/bin appends the /opt/bin directory to the current path. In a script, it may be expedient to temporarily add a directory to the path in this way. When the script exits, this restores the original $PATH (a child process, such as a script, may not change the environment of the parent process, the shell).

Note

The current "working directory", ./, is usually omitted from the $PATH as a security measure.

$PIPESTATUS

Exit status of last executed foreground pipe. Interestingly enough, this does not give the same result as the exit status of the last executed command.

bash$ echo $PIPESTATUS
0

bash$ ls -al | bogus_command
bash: bogus_command: command not found
bash$ echo $PIPESTATUS
141

bash$ ls -al | bogus_command
bash: bogus_command: command not found
bash$ echo $?
127
	      

Caution

The $PIPESTATUS variable may contain an erroneous 0 value in a login shell.

tcsh% bash

bash$ who | grep nobody | sort
bash$ echo ${PIPESTATUS[*]}
0
	      

The above lines contained in a script would produce the expected 0 1 0 output.

Thank you, Wayne Pollock for pointing this out and supplying the above example.

$PPID

The $PPID of a process is the process id (pid) of its parent process. [1]

Compare this with the pidof command.

$PS1

This is the main prompt, seen at the command line.

$PS2

The secondary prompt, seen when additional input is expected. It displays as ">".

$PS3

The tertiary prompt, displayed in a select loop (see Example 10-29).

$PS4

The quartenary prompt, shown at the beginning of each line of output when invoking a script with the -x option. It displays as "+".

$PWD

working directory (directory you are in at the time)

This is the analog to the pwd builtin command.

#!/bin/bash

E_WRONG_DIRECTORY=73

clear # Clear screen.

TargetDirectory=/home/bozo/projects/GreatAmericanNovel

cd $TargetDirectory
echo "Deleting stale files in $TargetDirectory."

if [ "$PWD" != "$TargetDirectory" ]
then    # Keep from wiping out wrong directory by accident.
  echo "Wrong directory!"
  echo "In $PWD, rather than $TargetDirectory!"
  echo "Bailing out!"
  exit $E_WRONG_DIRECTORY
fi  

rm -rf *
rm .[A-Za-z0-9]*    # Delete dotfiles.
# rm -f .[^.]* ..?*   to remove filenames beginning with multiple dots.
# (shopt -s dotglob; rm -f *)   will also work.
# Thanks, S.C. for pointing this out.

# Filenames may contain all characters in the 0 - 255 range, except "/".
# Deleting files beginning with weird characters is left as an exercise.

# Various other operations here, as necessary.

echo
echo "Done."
echo "Old files deleted in $TargetDirectory."
echo


exit 0

$REPLY

The default value when a variable is not supplied to read. Also applicable to select menus, but only supplies the item number of the variable chosen, not the value of the variable itself.

#!/bin/bash

echo
echo -n "What is your favorite vegetable? "
read

echo "Your favorite vegetable is $REPLY."
# REPLY holds the value of last "read" if and only if
# no variable supplied.

echo
echo -n "What is your favorite fruit? "
read fruit
echo "Your favorite fruit is $fruit."
echo "but..."
echo "Value of \$REPLY is still $REPLY."
# $REPLY is still set to its previous value because
# the variable $fruit absorbed the new "read" value.

echo

exit 0

$SECONDS

The number of seconds the script has been running.

#!/bin/bash

TIME_LIMIT=10
INTERVAL=1

echo
echo "Hit Control-C to exit before $TIME_LIMIT seconds."
echo

while [ "$SECONDS" -le "$TIME_LIMIT" ]
do
  if [ "$SECONDS" -eq 1 ]
  then
    units=second
  else  
    units=seconds
  fi

  echo "This script has been running $SECONDS $units."
  #  On a slow or overburdened machine, the script may skip a count
  #+ every once in a while.
  sleep $INTERVAL
done

echo -e "\a"  # Beep!

exit 0

$SHELLOPTS

the list of enabled shell options, a readonly variable
bash$ echo $SHELLOPTS
braceexpand:hashall:histexpand:monitor:history:interactive-comments:emacs
	      

$SHLVL

Shell level, how deeply Bash is nested. If, at the command line, $SHLVL is 1, then in a script it will increment to 2.

