final class LogisticRegressionContent extends Object
Constructor and Description |
---|
LogisticRegressionContent(PMMLPortObjectSpec outSpec,
List<String> factorList,
List<String> covariateList,
DataCell targetReferenceCategory,
boolean sortTargetCategories,
boolean sortFactorsCategories,
Matrix beta,
double loglike,
Matrix covMat,
int iter)
Create new instance.
|
LogisticRegressionContent(PMMLPortObjectSpec outSpec,
List<String> factorList,
List<String> covariateList,
Map<? extends String,? extends Integer> vectorLengths,
DataCell targetReferenceCategory,
boolean sortTargetCategories,
boolean sortFactorsCategories,
Matrix beta,
double loglike,
Matrix covMat,
int iter)
Create new instance.
|
Modifier and Type | Method and Description |
---|---|
PMMLGeneralRegressionContent |
createGeneralRegressionContent()
Creates a new PMML General Regression Content from this logistic
regression model.
|
BufferedDataTable |
createTablePortObject(ExecutionContext exec)
Creates a BufferedDataTable with the
|
Map<String,Double> |
getCoefficients(DataCell logit)
Returns the parameters mapped to the coefficients for the given logit.
|
double |
getEstimatedLikelihood() |
double |
getIntercept(DataCell logit)
Returns the value of the intercept for the given logit.
|
double |
getInterceptPValue(DataCell logit)
Returns the value of the intercept's p-value.
|
double |
getInterceptStdErr(DataCell logit)
Returns the value of the intercept's standard error for the given logit.
|
double |
getInterceptZScore(DataCell logit)
Returns the value of the intercept's z-score for the given logit.
|
int |
getIterationCount() |
List<DataCell> |
getLogits()
Logits are elements of the target domain values except of the last one.
|
List<String> |
getParameters()
Returns the parameters.
|
Map<String,Double> |
getPValues(DataCell logit)
Returns the parameters mapped to the p-value for the given logit.
|
PMMLPortObjectSpec |
getSpec()
Returns the spec of the output.
|
Map<String,Double> |
getStandardErrors(DataCell logit)
Returns the parameters mapped to the standard error for the given logit.
|
Map<String,Double> |
getZScores(DataCell logit)
Returns the parameters mapped to the z-score for the given logit.
|
(package private) static LogisticRegressionContent |
load(ModelContentRO parContent,
DataTableSpec spec) |
(package private) void |
save(ModelContentWO parContent)
Save internals to the given content.
|
LogisticRegressionContent(PMMLPortObjectSpec outSpec, List<String> factorList, List<String> covariateList, DataCell targetReferenceCategory, boolean sortTargetCategories, boolean sortFactorsCategories, Matrix beta, double loglike, Matrix covMat, int iter)
outSpec
- the spec of the outputfactorList
- the factors (nominal parameters)covariateList
- the covariates (numeric parameters)targetReferenceCategory
- the target reference category, if not set it is the last categorysortTargetCategories
- true when target categories should be sortedsortFactorsCategories
- true when categories of nominal data in the include list should be sortedbeta
- the estimated regression factorsloglike
- the estimated likelihoodcovMat
- the covariance matrixiter
- the number of iterationsLogisticRegressionContent(PMMLPortObjectSpec outSpec, List<String> factorList, List<String> covariateList, Map<? extends String,? extends Integer> vectorLengths, DataCell targetReferenceCategory, boolean sortTargetCategories, boolean sortFactorsCategories, Matrix beta, double loglike, Matrix covMat, int iter)
outSpec
- the spec of the outputfactorList
- the factors (nominal parameters)covariateList
- the covariates (numeric parameters)vectorLengths
- the length of vector columnstargetReferenceCategory
- the target reference category, if not set it is the last categorysortTargetCategories
- true when target categories should be sortedsortFactorsCategories
- true when categories of nominal data in the include list should be sortedbeta
- the estimated regression factorsloglike
- the estimated likelihoodcovMat
- the covariance matrixiter
- the number of iterationspublic double getEstimatedLikelihood()
public int getIterationCount()
public List<DataCell> getLogits()
public List<String> getParameters()
public Map<String,Double> getCoefficients(DataCell logit)
logit
- the logitpublic Map<String,Double> getStandardErrors(DataCell logit)
logit
- the logitpublic Map<String,Double> getZScores(DataCell logit)
logit
- the logitpublic Map<String,Double> getPValues(DataCell logit)
logit
- the logitpublic double getIntercept(DataCell logit)
logit
- the logitpublic double getInterceptStdErr(DataCell logit)
logit
- the logitpublic double getInterceptZScore(DataCell logit)
logit
- the logitpublic double getInterceptPValue(DataCell logit)
logit
- the logitpublic BufferedDataTable createTablePortObject(ExecutionContext exec)
exec
- The execution contextpublic PMMLGeneralRegressionContent createGeneralRegressionContent()
static LogisticRegressionContent load(ModelContentRO parContent, DataTableSpec spec) throws InvalidSettingsException
parContent
- the content that holds the internalsspec
- the data table spec of the training dataInvalidSettingsException
- when data are not well formedvoid save(ModelContentWO parContent)
parContent
- the content used as a storagepublic PMMLPortObjectSpec getSpec()
KNIME GmbH, Konstanz, Germany
You may not modify, publish, transmit, transfer or sell, reproduce, create derivative works from, distribute, perform, display, or in any way exploit any of the content, in whole or in part, except as otherwise expressly permitted in writing by the copyright owner or as specified in the license file distributed with this product.