F.8 Handle Template Adaptors
IceUtil provides adaptors that support use of smart pointers with STL algorithms. Each template function returns a corresponding function object that is for use by an STL algorithm. The adaptors are defined in the header
IceUtil/Functional.h.
memFun
memFun1
voidMemFun
voidMemFun1
secondMemFun
secondMemFun1
secondVoidMemFun
secondVoidMemFun1
constMemFun
constMemFun1
constVoidMemFun
constVoidMemFun1
secondConstMemFun
secondConstMemFun1
secondConstVoidMemFun
secondConstVoidMemFun1
As you can see, the adaptors are in two groups. The first group operates on non-const smart pointers, whereas the second group operates on
const smart pointers (for example, on smart pointers declared as
const MyClassPtr).
Each group is further divided into two sub-groups. The adaptors in the first group operate on the target of a smart pointer, whereas the
second<name> adapters operate on the second element of a pair, where that element is a smart pointer.
class MyClass : public IceUtil::Shared {
public:
MyClass(int i) : _i(i) {}
int getVal() { return _i; }
private:
int _i;
};
typedef IceUtil::Handle<MyClass> MyClassPtr;
// ...
vector<MyClassPtr> mcp;
mcp.push_back(new MyClass(42));
mcp.push_back(new MyClass(99));
transform(mcp.begin(), mcp.end(),
ostream_iterator<int>(cout, " "),
IceUtil::memFun(&MyClass::getVal));
cout << endl;
This code invokes the member function getVal on each instance that is pointed at by smart pointers in the vector
mcp and prints the return value of
getVal on
cout, separated by spaces. The output from this code is:
class MyClass : public IceUtil::Shared {
public:
MyClass(int i) : _i(i) {}
int plus(int v) { return _i + v; }
private:
int _i;
};
typedef IceUtil::Handle<MyClass> MyClassPtr;
// ...
vector<MyClassPtr> mcp;
mcp.push_back(new MyClass(2));
mcp.push_back(new MyClass(4));
mcp.push_back(new MyClass(6));
int A[3] = { 5, 7, 9 };
transform(mcp.begin(), mcp.end(), A,
ostream_iterator<int>(cout, " "),
IceUtil::memFun1(&MyClass::plus));
cout << endl;
This code invokes the member function plus on each instance that is pointed at by smart pointers in the vector
mcp and prints the return value of a call to
plus on
cout, separated by spaces. The calls to
plus are successively passed the values stored in the array
A. The output from this code is:
class MyClass : public IceUtil::Shared {
public:
MyClass(int i) : _i(i) {}
void print() { cout << _i << endl; }
private:
int _i;
};
typedef IceUtil::Handle<MyClass> MyClassPtr;
// ...
vector<MyClassPtr> mcp;
mcp.push_back(new MyClass(2));
mcp.push_back(new MyClass(4));
mcp.push_back(new MyClass(6));
for_each(mcp.begin(), mcp.end(),
IceUtil::voidMemFun(&MyClass::print));
class MyClass : public IceUtil::Shared {
public:
MyClass(int i) : _i(i) {}
void printPlus(int v) { cout << _i + v << endl; }
private:
int _i;
};
typedef IceUtil::Handle<MyClass> MyClassPtr;
vector<MyClassPtr> mcp;
mcp.push_back(new MyClass(2));
mcp.push_back(new MyClass(4));
mcp.push_back(new MyClass(6));
for_each(
mcp.begin(), mcp.end(),
bind2nd(IceUtil::voidMemFun1(&MyClass::printPlus), 3));
As mentioned on page 1981, the
second<name> versions of the adaptors operate on the second element of a
std::pair<T1, T2>, where
T2 must be a smart pointer. Most commonly, these adaptors are used to apply an algorithm to each lookup value of a map or multi-map. Here is an example:
class MyClass : public IceUtil::Shared {
public:
MyClass(int i) : _i(i) {}
int plus(int v) { return _i + v; }
private:
int _i;
};
typedef IceUtil::Handle<MyClass> MyClassPtr;
// ...
map<string, MyClassPtr> m;
m["two"] = new MyClass(2);
m["four"] = new MyClass(4);
m["six"] = new MyClass(6);
int A[3] = { 5, 7, 9 };
transform(
m.begin(), m.end(), A,
ostream_iterator<int>(cout, " "),
IceUtil::secondMemFun1<int, string, MyClass>(&MyClass::plus));
This code invokes the plus member function on the class instance denoted by the
second smart pointer member of each pair in the dictionary
m. The output from this code is:
Note that secondMemFun1 is a template that requires three arguments: the return type of the member function to be invoked, the key type of the dictionary, and the type of the class that is pointed at by the smart pointer.
In general, the second<name> adaptors require the following template arguments:
where R is the return type of the member function,
K is the type of the first member of the pair, and
T is the class that contains the member function.