$TMOUT

If the $TMOUT environmental variable is set to a non-zero value time, then the shell prompt will time out after time seconds. This will cause a logout.

Note

Unfortunately, this works only while waiting for input at the shell prompt console or in an xterm. While it would be nice to speculate on the uses of this internal variable for timed input, for example in combination with read, $TMOUT does not work in that context and is virtually useless for shell scripting. (Reportedly the ksh version of a timed read does work.)

Implementing timed input in a script is certainly possible, but may require complex machinations. One method is to set up a timing loop to signal the script when it times out. This also requires a signal handling routine to trap (see Example 30-5) the interrupt generated by the timing loop (whew!).

Example 9-2. Timed Input

#!/bin/bash
# timed-input.sh

# TMOUT=3            useless in a script

TIMELIMIT=3  # Three seconds in this instance, may be set to different value.

PrintAnswer()
{
  if [ "$answer" = TIMEOUT ]
  then
    echo $answer
  else       # Don't want to mix up the two instances. 
    echo "Your favorite veggie is $answer"
    kill $!  # Kills no longer needed TimerOn function running in background.
             # $! is PID of last job running in background.
  fi

}  



TimerOn()
{
  sleep $TIMELIMIT && kill -s 14 $$ &
  # Waits 3 seconds, then sends sigalarm to script.
}  

Int14Vector()
{
  answer="TIMEOUT"
  PrintAnswer
  exit 14
}  

trap Int14Vector 14   # Timer interrupt (14) subverted for our purposes.

echo "What is your favorite vegetable "
TimerOn
read answer
PrintAnswer


#  Admittedly, this is a kludgy implementation of timed input,
#+ however the "-t" option to "read" simplifies this task.
#  See "t-out.sh", below.

#  If you need something really elegant...
#+ consider writing the application in C or C++,
#+ using appropriate library functions, such as 'alarm' and 'setitimer'.

exit 0

An alternative is using stty.

Example 9-3. Once more, timed input

#!/bin/bash
# timeout.sh

# Written by Stephane Chazelas,
# and modified by the document author.

INTERVAL=5                # timeout interval

timedout_read() {
  timeout=$1
  varname=$2
  old_tty_settings=`stty -g`
  stty -icanon min 0 time ${timeout}0
  eval read $varname      # or just    read $varname
  stty "$old_tty_settings"
  # See man page for "stty".
}

echo; echo -n "What's your name? Quick! "
timedout_read $INTERVAL your_name

# This may not work on every terminal type.
# The maximum timeout depends on the terminal.
# (it is often 25.5 seconds).

echo

if [ ! -z "$your_name" ]  # If name input before timeout...
then
  echo "Your name is $your_name."
else
  echo "Timed out."
fi

echo

# The behavior of this script differs somewhat from "timed-input.sh".
# At each keystroke, the counter resets.

exit 0

Perhaps the simplest method is using the -t option to read.

Example 9-4. Timed read

#!/bin/bash
# t-out.sh (per a suggestion by "syngin seven)

TIMELIMIT=4        # 4 seconds

read -t $TIMELIMIT variable <&1

echo

if [ -z "$variable" ]
then
  echo "Timed out, variable still unset."
else  
  echo "variable = $variable"
fi  

exit 0
$UID

user id number

current user's user identification number, as recorded in /etc/passwd

This is the current user's real id, even if she has temporarily assumed another identity through su. $UID is a readonly variable, not subject to change from the command line or within a script, and is the counterpart to the id builtin.

Example 9-5. Am I root?

#!/bin/bash
# am-i-root.sh:   Am I root or not?

ROOT_UID=0   # Root has $UID 0.

if [ "$UID" -eq "$ROOT_UID" ]  # Will the real "root" please stand up?
then
  echo "You are root."
else
  echo "You are just an ordinary user (but mom loves you just the same)."
fi

exit 0


# ============================================================= #
# Code below will not execute, because the script already exited.

# An alternate method of getting to the root of matters:

ROOTUSER_NAME=root

username=`id -nu`              # Or...   username=`whoami`
if [ "$username" = "$ROOTUSER_NAME" ]
then
  echo "Rooty, toot, toot. You are root."
else
  echo "You are just a regular fella."
fi

See also Example 2-2.

Note

The variables $ENV, $LOGNAME, $MAIL, $TERM, $USER, and $USERNAME are not Bash builtins. These are, however, often set as environmental variables in one of the Bash startup files. $SHELL, the name of the user's login shell, may be set from /etc/passwd or in an "init" script, and it is likewise not a Bash builtin.

tcsh% echo $LOGNAME
bozo
tcsh% echo $SHELL
/bin/tcsh
tcsh% echo $TERM
rxvt

bash$ echo $LOGNAME
bozo
bash$ echo $SHELL
/bin/tcsh
bash$ echo $TERM
rxvt
	      

Positional Parameters

$0, $1, $2, etc.

positional parameters, passed from command line to script, passed to a function, or set to a variable (see Example 4-5 and Example 11-13)

$#

number of command line arguments [2] or positional parameters (see Example 34-2)

$*

All of the positional parameters, seen as a single word

$@

Same as $*, but each parameter is a quoted string, that is, the parameters are passed on intact, without interpretation or expansion. This means, among other things, that each parameter in the argument list is seen as a separate word.

Example 9-6. arglist: Listing arguments with $* and $@

#!/bin/bash
# Invoke this script with several arguments, such as "one two three".

E_BADARGS=65

if [ ! -n "$1" ]
then
  echo "Usage: `basename $0` argument1 argument2 etc."
  exit $E_BADARGS
fi  

echo

index=1

echo "Listing args with \"\$*\":"
for arg in "$*"  # Doesn't work properly if "$*" isn't quoted.
do
  echo "Arg #$index = $arg"
  let "index+=1"
done             # $* sees all arguments as single word. 
echo "Entire arg list seen as single word."

echo

index=1

echo "Listing args with \"\$@\":"
for arg in "$@"
do
  echo "Arg #$index = $arg"
  let "index+=1"
done             # $@ sees arguments as separate words. 
echo "Arg list seen as separate words."

echo

exit 0

Following a shift, the $@ holds the remaining command-line parameters, lacking the previous $1, which was lost.
#!/bin/bash
# Invoke with ./scriptname 1 2 3 4 5

echo "$@"    # 1 2 3 4 5
shift
echo "$@"    # 2 3 4 5
shift
echo "$@"    # 3 4 5

# Each "shift" loses parameter $1.
# "$@" then contains the remaining parameters.

The $@ special parameter finds use as a tool for filtering input into shell scripts. The cat "$@" construction accepts input to a script either from stdin or from files given as parameters to the script. See Example 12-17 and Example 12-18.

Caution

The $* and $@ parameters sometimes display inconsistent and puzzling behavior, depending on the setting of $IFS.

Example 9-7. Inconsistent $* and $@ behavior

#!/bin/bash

#  Erratic behavior of the "$*" and "$@" internal Bash variables,
#+ depending on whether they are quoted or not.
#  Inconsistent handling of word splitting and linefeeds.


set -- "First one" "second" "third:one" "" "Fifth: :one"
# Setting the script arguments, $1, $2, etc.

echo

echo 'IFS unchanged, using "$*"'
c=0
for i in "$*"               # quoted
do echo "$((c+=1)): [$i]"   # This line remains the same in every instance.
                            # Echo args.
done
echo ---

echo 'IFS unchanged, using $*'
c=0
for i in $*                 # unquoted
do echo "$((c+=1)): [$i]"
done
echo ---

echo 'IFS unchanged, using "$@"'
c=0
for i in "$@"
do echo "$((c+=1)): [$i]"
done
echo ---

echo 'IFS unchanged, using $@'
c=0
for i in $@
do echo "$((c+=1)): [$i]"
done
echo ---

IFS=:
echo 'IFS=":", using "$*"'
c=0
for i in "$*"
do echo "$((c+=1)): [$i]"
done
echo ---

echo 'IFS=":", using $*'
c=0
for i in $*
do echo "$((c+=1)): [$i]"
done
echo ---

var=$*
echo 'IFS=":", using "$var" (var=$*)'
c=0
for i in "$var"
do echo "$((c+=1)): [$i]"
done
echo ---

echo 'IFS=":", using $var (var=$*)'
c=0
for i in $var
do echo "$((c+=1)): [$i]"
done
echo ---

var="$*"
echo 'IFS=":", using $var (var="$*")'
c=0
for i in $var
do echo "$((c+=1)): [$i]"
done
echo ---

echo 'IFS=":", using "$var" (var="$*")'
c=0
for i in "$var"
do echo "$((c+=1)): [$i]"
done
echo ---

echo 'IFS=":", using "$@"'
c=0
for i in "$@"
do echo "$((c+=1)): [$i]"
done
echo ---

echo 'IFS=":", using $@'
c=0
for i in $@
do echo "$((c+=1)): [$i]"
done
echo ---

var=$@
echo 'IFS=":", using $var (var=$@)'
c=0
for i in $var
do echo "$((c+=1)): [$i]"
done
echo ---

echo 'IFS=":", using "$var" (var=$@)'
c=0
for i in "$var"
do echo "$((c+=1)): [$i]"
done
echo ---

var="$@"
echo 'IFS=":", using "$var" (var="$@")'
c=0
for i in "$var"
do echo "$((c+=1)): [$i]"
done
echo ---

echo 'IFS=":", using $var (var="$@")'
c=0
for i in $var
do echo "$((c+=1)): [$i]"
done

echo

# Try this script with ksh or zsh -y.

exit 0

# This example script by Stephane Chazelas,
# and slightly modified by the document author.

Note

The $@ and $* parameters differ only when between double quotes.

Example 9-8. $* and $@ when $IFS is empty

#!/bin/bash

# If $IFS set, but empty,
# then "$*" and "$@" do not echo positional params as expected.

mecho ()       # Echo positional parameters.
{
echo "$1,$2,$3";
}


IFS=""         # Set, but empty.
set a b c      # Positional parameters.

mecho "$*"     # abc,,
mecho $*       # a,b,c

mecho $@       # a,b,c
mecho "$@"     # a,b,c

# The behavior of $* and $@ when $IFS is empty depends
# on whatever Bash or sh version being run.
# It is therefore inadvisable to depend on this "feature" in a script.


# Thanks, S.C.

exit 0

Other Special Parameters

$-

Flags passed to script (using set). See Example 11-13.

Caution

This was originally a ksh construct adopted into Bash, and unfortunately it does not seem to work reliably in Bash scripts. One possible use for it is to have a script self-test whether it is interactive.

$!

PID (process id) of last job run in background

$_

Special variable set to last argument of previous command executed.

Example 9-9. underscore variable

#!/bin/bash

echo $_              # /bin/bash
                     # Just called /bin/bash to run the script.

du >/dev/null        # So no output from command.
echo $_              # du

ls -al >/dev/null    # So no output from command.
echo $_              # -al  (last argument)

:
echo $_              # :
$?

Exit status of a command, function, or the script itself (see Example 23-3)

$$

Process id of the script itself. The $$ variable often finds use in scripts to construct "unique" temp file names (see Example A-14, Example 30-6, Example 12-23, and Example 11-23). This is usually simpler than invoking mktemp.

Notes

[1]

The pid of the currently running script is $$, of course.

[2]

The words "argument" and "parameter" are often used interchangeably. In the context of this document, they have the same precise meaning, that of a variable passed to a script or function.